The subjects listed in the referee’ comment, haaenlrarefully addressed in the revised version of
our paper. Hereby we are going to provide in detailresponses to the specific issues raised.

Point 1.

Done. The English has been revised.

Point 2.

According to the referee, on the revised paper weiged a flow chart of the procedure (Fig. 1).
Hereby we are also providing a glossary with theduabbreviations. Considering that all the
abbreviations are already explained in the textdidenot insert this glossary on the revised paper.

Glossary

Avpor

Aw
n

n*

Na
QO-Plot
QQ-Ploty,
Sk

Sk’
TA
TA*
w
Zi

Multiple flow direction upslope area
Weighted Upslope Area

Kernel size

Optimum kernel size

Normalized topographic attribute
Quantile-Quantile Plot

Threshold identified through the QQ-Plot
Skewness

Skewness derivative

Topographic Attribute (minimum curvature and opess)e
Topographic attribute evaluate for n*
Weight to apply to upslope area
Standard score
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Fig. 1. Flow chart of the proposed methodologyE¢aluation of Topographic Attributeg4) (Minimum CurvatureC,,,, Positive

Opennessf, , Negative Opennes[é/'-, for different moving windows size; 2) evaluatioh kernel size, through the analysis of

skewness [for each topographic attribute, paramétting of a polynomiabf degreen that fits the skewness data as a function of
kernel size in a least square sense; derivatiieeopolynomials to evaluate inflection pointshoice of optimum kernel size (178)
topographic attributes evaluated for the optimurdtini 4) QQ-Plot analysis and identification of tftelds; 5) normalization of
each map according to its threshold; 6) evaluatbra weight matrix depending on the normalized gwpphic attributes; 7)
weighting of the MDF upslope area according to phevided matrix ; 8) network identified as positivalues of weighted area
standard score. At this point, according to thesgnee/absence of noises, we provided an indicationow to perform a filtering
approach and on how to connect the network.



b)

Point. 3
On the paper introduction, we highlighted a sumnadrgther works dealing with similar issues of
extracting channel network, providing a scientdantext. Considering the request of the referee, in
the revised paper we highlighted some of the mdiardnces between this work and the mentioned
ones.
We will hereby briefly summarize some aspects.
In our work, we aimed to an unsupervised networltagtion carried out without any a priori
knowledge of the area or of the input dataset. iftexest of this work relies on the research of a
methodology whose parameters, as the optimal keaimel or the applied thresholds for network
identification, can be objective and suitable faifedent applications, and they do not need a
calibration on the data.
Considering to the scientific context mentionedtbg referee, we would like to highlight three
aspects concerning:

a) the type of topographic parameters used;

b) consideration of scale;

c) objective thresholds to compute the network.

We would like to underline that in our work, cunreg has been evaluated according to Evans’
(1972 formulation, using the same approach appliedéamand maximum curvaturefotti and
Tarolli (2010 andTarolli et al.(201]) respectively.

For the other works mentioned by the referee, atsteurvature has been evaluated with different
approachedMolly and Stepinski, (20073pplied theangential curvature accordingMitasova and
Hofierka(1993 formulation. Plan curvature and total curvatuagdnbeen used Byhommeret et al.
(2010 andTarolli and Dalla Fontana (20Despectively. The work dfarboton and Ames (201
relied instead on a proxy of curvature stemmiognfthePeuker and Douglg4975 algorithm.

The curvature as expressed in works indicated bydkiewer required the use of fixed kernels of
2x2 (Tarboton and Ames, 20pbr 3x3 cells folloy and Stepinski, 2007; Thommeret et al., 2010
Some authors, instead, underlined how scale needsetincluded when evaluating surfaces
derivatives, in order to bring out the longer-ramngignal connected to meaningfprocesses
signature and at the same time mask short-ranges@iashermes et al. 2007; Passalacqua et al.
2010a,b; Pirotti and Tarolli, 2010; Tarolli et 2011). Considering this issue:

I.  Lashermes et a(2007) andPassalacqua et #2010a,bp used a fixed operational scale to
filter the input data;

ii.  Pirotti and Tarolli (2010 identified the best window as the 15x15 cells,dng they
underlined that this window might vary as a functiof the size of the features to be
detected;

iii.  Tarolli et al (2011 underlined for landslides and bank erosion festuthat a too small
or too wide window size is not suitable for thrdslmy based on statistical descriptors
and the best results were obtained consideringca12dells window.

How to select objectively a scale for curvatureleation, is still an open question, since the basic
3x3 moving windows has been proven not reliabledor study areaRjrotti and Tarolli, 2010,
Tarolli et al. 201} These works identified two different moving wowds (corresponding to 15m
and 10.5 m, respectively) as the best ones, rgldiem to the size of the investigated features. In
these studies, furthermore, the optimum kernel isizéentified a posteriori, through a comparison
of all extractions carried out considering all pbks kernel sizes (12 in both works) with the
reference features, for a total of 36 (ii.) and31@, (iii.) -considering also the filtering procedur
comparisons.

We want, instead to identify this optimum size befproceeding with the extractions. The idea is
to consider an approach relatively independenhefinput dataset or from the size of the analyzed
features. We would like to highlight that in our lkdhe procedure identified an optimum kernel



width of 15m for Openness (same window identifisdogtimal forPirotti and Tarolli, 201)) and
11m for Minimum Curvature (same window identifiexl@ptimal inTarolli et al. 201).

c) Other works provided objective thresholds for netnaelineation, however:

i.  Thommeret et al., 201i@entified objective thresholds through a methoat tivas data-
dependent and data-driven because it relied on Ddige parameters. This required the
DTM quality to be evaluated first, with the limitathcomes from the DTM noise
determination;

ii. Lashermes et al. 20@Ghd Passalacqua et al. 2010&bntified as an objective threshold
the QQ-Plot, that we also apply to normalize theotpaphic attribute maps. In these
works, although, the scale used to filter the ingatta was operationally derived. Note
also that inPassalacqua et a(2010a,p a small threshold in contributing area was
arbitrarily chosen to improve the robustness ofrttethod used to connect the network.
The same authors stated that this threshold miginy according to the analyzed
landscape. In the work @fashermes et al. 200@ few constraints were found necessary
for network definition, which in some cases reqdineanual intervention;

iii.  Tarolli and Dalla Fontana (200%¢sted the effectiveness of statistical threshédoe,
two or three times the standard deviation of cumeggt as a useful and objective
methodology for recognizing hollows and relatedreied heads, but they did not make
any consideration about the network;

iv.  Pirotti and Tarolli, (2010)applied the same objective threshold based on atdnd
deviation as proposed in tAarolli and Dalla Fontana (2008) test its effectiveness on
identifying the network. Nevertheless, their pugass not to produce a fully-connected
network. Furthermore, as we already reported intl®y underlined that the window
related to the best results might vary as a functb the size of the features to be
detected (implying an a priori assessment of taeufe of interests);

v. Tarolli et al. 2011tested different thresholding methodology to idgntieomorphic
features (landslides and bank erosion, not chaneelorks), where the choice of the
kernel size to apply was operational and its eiffecess was tested a-posteriori, through
comparison of different maps to the reference featu

As we already underlined in 3b), in both iv. andtiwe procedures required to apply all the
thresholds (a total of 3P(rotti and Tarolli 201P or 68 -one to five times four different statistic
thresholds, with 0.25 stepsFdrolli et al., 2011) to all the produced maps. The definition of the
best result was then done through a comparisoti ek@actions respect to the surveyed features.
Both kernel sizes and thresholds, for these wanlestherefore, calibrated on the result.

Clearly, the referenced studies required the seledf some parameters that controls the form of
network extracted, and they required either a paggessment of the input data or a calibration of
the kernel size by interactively testing its effeehess. The method we proposed, instead, is an
unsupervised network extraction carried out withaay a priori knowledge of the area or of the
input dataset. Our procedure uses unique statistnchcators (Skewness, QQ-Plot, standard
score...). The objectivity of these indicators isvy@o by applying the procedure to two areas with
different morphology, whose DTMs’ spatial interpoda methods differ (see also our response to
point 5).

It is true that the filtering procedure for the ma®mplex area (Cordon) required the user to
identify doubtful extraction, but these were dislgat according to an objective threshold as well
(Entropy higher than the mean). The connectionhef network, then, did not require manual
interventions: considering that the noises werddvawn, the network was simply defined starting
it only where a convergence was denoted and camgatto a pour point (identified as the point of
maximum convergence of flows).



Point 4
We think that the statistic parts are useful in tbgt to provide a clear description of the
methodology.

Point 5.

A clear comparison of classical channel networkagtion and flow routing methodologies has
already been deeply and successfully addressdebbyalacqua et gR0100 for the same study
area of our work. Therefore, we did not provides tbomparison. Several other studies, however,
already pointed out that a robust delineation gash networks cannot always be achieved by the
popular steepest descent algorithm, and for sose staidies should be based on direct detection of
morphology in the DTM (e.gMolloy and Stepinski, 2007; Lashermes et al., 200&rolli and
Dalla Fontana, 2009; Thommeret et al., 2010, Riaoiti Tarolli, 2010; Passalacqua et al. 201)0a,b
Concerning the use of both openness and curvateageferee comment helped us to understand
that some further explanations were needed. Acagriti this observation, in the revised paper, we
provided a brief highlighting of the reasons behthé choice. We hereby briefly explain the
background context as well.

Literature review suggests that small artifacts @uBTM interpolation, even when controlled and
limited by appropriate methods, might amplify insfi and second derivative8yrrough and
McDonnell, 1998; Gallant and Wilson, 2Q0GBince there is not an unambiguous and objective
criterion to assess fidelity of interpolated sueia@and/or revealed structuréddcCullagh, 1988;
Florinsky, 200%, we supposed that the reliability of network extron would have gained from the
integration of curvature with another terrain pagéen not directly connected to surface derivatives.
Openness measures convergences calculating thagavef either zenith or nadir angles along
azimuths Yokoyama et al., 2002; Prima et al., 2Dp@éd we assumed that this averaging procedure
would have been less affected by artifact in theuindata due to interpolation techniques. As
suggested byokoyama et al. (2002)values of both positive and negative opennesg Hen
compiled.

For our work, DTMs were derived with two differenterpolation procedures: the natural neighbor
interpolator Gibson, 198} for the Cordon study sitd>{rotti and Tarolli, 201Ppand an algorithm
with a spline function in the ESRI TOPOGRID took fihe Miozza oneTarolli and Tarboton,
2006; Tarolli and Dalla Fontana, 2009 our work, a constancy of dynamics of skewnass
found in both applications, analyzing positive aregdjative openness. Differently, we registered an
heterogeneous behavior for curvature skewness 4figand B). Testing skewness performance
respect interpolation techniques, and identifyrtihelationship was not a purpose of this work, but
it was clear to us that openness and curvatureviedatifferently. Although the information that both
parameters carry might be redundant, we suggestthibaconcavity/convexity detection can be
more sound using both indexes. This choice has lbeme considering the idea of finding a
methodology valid for different datasets, indepertlyefrom interpolation techniques used.

Specific comments.

- 9329: 14-17 | think that this paragraph concernitige DTM filling procedures does not
contribute to a better understanding of the proldeire paper is dealing with. It should be
removed.

Done. Considering the referee comment, we removaggoaph 14-17 (9329). Furthermore,
considering other suggestions, we provided a belieification of the scientific context.



- 9330 The authors refer to a lot of other works thave provided interesting results in
channel network extraction. However, the authorusthaxplain what is new in this work
compared to the others.

The referenced works dealt with subjective or fixgerational choices of different parameters, as
in scale size to adopt to filter the elevation miation and thresholds to compute the network. All
require the selection of some parameter that clsnttee form of network extracted. See our

answers to points 3 and 5 for a fuller discussion.

- For easier reading, | suggest to merge sectiona®d section 5. In section 3.1, the upslope
areas calculation should be more clearly explairor&bver, the choice of the MFD could
be justified.

According to the referee comment, in the revisquepave explained more clearly section 3.1.

It is true we did not describe in detail the méliw direction algorithm (MDF) we used, but this
was done because the only difference between fieeereed oneQ@uinn et al., 1991 and our
application was to provide a matrix of the weightapply to the evaluated upslope contributing
area.

Hereby we will anyway summarize some points abloetchoice of the MDF algorithm.

Previous studies demonstrated that:

- computing total contributing area properly when lihga with divergent topography,
involves suitable algorithms for handling multiglew directions Tucker et al. 2001as the
one proposed e.g. [iyuinn et al., 1991; Costa Cabral and Burges, 198doton, 1997,

- multiple-flow methods appear to produce generadlitdy results for hillslope, avoiding the
concentration of flow in distinct, often artificigl straight lines, as in the single-flow
direction algorithms (e.gErskine et al., 2006

- multiple-flow algorithms allow the recognition oags of channels likely to be active also
under conditions of low or moderate flow, and hightiminor channel features, which are
involved in flow processes during flood;

- multiple-flow algorithms should be preferred forpéipations of upslope contributing area
derived from higher-resolution DTMs (5- and 10-ndg) (Erskine et al., 2006

- multiple-flow algorithms are more robust than sexfjbw (Seibert and McGlynn, 200:7
using single-flow, a tiny elevation difference beem two of the neighboring cells can have
a large effect as one of the cells receives allatlea. With multiple-flow, these differences
have a less influential effect because both cateive about the same portion of the
accumulated area.

Considering these observations, we focused ountaiteto multiple-flow algorithmsQ@uinn et al.,
1991, Costa Cabral and Burges, 1994; Tarboton,)1%9& decided not to consider algorithms such
as digital elevation model networks (DEMONjdsta-Cabral and Burges, 19%cause, even if
they might have theoretical advantages, they arectonplex and case specific to be implemented
for most applicationsT{arboton, 199y

The choice of theQuinn et al. (1991 multiple-flow algorithm was based on two further
considerations:

a) previous studieg$Endreny and Wood, 20DHemonstrated that, compared to other flow
algorithms, MDF Quinn et al., 1991was the least sensitive to terrain uncertainties;

b) the main disadvantage duinn’s MDF (large degree of dispersion even for a
convergent hillslope), was supplied in our workibgorporating a weight depending on
local topographic conditions.

According to a), on the idea of providing a meththdt was not constrained by an a priori
knowledge of the dataset, we supposed thatQhi@en’s MDF would have been more robust than
others. We would like to underline also that, cdaging b), the use of the D-infinity ¢&) multiple



flow direction model Tarboton, 199y was discarded, because its weighting accordinguio
procedure would have stressed the flow convergesiceady limited by the algorithm theory itself.

- Section 3.2. The surface approximation is quiteakmd recommend the authors to shorten
this section by referring to other works that deaih topographic indices computation as
Evan, 1992 and Woods, 1996.

We agree with the referee. In the revised manusasip referenced the surface approximation as
suggested. We focused the description only on émemlization of minimum curvature to perform
terrain analysis across a variety of spatial soqahésod, 1996.

- 9337: 15 Justify this affirmation: “Differently, irthe presence of noises and terrain
roughness, such a histogram tend to be more ordkswed to one side”. It does not seem
SO obvious in mountainous areas

In hilly regions, imbalanced terrain elevation abualffect the histogram distribution and make it
skewed Youan et al., 2008 It is true we did not analyze histograms of itmgut DTMs, but it is
well known that DTM derivatives are influenced hyput elevation data (e.@urrough and
McDonnell, 1998; Gallant and Wilson, 200Curvature, for example, has a high sensitiathigh
frequency changes of the surfag@éood and Fisher, 1993Skewness of elevation data can control
the shape of the distribution of derived topograpditributes, and in our study we registered
different values of skewness according to the wivalghosen to investigate convexities (Fig. 4A
and B). The higher/lower skewing was due to the atiing/enhancing effect derived by the
different kernel sizes, and its smoothing/accemtnatf noises and roughness.

- 9338: 10-14 Use X (random variable) instead of >edp 10. And latter un the text, keep X
not t.

According to the referee comment, we partly congidehis suggestion. In the revised paper we
used X (random variable) instead of x in eq. (Y@@ would like to underline that skewness, as it is
referenced in this work, has been evaluated throiingh software Matlab®, and it has been
described consequently. The Eq. (10) is consistéhtthe one referenced in the software (Matlab,
2010Db). The variablé refers to the expression included in the brack€tg) not to the random
variable itself.

- 9339: 5-end of the section | wonder if these paagbs should not be with the results.

We think that sections 5 to 7 included, refer tadhmdology. Results focus instead, on the quality of
the extracted network.

- 9340:4-10 Refer to other works that used the ugshrea weighting procedure.

Done. According to the referee comment, we addedesoeferences for the area weighting
procedure ad.iu et al., 2007and Tarboton, 2003

- 9340: 19-end of the section Justify the use of Q®@phstead of a distribution comparison
test as the chi2 test, for instance.

We applied the QQ-Plot instead of other tests bmedhis operator has already been successfully
proven to be a strong indicator for concavity/coqtyediscrimination when applied to network
extraction Passalacqua et al. 2010a,b; Lashermes et al.) 200740 geomorphic feature extraction



(Tarolli et al. 201). We did not want to test the actual normalitytieé dataset, but we wanted to
identify a threshold defined as the point of diveerge of the dataset from normality.

- 9341 Concerning the z-score: I'm not sure it is dippropriate name (standard score) while
population parameters are estimated. If it meansmabized variable, or stundentized
variable, just refer to it and synthesize this gstin one sentence.

In statistic a standard score (z) is defined asngeusionless quantity derived by subtracting the
sample mean from an individual score and then ohgidhe difference by the sample standard

deviation. The “studentized” equivalent require tenominator of the formula to be normalized

according to the square root of the dataset sizare, as it is referenced in this work has been
evaluated through the software Matlab® and it leennamed consequently. The software with its
Standardized z-scores procedure “returns a centecated version of the input data, the same size
as the input” (Matlab, 2010b). The formula apphgedhe one in Eq. (17). Considering the reviewer
comment, to avoid misunderstanding, in the revigader we referenced this value as ‘standard
score’.

- About the section 7: Is it possible to quantify tloése before the filtering step?

Filtering the input data regularizing the map befeomputing a topographic attribute refers to a
different approach for topographic attribute evahrafor feature extractiorLdshermes et al. 2007;
Passalacqua et al. 2010a,bhe method we proposed is based on a smoothauggure to apply to
the topographic attributes through the kernel sizeice, rather than on a filtering of the original
input dataset. Therefore, we decided to deal witlises on the extracted features. Local
concavities/convexities are typical in areas witimplex morphology as the case of our study site,
and they have already been registered Fagotti and Tarolli (2010), Tarolli et al. (2011),
Passalacqua et al. (2010@Yhile on areas with smoothed morphology (as endhse of the Miozza
test site) the small scale variation captured thuced to a pixel-scale width (therefore, easily
discarded), when morphological complexity increagess necessary to identify a semi-objective
way to guarantee noise removal. We suggest ta titte results of the extraction, instead of the
input data, in order to have a map of the potemigdvork as in detected surface convexities where
to focus the efforts of filtering. Considering theal Boolean map as an evidence of the localimatio
of concavities, the user knows the location anddkint of the disruptions from the network.
Analyzing Entropy Gonzales et al. 2003)nly for these doubtful features (as in elemenit$ &
higher degree of discontinuity/disruption) the attuetwork delineation procedure is eased.

- Section 9. It could be interesting to summarize rithenber of parameters and thresholds
used to obtain the channel network.

To ease the comprehension of the work, in the eevismper we provided a general schematization
of the procedure that summarizes the steps reqtaredtain the channel network.
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