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Abstract 1 

To support the goal of distributed hydrologic and instream model predictions 2 

based on physical processes, we explore multi-dimensional parameterization 3 

determined by a broad set of observations. We present a systematic approach to 4 

using various data types at spatially distributed locations to decrease parameter 5 

bounds sampled within calibration algorithms that ultimately provide information 6 

regarding the extent of individual processes represented within the model structure. 7 

Through the use of a simulation matrix, parameter sets are first locally optimized by 8 

fitting the respective data at one or two locations and then the best results are 9 

selected to resolve which parameter sets perform best at all locations, or globally. 10 

This approach is illustrated using the Two-Zone Temperature and Solute (TZTS) 11 

model for a case study in the Virgin River, Utah, USA, where temperature and solute 12 

tracer data were collected at multiple locations and zones within the river that 13 

represent the fate and transport of both heat and solute through the study reach. The 14 

result was a narrowed parameter space and increased parameter certainty which 15 

based on our results, would not have been as successful if only single objective 16 

algorithms were used. We also found that the global optimum is best defined by 17 

multiple spatially distributed local optima, which supports the hypothesis that there 18 

is a discrete and narrowly bounded parameter range that represents the processes 19 

controlling dominant hydrologic responses. Further, we illustrate that the 20 

optimization process itself can be used to determine which observed responses and 21 

locations are most useful for estimating the parameters that result in a global fit to 22 

guide future data collection efforts.  23 

 24 
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1. Introduction 2 

 Typically, the calibration of models involves fitting simulations to either 3 

single or multiple variables, error measures at a single location, or combining 4 

information from multiple locations (Duan, 2003). Early calibration techniques were 5 

notorious for converging to local optimal solutions and did not reliably find the 6 

global optimum (Schaake, 2003). Additionally, many hydrological modeling 7 

procedures do not make the best use of available information (Wagener et al., 2001). 8 

Current research on the calibration problem primarily focuses on uncertainty analysis 9 

and consideration of multiple objectives (Fu and Gomez-Hernandez, 2009; Blasone 10 

et al., 2008; Ajami et al., 2007; Duan et al., 2007; and Vrugt and Robinson, 2007). 11 

Rather than selecting a single preferred parameter set, equifinality of models 12 

recognizes that there may be no single, correct set of parameter values for a given 13 

model and that different parameter sets may give acceptable model performance 14 

(Beven, 2001).  15 

 All calibration algorithms have basic design requirements, including the 16 

selection of calibration parameters, objectives, and the a priori space within which to 17 

search for an optimum solution or set of solutions. The measure of “acceptable” and 18 

“optimal” is left to the design of the optimization problem, the model application, 19 

and the modeler. In this study, we consider a global optimum as the solution where 20 

there is acceptable tradeoff between fitting the model at all locations there is data 21 

available versus just matching data at one location well; this can be accomplished by 22 

using a range of multiple local optima defined by a narrowly bounded global optima. 23 

Since a model is not an exact representation of reality, and observed data used for 24 

verification is not perfect, the theoretical global optimum of a process based model 25 

distributed in space and in time may be an unrealistic goal. However, a practical goal 26 

is to resolve the multiple local optima which simultaneously perform well on a local 27 

scale to narrowly bound the region surrounding the theoretical global optimum. In 28 

other words, there is a need to narrowly bound the global optimum region where 29 

good results exist for all data distributed throughout the system. Performing well 30 

locally and globally, or glocalization, can be used to define an optimum in model 31 

calibration which bridges scales between local and global performance. A systematic 32 

approach to using various data types at spatially distributed locations to decrease 33 

parameter bounds sampled within optimization algorithms is relevant to instream and 34 

hydrologic models ranging in applications from the stream reach to the watershed 35 

scale.  36 



 

 

 

 

 

 

 The Two-Zone Temperature and Solute (TZTS) model (Neilson et al., 2010a 1 

and b) was developed to capture the dominant instream processes associated with 2 

heat and solute fate and transport. The TZTS model separates transient storage 3 

(Bencala and Walters, 1983) into two zones, (1) dead zones or the surface transient 4 

storage (STS) zone that represents the eddies, recirculating zones, and side pockets 5 

of water and (2) subsurface or hyporheic transient storage (HTS) zone that represents 6 

the flow into or out of the stream substrate. As discussed in Neilson et al. (2010a), 7 

sources and sinks of heat include fluxes across the air-water interface, bed 8 

conduction, conduction between the bed and deeper ground substrate, HTS exchange, 9 

and STS exchange. Solute mass is primarily influenced by HTS and STS exchange 10 

(Neilson et al., 2010b). To account for each of these fluxes, the TZTS model 11 

calculates energy and mass balances on the main channel, the STS zone, and the 12 

HTS zone for each reach or control volume. As described further in Neilson et al., 13 

2010a,b, the model equations are: 14 
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 6 

where T = temperature (
o
C), Q = volumetric flow rate (m

3
s

-1
), V = zone volume (m

3
), 7 

D = longitudinal dispersion (m
2
d

-1
), ∆x = volume length (m), αSTSi = exchange 8 

between the MC and the STS (m
2
d

-1
), QHTS = HTS advective transport coefficient 9 

(m
3
d

-1
), Acs,MC = cross-sectional area of the MC (m

2
), Btot = total volume width (m), β 10 

= the STS fraction of the total channel width, Y = volume depth (m), ρ = density of 11 

the water (g cm
-3

), Cp = specific heat capacity of the water (cal g
-1 o

C
-1

), ρsed = 12 

density of the sediment (g cm
-3

), Cp,sed = heat capacity of the sediment (cal g
-1 o

C
-1

), 13 

αsed= coefficient of thermal diffusivity of the sediment, and Jatm = atmospheric heat 14 

flux (cal cm
–2

 d
–1

) (consisting of net shortwave radiation (0.31 to 2.8 µm), 15 

atmospheric longwave radiation (5 to 25 µm), water longwave radiation, conduction 16 

and convection, and evaporation and condensation), and C = concentration (mg L
-1

).  17 

The subscripts MC, STS, and HTS, STS,sed, and gr specify the main channel, surface 18 

transient storage, and the hyporheic transient storage, sediments below the STS and 19 

the deeper ground layer, respectively.  20 

To support TZTS model applications, simultaneous data collection of 21 

temperature and solute tracer data (referred to more simply as tracer data throughout 22 

the rest of the paper) in the main channel and storage zones distributed laterally (e.g., 23 

within the main channel, HTS, and STS) at one location and longitudinally along a 24 

river segment, has created datasets that can be used to address the high dimensional 25 

problems associated with predicting heat and solute movement within streams and 26 

rivers. In recent studies, beginning with Neilson et al. (2010a,b), the TZTS model 27 

was calibrated using the Multi-Objective Shuffled Complex Evolution Metropolis 28 

algorithm (MOSCEM; see Vrugt et al., 2003a for algorithm description) and used to 29 

predict solute concentrations and temperatures in the Virgin River, Utah, USA, in 30 

two storage zones at two different locations within the study reach. Using 31 



 

 

 

 

 

 

temperature and tracer observations at two different sites illustrated that using more 1 

spatially distributed information and two different environmental tracers 2 

(temperature and solute) in the optimization improves the overall performance of the 3 

model. These studies found that even with the use of multi-objective calibration, 4 

many optimal parameter sets were indistinguishable based on the objective functions, 5 

fairly broad parameter ranges resulted, and parameter uncertainty was still a concern.  6 

In this paper, we address these issues by presenting a systematic approach to 7 

using various data types at spatially distributed locations to decrease parameter 8 

bounds sampled within optimization algorithms in the context of a case study. Our 9 

hypothesis is that there is a narrowly bounded parameter range that best represents 10 

the hydrologic processes controlling the system, which can be determined by using 11 

key data sets as multiple optimization objectives. To do investigate this, we 12 

developed a simulation matrix of data types and sites that is used first to locally 13 

optimize parameter sets by fitting the respective main channel data using both single 14 

and multi-objective optimization algorithms. These results were then used to resolve 15 

which parameter sets perform best at individual locations (distributed laterally and 16 

longitudinally) or have the best local fit, and which parameter sets result in the best 17 

global fit. Throughout this process we also test the utility of single and multi 18 

objective optimizations and determine the most informative calibration datasets 19 

resulting in global data fits.  20 

 21 

2. Study area and data 22 

 A highly managed portion of the Virgin River, Utah, USA (Fig. 1), is 23 

considered impaired due to elevated temperatures that have adversely affected two 24 

endangered fish species (Virgin River Chub – Gila seminuda and woundfin – 25 

Plagopterus argentissimus) and other native fishes unique to this river system. An 26 

11.94 km study reach of the Virgin River (Fig. 1) was divided into two main sections 27 

on the basis of bed slope (0.0039 between S1 and S2 and 0.0012 between S2 and S3) 28 

and stream substrate distribution identified from a previous mapping effort (Neilson 29 

et al. 2010a).  30 

To support the TZTS model population, calibration, and model testing, 31 

various data types were collected from 22–25 June 2007. The instream flow during 32 

the study period was found to be an average of 1.06 m
3
 s

−1
 at Site 1 and 1.96 m

3
 s

−1
 33 

at Site 3. Information regarding several lateral inflow rates and temperatures were 34 

also collected during the study. The largest is the return flow from Quail Creek 35 

Reservoir (0.6m3 s−1). Groundwater exchanges were set according to Herbert (1995) 36 

with a total gain 0.17m
3 

s
−1

 over the entire reach. Weather information (air 37 

temperature, solar radiation, wind speed, and relative humidity) was gathered at Site 38 

1 using a Davis Wireless Vantage Pro (Hayward, CA) weather station to provide the 39 

data necessary to calculate the atmospheric fluxes (Jatm in Eqn. 1). Similar to Neilson 40 
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et al. (2010a,b), solute and temperature information were collected at Site 2 and Site 1 

3 to support model calibration and testing. The data included solute tracer 2 

experiments resulting in main channel and STS concentrations at both Site 2 and Site 3 

3. Simultaneous temperatures at Site 2 and Site 3 were also collected in the main 4 

channel (sensor 2), STS (sensor 1 and 3), and HTS (sensor 4, 5, and 6) (Fig. 2). The 5 

temperature sensors were Hobo® Water Temp ProV1 (Onset Corporation, Bourne, 6 

MA) with a ±0.2C accuracy and resolution of 0.02C.   7 

As with Neilson et al. (2010b), a 180 g instantaneous pulse of fluorescent 8 

Rhodamine WT dye was injected at 02:00:00 on 6 June 2007, at the head of a riffle 9 

just upstream of Site 1. A Self-Contained Underwater Fluorescence Apparatus 10 

(SCUFA) (Turner Designs, Sunnyvale, CA) was deployed in the main flow of the 11 

channel at both Site 2 and Site 3. Measurements were taken in situ every ten seconds 12 

for approximately seven hours at Site 2 and 6 h at Site 3. Grab samples were also 13 

collected at both Site 2 and 3 near the SCUFA to provide an independent measure in 14 

the main channel and in two representative STS locations. The grab samples were 15 

kept cool, stored in the dark in amber bottles with PTFE caps, and analyzed using a 16 

Turner Model 450 fluorometer (Turner Designs, Sunnyvale, CA). As discussed in 17 

Neilson et al. (2010b), loss of Rhodamine WT due to sorption to streambed 18 

sediments (mineral and organic) was not a concern in this study because the organic 19 

matter content in the bed sediments was extremely low (averaging 0.05% at four 20 

sampling locations). Additionally, a recent sorption study within this portion of the 21 

Virgin River (Bingham, 2010) provided average Kd values of 1.5mL/g, which is low 22 

based on other Rhodamine WT sorption studies (Bencala and Walters, 1983; Everts 23 

and Kanwar, 1994; Lin et al., 2003; Shiau et al., 1993). 24 

  25 

3. Methods 26 

 27 

3.1. Simulation Matrix  28 

With the overall goal of iteratively reducing the size of the global search 29 

space, while simultaneously investigating the information content within the 30 

available data types, we established a simulation matrix (Table 1) to test the use of 31 

the most commonly collected main channel data sets used in calibration of instream 32 

temperature and solute models. Each row and column denotes a data type that 33 

represents both heat and tracer fate and transport at Site 2 and 3 along the study 34 

reach and within different zones at each location. 35 

      This matrix represents all possible combinations of single and two-objective 36 

calibrations that use the available main channel temperature and tracer data. The 37 

calibration tests were Tests 1 through 4, which are single-objective calibrations using 38 



 

 

 

 

 

 

main channel temperature and tracer at Site 2 and Site 3, and Tests 5 through 10 1 

which are various combinations of data resulting in two-objective optimizations. The 2 

latter two objective tests include the following combinations: main channel 3 

temperatures at Site 2 and Site 3 (Test 5), main channel tracer observations at Site 2 4 

and Site 3 (Test 6), main channel temperature and tracer observations at Site 2 (Test 5 

7), main channel temperature at Site 3 and tracer observations at Site 2 (Test 8), main 6 

channel temperature at Site 2 and tracer observations at Site 3 (Test 9), and main 7 

channel temperature and tracer observation at Site 3 (Test 10). 8 

 9 

3.2.Calibration Technique 10 

 Similar to previous TZTS calibration studies (Neilson et al., 2010a,b; 11 

Bingham, 2010), SCEM (for single-objective calibration) and MOSCEM (for multi-12 

objective calibration) (Vrugt et al., 2003a,b) were the optimization algorithms 13 

utilized to evaluate each model test. To ensure that we were adequately searching the 14 

parameter space, MOSCEM was run with a random sample of 300 parameter sets 15 

that evolved using two complexes for a total of 3000 model runs for each of the ten 16 

tests. In this case, a parameter set consists of a different combination of parameter 17 

values for each of the 11 parameters that were calibrated and a complex is a group of 18 

parameter sets within which objective function results are compared. The parameter 19 

sets with the best results from each complex are selected, new randomly selected 20 

parameter sets are added, and the complexes are shuffled with each search iteration. 21 

We experimented with a range of sample and complex sizes (e.g., 400 samples and 22 

four complexes with a total of 10 000 model runs) and we found that an increase in 23 

the simulations and complexes did not significantly improve calibration results. We 24 

therefore, decided to maintain the smaller number of simulations for efficiency. 25 

However, we recognize that future work with extended simulations may improve the 26 

search for globally optimal parameter sets, particularly with such a highly 27 

dimensional parameter space.  28 

In this application, measurements within the STS and HTS were withheld 29 

during calibration and used to assess the predictive capacity of these components as 30 

“ungauged” model outputs. As will be described in detail later, the STS data were 31 

used to assist in selecting globally acceptable parameter sets. The HTS data were 32 

reserved for corroboration and testing of the model calibration. Since temperature 33 

and tracer data in the main channel are the most commonly collected data sets, we 34 

needed to further understand whether model calibration to main channel temperature 35 

and tracer data results in realistic and representative STS and HTS predictions. 36 

Likewise, little was known about how single-objective model calibration at 37 

individual sites controlled the resulting parameterization at other site locations and 38 

for other data types. In addition to investigating how to narrow the optimization 39 

parameter space, our methods are designed to test how a priori choices in study and 40 
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project design, as well as data availability, may affect the model calibration and 1 

resulting simulation performance. 2 

 3 

 4 

 3.3 Model Parameters 5 

 6 

 The a priori uniform distribution of the feasible parameter space was 7 

determined primarily based on earlier work that included a sensitivity analysis using 8 

Latin Hypercube sampling (Neilson et al., 2010). For this study, these ranges were 9 

further expanded for some parameters based on preliminary optimization tests that 10 

resulted in parameter values consistently at the upper or lower bounds of their 11 

respective range (Table 2). The calibration parameters include: STS fraction of the 12 

total channel width (ß), cross-sectional area of the STS (m
2
) (Acs, STS), exchange 13 

between the main channel and the STS (m
2
 d

−1
) (αSTS), HTS advective transport 14 

coefficient (m
3
 d

−1
) (QHTS), and HTS depth (YHTS) for each of the two sections within 15 

the study reach (resulting in 10 parameters). The depth of the ground layer below the 16 

HTS (Ygr) was also estimated, but was represented by one value for both sections and 17 

became the eleventh calibration parameter. The total width of the main channel (Btot) 18 

and the Manning’s roughness coefficient (n) were set based on the results of 19 

Bingham (2010). In this effort, multi-spectral and thermal imagery of the river 20 

system were used to physically estimate the average width of the channel over each 21 

section and therefore, reduced the number of parameters estimated in the calibration. 22 

With Btot established, n was then set to result in appropriate average travel times. The 23 

longitudinal dispersion (D) coefficient was set based on the methods described in 24 

Neilson et al. (2010a). 25 

 26 

 27 

 3.4 Calibration Objectives  28 

 29 

 To evaluate local and global model performance, various types of statistical 30 

measures were investigated. Each of the ten tests shown in Table 1 were run using 31 

different statistical objectives including bias, Nash-Sutcliffe Efficiency (E), log error, 32 

and root-mean square error. Similar to Neilson et al. (2010a,b), we found that E (Eq. 33 

1; Nash and Sutcliffe, 1970) provided the most consistent calibration results and we 34 

used this objective function throughout the remainder of the study and to quantify all 35 

local calibrations. 36 

 37 
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Where, for N timesteps: T
t
o = observations, T

t
m =modeled simulations (at time t), and 3 

To is the mean of the observations. When used in calibration, the algorithm 4 

minimizes the result of 1−E, since the bounds of E are [1,−1]. The normalization of 5 

the difference in error by the difference between the observed and the mean of the 6 

observed, allows comparison of results when the observations at different locations 7 

have different scales of variability, as is the case of temperature and tracer 8 

information. 9 

To achieve an acceptable globally optimal calibration, we considered the 10 

need to match all local data regardless of the differences in optimal parameter sets 11 

associated with various calibrations. In this study, our local problem is that an 12 

acceptable parameter set must be found that results in adequately reproducing the 13 

dominant processes as measured by an individual time series. Our global problem is 14 

that we have ten time series distributed in space, six temperature and four tracer 15 

datasets, with 11 different parameters that need to be estimated based on matching 16 

both the observed temperature and tracer data in all zones and at all locations. The 17 

six locations for temperature calibration or comparisons based on available data 18 

include: Site 2 main channel (EMC2 Temp), STS (ESTS2 Temp), HTS (EHTS2 Temp); and, 19 

Site 3 main channel (EMC3 Temp), STS (ESTS3 Temp), HTS (EHTS3 Temp). Note that each 20 

observed time series used in these E values for the STS and HTS consists of the 21 

average of temperatures observed within the two representative STS zones and the 22 

most representative HTS time series, respectively. The appropriate HTS time series 23 

was determined based on the calibrated YHTS values: when YHTS <3 cm, the 3 cm 24 

HTS data were used, when 3cm<YHTS <9 cm, an average of the 3 and 9 cm HTS 25 

time series were used, when 9 cm<YHTS <20 cm, an average of the 9 and 20 cm HTS 26 

time series were used; and when YHTS > 20 cm, the 20 cm HTS time series was used. 27 

The four local tracer data locations used for comparison or calibration include: Site 2 28 

main channel (EMC2 Tr), STS (ESTS2 Tr); and, Site 3 main channel (EMC3 Tr), STS (ESTS3 29 

Tr). The observed STS time series used in these calibrations are the average 30 

concentrations observed within the two representative STS zones. 31 

The first step in our calibration method was to populate the simulation matrix 32 

(Table 1) based on available observations. We then identified the a priori parameter 33 

search bounds and the most appropriate statistical objective function, E. To compare 34 

the global calibration results (i.e., matching the observations at all ten locations) for 35 

each of the tests within the simulation matrix (Table 1), we then calculated the 36 

arithmetic average (AE) of various combinations of local E values (Eq. 2). 37 

 38 

 39 
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 2 

 An AE that used only surface data (AES) was first defined and included the 3 

local E values for all tracer and temperature data collected in the main channel and 4 

STS, but did not include the HTS information. AEall included both surface data and 5 

HTS information. AE was used to assess the global results; only E was used as the 6 

calibration objectives using the MOSCEM algorithm. 7 

 8 

 3.5 Narrowing search bounds  9 

 10 

 Using the initial a priori bounds (Table 2), we defined Level 1 results as 11 

calibrated parameter sets from the single-objective optimizations (Tests 1–4). Level 12 

2 results represent the parameter sets from the two-objective optimizations with these 13 

same a priori bounds (Tests 5–10). The local criteria (E > 0.8) and global criteria 14 

(AEs >0.7) were calculated for each parameter set within each test run in the matrix. 15 

For all parameter sets that met both of criteria (E > 0.8 and AEs > 0.7), a minimum 16 

and maximum for each individual parameter was determined. These ranges were 17 

then used to set the narrower search bounds. All simulations in Table 1 were 18 

repeated using these narrower bounds. Level 3 results represent the new parameter 19 

sets from all single-objective optimizations (Tests 1–4) and Level 4 represent the 20 

new two-objective simulation (Tests 5–10) results given the narrowed search range. 21 

The last step was using Level 3 and 4 results to further test the model 22 

calibration. Similar to the AEs, a new AEall value was calculated for the Level 3 and 23 

4 simulations that used all of the data including the temperatures within the HTS. 24 

Together the AEs and AEall measures were used to summarize the spatially 25 

aggregated performance of model predictions of temperature and tracer at multiple 26 

locations, and determine the ability to predict the HTS temperatures if only surface 27 

data were available. This gave an indication of the added utility of collecting 28 

subsurface data and whether the model can be calibrated sufficiently in this 29 

watershed using only surface data collected at multiple locations and within different 30 

zones. 31 

By comparing Levels 1 and 2, a wide parameter search space, to Levels 3 and 32 

4, a narrow parameter search space, we investigated the importance of a priori 33 

parameterization. In comparing Levels 1 and 3, single-objective calibrations, to 34 

Levels 2 and 4, two-objective calibration, we gained information about how best to 35 

utilize available calibration algorithms and various types of spatially distributed 36 

information simultaneously. 37 
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4. Results 1 

 2 

4.1. Level 1 3 

 The AES, and individual E values for each calibration location and data type 4 

are presented in Table 3 for the calibrations from the simulation matrix (Table 1). 5 

The ten rows correspond to model outputs by test and shaded boxes represent the 6 

data used from that location for calibration. All other observations were used as 7 

validation data sets. Level 1 results (Table 3) provide initial information regarding 8 

how optimization at single locations can impact the model performance at ungauged 9 

locations. Of Tests 1– 4, no tests with the main channel tracer data at Site 2 or Site 3 10 

as the objective had results that met the selection criteria of AES > 0.7, with the best 11 

results 
2
AEs = 0.65 and 

2
EMC3, Temp =0.95 and 

2
AES =0.6 (preceding superscripts 12 

indicate Test numbers). Although the E for each of these tests meet the criteria of E 13 

> 0.8 and the calibration did well at fitting the dataset used as the objective, the 14 

calibration was not acceptable at other locations. 15 

Figures 3 and 4 show the highest performing single-objective Level 1 results 16 

(Test 2) for each of the ten total data locations. The observed temperature and tracer 17 

data at Site 2 and Site 3 are shown as black circles (Figs. 3 and 4), and the E values 18 

for each location are shown within each subplot. The predicted values are shown in 19 

grey, and in this case there is a single line since a single objective calibration results 20 

in a single optimal parameter set. The calibrated YHTS value is also shown with the 21 

HTS subplots (Fig. 3d and e) since this value is used to determine the most 22 

representative HTS temperature time series for calculating EHTS. Although the 23 

temperature results seem to fit the observations well (Fig. 3), the tracer results (Fig. 4) 24 

show how the model optimized to temperature at Site 3 (
2
EMC3, Temp =0.95) is not 25 

able to capture the timing and magnitude of the tracer pulse. This may be in part due 26 

to fixing the Manning’s n parameter in calibration. 27 

 28 

4.2. Level 2 29 

 Level 2 simulations were used to determine which parameter sets resulting 30 

from the two-objective optimizations (Tests 5–10) converge to the established 31 

criteria of E >0.8 for all calibration data sets and AES > 0.7 (Table 3). The E values 32 

reported for the two-objective optimizations are based on the parameter set that 33 

represents the best compromise solution or the pareto solution (Vrugt et al., 2003a; 34 

2003b, Boyle et al., 2000, Gupta et al., 1998; 2003, and Neilson et al. 2010a) with 35 

the smallest Euclidean distance from the origin. The best results are from Test 7 with 36 

values of 
7
EMC2, Tr =0.94, 

7
EMC2, Temp = 0.91, and AES = 0.81. Figures 5 and 6 present 37 

Test 7 results where the uncertainty bounds resulting from pareto optimal parameter 38 
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sets are shown. The uncertainty in the temperature predictions are less at Site 2 (Fig. 1 

5) and there is a much better fit in terms of timing of the tracer curve at Site 2 (Fig. 2 

6), but there are still relatively large bounds. It should also be noted that this 3 

calibration does not capture the tail of the tracer curve at Site 2, which is critical to 4 

understand the transient storage within the study reach (Bencala and Walters, 1983). 5 

Similar to what Neilson et al. (2010a) found, comparing Level 1 and 2 results (Table 6 

3) illustrates the relative benefit of using two-objective optimization compared to 7 

single-objective optimizations. For Tests 5–10, Tests 6 and 10 did not meet the local 8 

criteria of E > 0.8 with tracer data used as a calibration objective, although Test 6 9 

did meet the global criteria (Table 3). 10 

Since Test 7 met the local and global criteria, all the acceptable parameter 11 

sets (i.e., the pareto optimal parameter sets that also met the local and global criteria) 12 

from this test were used to define the narrowed upper and lower bounds for a new 13 

round of calibrations using the simulation matrix (Table 1). The narrowed minimum 14 

and maximum parameter range (Table 4) represent a parameter range reduction with 15 

a high of 67% for the Acs, STS in Sect. 1 and the least reduction of 4% for the ß in Sect. 16 

2. Comparing between sections, Sect. 1 had an average of 40% reduction in bounds 17 

while Sect. 2 had an average of 17% reduction. To visually compare the a priori 18 

parameter range and the narrowed parameter range derived from Test 7 results, each 19 

of the 11 calibrated parameters were normalized or scaled between the lower bound, 20 

0, and the upper bound, 1 (Fig. 7). The thick black solid lines represents the 21 

parameter bounds if all pareto rank one sets resulting from the Test 7 calibrations are 22 

considered. The grey shaded area represents the narrowed parameter bounds for 23 

parameter sets that resulted in meeting both local and global criteria from the Test 7 24 

optimizations. 25 

 26 

4.3 Level 3 and Level 4 27 

 28 

 Similar to Level 1 results, Tests 1 through 4 all converged to E >0.9 for the 29 

data used in calibration during the Level 3 calibrations (Table 5). However, model 30 

performance at other locations was poor with the exception of Test 3, which had 31 

better AE results than Level 1: 
3
AES =0.76, and 

3
AEall =0.62. While these results are 32 

promising, it is important to note that only the tracer at Site 2 (the calibration 33 

objective) fit the observations well (not shown here for brevity). 34 

Level 4 had improved results when compared to Levels 1–3. The AEall and 35 

AEs values increased for most tests (Tables 3 and 5), and the maximum value 36 

increased to 0.78 and 0.9 for AEall and AEs, respectively. Although Test 6 met the 37 

global and local criteria, the temperature simulations at Site 2 overestimated the high 38 

temperatures and underestimated the low temperatures by approximately 3 C in the 39 



 

 

 

 

 

 

main channel, STS, and HTS zones. Figures 8 and 9 show the best overall result for 1 

Level 4 temperature and tracer predictions, Test 9: 9AES = 0.9 and 9AEall = 0.78. 2 

Not only are the temperature predictions more representative, but the tracer 3 

responses are generally captured better in the tail of the tracer curves. As with the 4 

Level 2 calibrations, both temperature and tracer objectives at different locations 5 

seem to provide the information necessary to achieve an acceptable global 6 

calibration. 7 

Figure 10 shows the parameter ranges resulting from the Test 9 optimization 8 

that met the local and global criteria and the bounds of all the pareto optimal sets. 9 

The dashed line shows the narrowed parameter range within the original a priori 10 

search range (normalized here [0,1]). The thick black line is the bounds of the pareto 11 

optimal parameter sets. The grey area is the parameter variability given the 12 

parameter sets which meet both local and global performance criteria. 13 

 14 

5. Discussion  15 

 Comparing the results of the simulation matrix calibrations when using only 16 

the main channel temperatures or tracer concentrations as an objective (Test 1–4, 17 

Table 3), we see how the choice of a calibration objective effects the global 18 

performance of the model by comparing the AEs and AEall values. In general, the 19 

best temperature and tracer main channel result is from a single objective 20 

optimization of that parameter at that location, but the corresponding model results 21 

are generally inappropriate at other locations. Our results also show that when a main 22 

channel temperature objective at one location results in reasonable predictions, the 23 

temperature at the other location will also be reasonable. However, this is not 24 

necessarily the case when using tracer data in single objective optimizations in this 25 

study. 26 

The best Level 2 local results at Site 2 and Site 3 for tracer are 
8
EMC2, Tr =0.98 27 

and 
6
EMC3, Tr = 0.99 and for temperature are 

5
EMC2, Temp = 0.96 and 

10
EMC3, Temp = 0.95 28 

(Table 3). It is interesting that the best fit for tracer at Site 3 uses tracer information 29 

at both Site 2 and 3 (Test 6), but the best fit at Site 2 uses tracer information at Site 2 30 

and temperature information at Site 3 (Test 8). In this case, the tradeoff between 31 

solute at two sites is greater than the tradeoff between solute and temperature. For 32 

temperature, the best fit at Site 2 uses temperature data at both Site 2 and Site 3 (Test 33 

5). However, the best temperature fit at Site 3 uses temperature and tracer data at Site 34 

3 (Test 10). It should be noted that when temperature data at Site 3 and tracer data at 35 

Site 2 were used (Test 8), 
8
EMC2, Temp =0.94 which is not significantly different than 36 

Test 10. Having both main channel temperature and tracer data at two different 37 

longitudinal locations provided more information about the system than just one data 38 

type. 39 
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While these local results give insight into the utility of calibration data, it is 1 

important to acknowledge how each of these calibrations perform globally. Given a 2 

broad parameter search range (Level 2), Test 7 had the best overall results with AEs 3 

= 0.81 and provided some corroboration of the model representing the dominant 4 

processes through an AEall = 0.75. Most Level 2 AEs and AEall values were higher 5 

than Level 1 values. This is consistent with the findings of Neilson et al. (2010a) 6 

where they found two-objective calibrations performed better at locations not used in 7 

model calibration than did single objective calibrations. While Test 7 had the best 8 

global value, the individual results were not nearly as good as the best fits at each 9 

location for each data type. It did, however, provide the necessary information to 10 

narrow the search bounds for the Level 3 and 4 simulations. 11 

With this initial understanding of the importance of single versus two-12 

objective calibration and various data types in model calibration to narrow the search 13 

space, Level 3 and 4 results provide a more complete picture of how the system is 14 

functioning (Table 5). The majority of the Level 3 single-objective optimizations 15 

have AEs and AEall values that are higher than those in the Level 1 simulations. The 16 

actual E values for the location being used in the calibration are also higher with the 17 

exception of Test 1. This suggests that the more narrow search range was appropriate. 18 

The best Level 4 results at Site 2 and Site 3 for tracer are 
8
EMC2, Tr = 

6
 EMC2, Tr =0.98 19 

and 
10

EMC3, Tr =0.99 and for temperature are 
7
EMC2, Temp =0.95 and both 

5
EMC3, Temp = 20 

0.94 and 
10

EMC3, Temp =0.94 (Table 5). The best tracer results at Site 2 are consistent 21 

with the Level 2 results where tracer information at Site 2 and temperature 22 

information at Site 3 is most appropriate (Test 8). The best Site 3 tracer results now 23 

suggest that both temperature and tracer data at Site 3 (Test 10) is better than tracer 24 

data at Site 2 and Site 3 (Test 6). Within the narrow search bounds, the best tracer 25 

results rely on temperature information at some location. 26 

For Level 4 temperature results, the best fit at Site 2 uses temperature and 27 

tracer data at Site 2 (Test 7), however the Test 5 results are quite similar. The best 28 

temperature fit at Site 3 still uses temperature and tracer data at Site 3 (Test 10), but 29 

the results for Test 5 (which uses Site 2 and 3 temperatures) has the same E. These 30 

results demonstrate the need to use both temperature and solute data in two-objective 31 

TZTS calibration. The Level 4 results also showed a marked improvement in most 32 

AEs and AEall values from Level 1–3 simulations. This improvement can be related 33 

to the increased parameter certainty when comparing Level 2, Test 7 (Fig. 7) with 34 

Level 4,Test 9 (Fig. 10). These figures show the usefulness of using more 35 

information, or local data, to define a narrow range bounding the global optimum. 36 

They also highlight the importance of multi-objective calibrations to capture the 37 

spatial heterogeneity within streams and rivers and the need to determine the 38 

appropriate optimization parameter ranges. 39 



 

 

 

 

 

 

To further incorporate important processes and continue advancing our 1 

predictive capabilities, there is a need for a connected cycle of inquiry that includes 2 

model development and refinement, identification of data types and scales of 3 

measurement required to support modeling, and establishing the most effective 4 

approach for calibration based on the application of interest. Inclusion of all 5 

available site specific data in model calibration assists these efforts by providing 6 

information that decreases the number and range of parameters, provides information 7 

about model certainty, can guide the incorporation of processes missing in the 8 

conceptual model, and will assist in prioritization of future data collection efforts. 9 

Future work varying additional parameters or holding others constant may improve 10 

overall results. Expanding the simulation matrix to examine the use of STS 11 

temperature and tracer observations in the calibration would further highlight the 12 

utility of these datasets. 13 

6. Conclusions 14 

 15 

 With the overall goal of iteratively reducing the size of the global search 16 

space while simultaneously investigating the information content within the available 17 

data types, we established a simulation matrix to test the use of the most commonly 18 

collected main channel data sets used for model calibration of instream temperature 19 

and solute models. This systematic approach to using multiple types of distributed 20 

information allowed us to examine the application of both single and multi-objective 21 

optimization algorithms to the TZTS model using both temperature and solute data 22 

available within the main channel and transient storage zones (STS and HTS). 23 

In the context of a case study in the Virgin River, Utah, USA, our global 24 

problem was to optimize the model given ten time series distributed in space. Our 25 

local problem was that any unacceptable parameter set (i.e., the model does not 26 

represent one observed time series well) signified a failure to adequately reproduce 27 

the dominant processes affecting both the heat and solute response at that location. 28 

Using data representing the effects of both main channel and transient storage 29 

processes, we found that two-objective calibrations consistently performed better at 30 

all locations where data were available within the study reach for corroboration than 31 

did single objective calibrations. However, we also found  neither single objective 32 

results nor multiple objective pareto optimal results alone were able to produce 33 

acceptable global calibrations or appropriately match all 10 data sets available. This 34 

led to using parameter sets from initial calibration efforts (Level 1 and 2) to narrow 35 

parameter ranges used within optimization resulting in a reduction of bounds in the 36 

upstream section of the river by an average of 40%, and in the downstream section 37 

by an average of 17%. In doing this, Level 3 and 4 calibrations, which used these 38 

narrow parameter bounds, led to improved predictions of instream temperatures and 39 
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tracer concentrations at multiple locations and zones in the study area not used in 1 

calibration. This global fit resulted a better representation of the dominant processes 2 

controlling instream processes, where the final reduction of bounds in the upstream 3 

section was by an average of 49% and the in the downstream section by an average 4 

of 69%.  5 

Another key finding was that, in general, using both main channel 6 

temperature and solute data in calibration provided better global results. Therefore, 7 

we suggest that both data types be collected at different locations, for example, 8 

solute at one calibration site and temperature at another. Based on the results of this 9 

study, and the need to use resources associated with data collection more efficiently, 10 

we recommend future data collection focused on collecting a single tracer 11 

observation time series in the main channel, with temperatures collected 12 

simultaneously in multiple locations and zones to be used in model calibration and 13 

testing.  14 
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