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First of all, we wish to thank Anonimous Referee #1 for his consideration and meticu-
lous review of our manuscript. Anonimous Referee #1 raised very interesting issues
and this helped us in improving and clarifying the work. We agree with the comments
of the reviewer and we agree that all the underlined aspects needed a deeper and
substantial clarification in order to make the paper more clear and thus the procedure
applicable by other users.

The main issues identified have been:
1. Openness and curvature: explanation on why to combine them was needed;
2. Kernel size range: some indication on how to select the minimum and maximum
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width were needed;
3. Filtering procedure: further explanation, as on why it was done on the extracted
feature rather than on the input DTMs, were needed;
4. The cost-connection procedure: it substantially differs from the one referenced on
the paper as Passalacqua et al. 2010a,b;
5. Quality evaluation: the chosen index referred to a unique value for the whole extrac-
tion, but it would have been interesting to see how it varies across the network.

Here our responses to the five issues previously reported:

Point 1.
The reviewer is right: in the mentioned works (Lashermes et al. 2007; Passalacqua et
al. 2010a,b), curvature thresholding has been shown to be a powerful tool for feature
extraction and this was the main reason for us to apply this parameters. We would like
to underline that the extraction procedure we propose differs from the referenced one,
where Laplacian curvature was derived after a smoothing of the input DTM: on our
work, curvature (Evans’, 1972), was directly derived from the original input DTM. Lit-
erature review suggests that small artifacts due to DTM interpolation, even when con-
trolled and limited by appropriate methods, might amplify in first and second derivatives
(Burrough and McDonnell, 1998; Gallant and Wilson, 2000). Being that there is not an
unambiguous and objective criterion to assess ïňĄdelity of interpolated surfaces and/or
revealed structures (McCullagh, 1988; Florinsky, 2005), we supposed that the reliability
of network extraction would have gained from the integration of curvature with another
terrain parameter not directly connected to surface derivatives. Openness measures
convergences calculating the average of either zenith or nadir angles along azimuths
(Yokoyama et al., 2002; Prima et al., 2006) and we assumed that this averaging pro-
cedure would have been less affected by artifact in the input data due to interpolation
techniques. As suggested by Yokoyama et al. (2002), values of both positive and neg-
ative openness have been compiled.
For our work, DTMs were derived with two different interpolation procedures: the nat-
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ural neighbour interpolator (Sibson, 1981) for the Cordon study site and an algorithm
with a spline function in the ESRI TOPOGRID tool for the Miozza one (Tarolli and Tar-
boton, 2006; Tarolli and Dalla Fontana, 2009). We registered different behaviors of
curvature skewness, for the two areas, while we registered constancy of dynamics for
both positive and negative openness skewness in both applications (fig. 4A and B, p.
9358). Testing skewness behavior respect interpolation techniques, and identify rela-
tionship between curvature skewness behavior and input data was not a purpose of
this work, but it was clear to us that openness and curvature behave differently. On
the idea of finding a methodology that would have been valid among different datasets,
independently from interpolation techniques used, we suggest that despite the fact that
the information that both parameters carry might be redundant, the concavity/convexity
detection might be more sound using both parameters.

Point 2.
The choice of the window size range refers to two main issues: a computational con-
strain that set the minimum size to apply, and an operational choice supported by
previous works to set the maximum. The window size needs to be large enough for
a reasonable number of data to be included in the evaluation but at the same time it
need to avoid bias in surface computations. The choice of the minimum width relies on
the fact that sampling windows are centered on the cell of interest, thus they consider
(2n+1) x (2n+1) cells where n is an integer. The minimum window width is therefore
3x3 cells. To chose the maximum window width, we based our consideration on lit-
erature review. Pirotti and Tarolli (2010) demonstrated for the main study site of our
work, that the window size for curvature calculations is related to the features to be
detected: an over-sized window would dilute the distinct curvature feature by incorpo-
rating irrelevant elevation data, an under-sized window, on the other hand, would be
less robust to noises. Tarolli et al. (2011) showed for the same study area a detailed
comparison of feature extraction results based on different thresholding methodologies
(including the QQ-Plot method adopted in this work) applied to a 0.5m DTM deriva-
tive evaluated for different kernel sizes. These authors computed maximum curvature
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(Evans, 1972) considering a moving window size range from 3 to 33 cells (the same
range applied on the present work). They demonstrated that that quality of extracted
features, independently from the thresdholding methodology, tends to a progressive
worsening when windows width is greater than 25 cells. They identified the best result
as the one obtained through a moving window of 10.5 m (21 cells on the 0.5 DTM).
For the present work, therefore, we applied the same kernel size range, and, using a
1m DTM, we did not consider moving windows greater than 33 cells (~33 m) because,
as already proven, they more than likely would result in a too smoothed surface, less
effective on the reproduction of suitable and detailed morphologies. We would like to
underline that in our work, using the skewness procedure, we identified as optimal, a
kernel size of 11m (11 cells for 1m grid size), very close to the optimum value (10.5 m)
mentioned in the work by Tarolli et al. (2011). For Openness evaluation, it has been
shown (Yokoyama et al., 2002; Prima et al., 2006) that the choice of the size of the
investigated area (L in the original openness formulation, n as kernel width for the one
proposed in this work) allows the representation of such parameters for fine to coarser
scale features but there is no objective rule that can be used to determine such mea-
sure. Prima et al. (2006) calculated openness with operatively chosen width (L = 150 m
and 5 km) to derive distinctive topographic patterns differed in scales. Consistently with
the above referenced works for curvature evaluation, and to maintain homogeneity, we
decided to apply the same kernel size range for Openness computation.

Point 3.
Before answering in detail to the reviewer about point 3, we would like to clarify that on
our paper we address with the term ‘noise(s)’ the small scale variability representing
actual concavity/convexity of the investigated surfaces but not necessarily a drainage
network feature. Accordingly, we refers to ‘noise filtering’ as in the procedure to apply
to discard these noises. Local concavities/convexities are typical in areas with com-
plex morphology as the case of our study site and they have already been registered
by Pirotti and Tarolli (2010), Tarolli et al. (2011), Passalacqua et al. (2010b). While
on areas with smoothed morphology (as in the case of the Miozza test site) the small
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scale variation captured is reduced to a pixel-scale width (therefore easily discarded),
when morphological complexity increases, it is needed to identify a semi-objective way
to guarantee noises removal. We suggest to filter the results of the extraction, instead
of the input data, in order to have a map of the potential network as in detected surface
convexities where to focus the efforts of filtering. Filtering the input data regularizing
the map before computing attribute refers to a different approach for topographic at-
tribute evaluation for feature extraction (Lashermes et al. 2007; Passalacqua et al.
2010a,b) and whose uncertainties have been already underlined (Passalacqua et al.
2010b). The method we proposed is based on a smoothing procedure to apply to
the topographic attributes through the kernel size choice, rather than on a filtering of
the original input dataset, therefore we decided to deal with noises on the extracted
features. Considering the final Boolean map as an evidence of the localization of con-
cavities, the user knows the location and the extent of the disruptions from the network.
Analyzing Entropy (Gonzales et al. 2003) only for these doubtful features (as in ele-
ments with higher degree of discontinuity/disruption) the actual network delineation
procedure is eased.

Point 4.
The reviewer is right. The two methods are substantially different, they just share the
idea to connect the network skeleton according to cost functions, but they use two
completely different approaches. According to the reviewer comment, on the revised
paper, we will reference the cited works (Passalacqua et al., 2010a,b) avoiding com-
ments about similarities between the procedures.

Point 5.
The total agreement probability as proposed, was used on a similar work for channel
network extraction applied to the same investigated area by Pirotti and Tarolli (2010).
Feature extraction quality measure based on a unique value for the whole extraction
has been tested also by Tarolli et al. (2011). We used the unique value of Cohen’s k
in its original formulation as an overall quality measure, but considering the reviewer
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suggestions, we decided to investigate the distribution of Cohen’s k agreement among
whole network (Figure 1), for the study site (A) and for the test site (B). To provide
this information, we evaluate the index using a moving window of twice the size of the
buffer considered for quality assessment (11x11). The results are influenced by the
considered kernel size, but they are useful to provide a general overview. They con-
firm the previous conclusions, highlighting that the extraction procedure shows good
agreement among the whole network, not only as an overall extraction but also locally.
Some small areas with lower agreement refers to areas already underlined as chal-
lenging due to the presence of localized landslides (Passalacqua et al. 2010b, Tarolli
et al. 2011), other refers also to constraints due to DTM cell resolution on identifying
correctly network elements with a spacing smaller than the DTM grid cell.
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