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hess-2010-324: Series Distance – An intuitive metric for hydrograph comparison 


 
Author response to Referees 


 
Dear Editor, dear Referees, 
 
Thank you for the thought- and useful feedback to our proposed paper. In the following, we will reply 
to all of your comments. As most comments were best answered by direct modifications of the 
paper, we have attached a revised version of the paper. All modifications are marked in green, and in 
the following response to each comment we will refer to the related modification in the paper. 
 


 
Comments by Referee #1 


Comment 1: The focus of the paper is only on the comparison of time series in a pure hydrological 
context. 
Answer: The Series Distance is indeed only intended as a metric to quantify the similarity of two 
hydrographs, not timeseries in general. The reason is that (as the referee states in comment 5) there 
is not even one ideal metric to quantify hydrograph distance, and much less there is one for time 
series in general. 
 
Comment 2: An overall discussion of connections with related fields is missing. 
Answer: This is true, and we have substantially enlarged the paper to give adequate credit to time 
series distance measures developed and used in other fields (see text marked green in Sect. 1.1, and 
Sect. 2). 
 
Comment 3: The paper definitely needs an overview of what already exists in related domains, and a 
discussion about the aspects that make the distance measure of the authors novel.  
Answer: For part 1 of the comment, please see the answer to comment 2. For part 2: The novel 
aspect of the Series Distance is that it explicitly considers the special characteristics of hydrographs 
(intermittency of low flow and individual, distinguishable events, segmentation of an event into rise 
and recession according to the underlying processes that shape it) and the combination of three 
criteria that are, with varying relative importance, relevant in many fields of hydrology (forecasting, 
simulation etc.), namely a) does the simulation correctly predict events at all (this is relevant for long-
term flood forecasting), b) what is the agreement with respect to amplitude and c) with respect to 
timing. Unlike other metrics, only matching parts of the hydrographs are compared. We stressed this 
aspect in the Abstract (see there), the Introduction (Sect. 1) and the Summary (Sect. 5). 
 
Comment 4:  A clear definition of the exact goal for presenting a new distance measure is missing in 
the introduction. Comparing two hydrographs is too general of a goal 
Answer: This is correct. We completely reformulated the introduction (see especially page 5, lines 5-
17) to stress that the goal of the paper is to present a new distance measure to quantify the similarity 
of two hydrographs neither in a time-aggregated nor in a point-by-point manner, but on the scale of 
hydrological events. The motivation was further to develop a metric which is in closer accordance 
with a hydrologist's intuitive, subjective (yet rooted in knowledge about the underlying hydrological 
processes) way of determining the distance between two hydrogaphs by comparing matching events 
and within them, matching segments of rise and recession. These conditions are not fulfilled by most 
available metrics. We believe that the metric will be of use in hydrological applications where beyond 
agreement in overall process dynamics (which could e.g. be evaluated with a Wasserstein Distance) 
agreement in timing also plays a role, e.g. in forecasting. 
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Comment 5: The most appropriate measure of distance between two objects depends on what type 
of behavior you want to quantify. From that perspective, I believe that such a thing like the “ideal 
distance measure for comparing hydrographs does not exist. 
Answer: We completely agree and we stress in the new introduction (Sect. 1) and the Summary 
(Sect. 5) that each user has a different perspective on a hydrograph and hence will consider different 
aspects of it for evaluation. However, our aim was to develop the Series Distance such that it 
includes the main aspects of hydrograph evaluation we know from practical experience in 
hydrological forecasting and simulation (event occurrence Yes/No, agreement in amplitude, 
agreement in timing) in a way to give the right degrees of freedom for customization (i.e. user 
specific weighting of the components) in a traceable way. These are the no-event threshold, the 
match limit, the manner of smoothing and the relative weights which can be assigned to the Threat 
Score, the Mean Absolute Timing Error SDt and the Mean Absolute Amplitude Error SDv. Further, we 
state that the Series Distance is not a metric to evaluate low flow conditions (last paragraph of Sect. 
3.0). 
 
Comment 6: The authors focus mainly on comparing hydrographs for forecasting reasons, by 
comparing the hydrograph of a fitted model with the hydrograph of true observations. To my 
opinion, it would be less confusing to state this goal immediately at the beginning of the text. 
Answer: In the new introduction, we introduce the motivation for developing a new metric from a 
forecasting point of view. However, the method is also applicable to quantify the similarity of a 
simulated and an observed hydrograph (we use the term 'forecast' for the output of a hydrological 
model based on meteorological forecasts and the term 'simulation' for the output of a hydrological 
model based on observed meteorological drivers. This is standard in Hydrology). The real-world 
example we used is indeed a forecast (based on the meteorological forecast ensemble of the 
CosmoLeps model, which is a standard product in hydrological forecasting), but it might have been as 
well a set of simulations based on different model parameter sets in a calibration procedure without 
curtailing the generality of the results. To make this point more clear, we modified the first 
paragraph of Sect. 4.2 (marked green). 
 
Comment 7: Evaluation of predictive models is incorrectly dealt with: Authors claim in line 28-30 that 
RMSE should be avoided as performance measure because it consists of a weighted three-criteria 
objective function. This argument is used in a totally incorrect context. Statistically speaking, any 
error measure (loss function) of any predictive data-driven model can be decomposed into three 
parts. The expected prediction error of a model consists of: (a) the irreducible error (as a result of 
noise in the data); (b) the squared bias (as a result of choosing a too simplistic model); and (c) the 
variance (as a result of choosing a too complex model).It is incorrect to state that one ends up with a 
weighted three-criteria optimization problem. More importantly, it is also incorrect to state that this 
is due to the nature of the RMSE. The bias-variance trade-off is a phenomenon that can be observed 
for any performance measure, thus also for the one presented by the authors. 
Answer: The referee is correct with his statements on the decomposition of the expected prediction 
error of a model into an irreducible part, the bias and the variance; however this is not the point we 
wanted to make in the paper. The point we want to make has been described by Gupta et al. (2009), 
page 81 as follows: 
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Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of hydrologic models: 
Multiple and noncommensurable measures of information, Water Resources Research, 34, 751-763, 
1998. 
 
This means that when using the Nash or RMSE as a metric (or objective function in a model 
calibration procedure), one accepts the combination and relative influence of these criteria as 
suitable for one's purpose, without the possibility to assign other weights to the components. 
 
Comment 8: Absence of formulae, measures like RMSE, NSE or MPTE should be more formally 
defined, in terms of a simple mathematical formula. A short comprehensive mathematical 
description will improve the readability of the paper. 
Answer: This is true and we introduced equations 1 – 7 for RMSE, NSE etc. 
 
Comment 9: Methods used in spectral data analysis could be useful (peak alignment in segments, 
application of amplitude distance measures, averaging over the segments) 
Answer: We included a discussion of both Fourier and Wavelet analysis in Sect. 2.1.3. 
 
Comment 10: Presentation of the procedure is too informal: more precise formal description with 
pseudo-code or mathematical definitions recommended. 
Answer: This is true. We included pseudo-code of the various steps of the Series Distance procedure 
in Appendix A and refer to it in the text (mainly in Sect. 3.1). 
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Comments by Referee #2 


Comment 1: The method is presented in a very specific context of hydrological flow events and it is 
not evident how to apply it in other contexts and in a more general setting of time series comparison. 
Answer: The Series Distance is indeed only intended as a metric to quantify the similarity of two 
hydrographs, not timeseries in general. The reason is that there is not even one ideal metric to 
quantify hydrograph distance, and much less there is one for time series in general. Please see also 
our answers to Comments 4 and 5 of Referee #1. 
 
Comment 2: Despite the attempt of the manuscript to objectify the approach, the method for 
comparing time series of events is not formalized as such, being presented instead as a set of 
empirical steps. 
Answer: The goal of the Series Distance is to reproduce a hydrologist's visual/subjective way of 
comparing hydrographs, and the set of empirical steps are the coded formulation of the way a 
hydrologist looks at a hydrograph (event occurrence Yes/No, agreement in amplitude, agreement in 
timing). Of course this is not the case for all hydrological applications, but for most that we know 
from our practical experience in hydrological forecasting and simulation. We tried to give the Series 
Distance the right degrees of freedom for customization (i.e. user specific weighting of the 
components), which expands its range of applicability. However, unlike visual inspection, the 
parameters chosen by the hydrologist can be explicitly stated with the result. This objectifies the 
result by making it reproducible. 
 
Comment 3: More formal description of the approach required 
Answer: This is true. We included pseudo-code of the various steps of the Series Distance procedure 
in Appendix A and refer to it in the text (mainly in Sect. 3.1). 
 
Comment 4: Overview of existing approaches for comparison of nonstationary time series is missing, 
including the abundant literature on dynamic time warping, pattern matching and time series 
clustering 
Answer: This is true, and we have substantially enlarged the paper to give adequate credit to time 
series distance measures developed and used in other fields (see text marked green in Sect. 1.1, and 
Sect. 2). 
 
Comment 5: The identification of events is based on a fixed threshold. Is this stationary assumption 
justifiable in practice / real data? 
Answer: It is true that this approach of event delineation is crude and there are hydrologically more 
justified ways of baseflow separation. We have stated this in the paper (Sect. 3.1, first bulletpoint). 
However, from our experience identification of events with a fixed threshold produces acceptable 
results as it is set individually for each gauge of interest. This of course requires that the hydrologist 
examines the time series before setting the threshold. In our eyes, this is an advantage rather than a 
disadvantage, as it forces the user to become familiar with the hydrograph at issue. 
 
Comment 6: How sensitive is the approach to the degree of smoothing applied to the data? The 
proposed approach involves attunement of matching events in order to have the same number of 
peaks and troughs in the observed and simulated event. This means that when comparing a given 
event with more than one modeled/simulated event one is not comparing exactly the same observed 
event – since it will be “attuned” to each different simulation... are the results comparable, then? 
Answer: This is a good point and an aspect of the method we want to improve in the near future. 
Basically, the smoothing is a way to eliminate irrelevant fluctuations, possibly caused by 
measurement errors (for observed hydrographs) or erroneous input data (for simulated 
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hydrographs). These should be removed by a suitable method, e.g. smoothing. The remaining 
fluctuations, i.e. segments of rise and recession in events are considered relevant when evaluating 
the similarity/dissimilarity of the two hydrographs. The current approach makes the two events 
comparable by attunement of the segment numbers, but does not consider the degree of 
attunement necessary to achieve this. In a way, this is comparable to the Frechet or DTW algorithm, 
where the degree of stretching/compression is also not considered in the metric. Hence we propose 
to count the number and magnitude of peak/trough removals necessary to achieve attunement and 
to include this information of disagreement in the overall Series Distance metric. We have included 
this suggestion in Sect. 5 (Summary and conclusions). 
 


 
Further remarks 


We also changed the title of the proposed paper to better reflect its contents 
 
 
Yours sincerely, 
 
Uwe Ehret and Erwin Zehe 
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Abstract 1 


Applying metrics to quantify the similarity or dissimilarity of hydrographs is a central task in 2 


hydrological modelling, used both in model calibration and the evaluation of simulations or 3 


forecasts. Motivated by the shortcomings of standard objective metrics such as the Root Mean 4 


Square Error (RMSE) or the Mean Absolute Peak Time Error (MAPTE) and the advantages 5 


of visual inspection as a powerful tool for simultaneous, case-specific and multi-criteria (yet 6 


subjective) evaluation, we propose a new objective metric termed Series Distance, which is in 7 


close accordance with visual evaluation. The Series Distance quantifies the similarity of two 8 


hydrographs neither in a time-aggregated nor in a point-by-point manner, but on the scale of 9 


hydrological events. It consists of three parts, namely a Threat Score which evaluates overall 10 


agreement of event occurrence, and the overall distance of matching observed and simulated 11 


events with respect to amplitude and timing. The novelty of the latter two is the way in which 12 


matching point pairs on the observed and simulated hydrographs are identified: Not by 13 


equality in time (as is the case with the RMSE), but by the same relative position in matching 14 


segments (rise or recession) of the event, indicating the same underlying hydrological process. 15 


Thus, amplitude and timing errors are calculated simultaneously but separately, from point 16 


pairs that also match visually, considering complete events rather than only individual points 17 


(as is the case with MAPTE). Relative weights can freely be assigned to each component of 18 


the Series Distance, which allows (subjective) customization of the metric to various fields of 19 


application, but in a traceable way. Each of the three components of the Series Distance 20 


components can be used in an aggregated or non-aggregated way, which makes the Series 21 


Distance a suitable tool for differentiated, process-based model diagnostics. 22 


After discussing the applicability of established time series metrics for hydrographs, we 23 


present the Series Distance theory, discuss its properties and compare it to those of standard 24 


metrics used in Hydrology, both at the example of simple, artificial hydrographs and an 25 


ensemble of realistic forecasts. The results suggest that the Series Distance quantifies the 26 


degree of similarity of two hydrographs in a way comparable to visual inspection, but in an 27 


objective, reproducible way. 28 


 29 


1 Introduction 30 


Imagine the following situation: After a flood, the hydrologists responsible for the forecasts 31 


and the flood management personnel meet for post-event analysis. The head of the dike 32 







 3 


defence team was not satisfied with the forecasts: The peak water level was falsely predicted 1 


above dike height, so many people were unnecessarily activated for sandbag piling. The 2 


operator of a large retention basin claims that the event was not indicated in the long-term 3 


forecasts, which would have been necessary for pre-event waterlevel drawdown. Further he 4 


reports that during the event, the forecast of the flood rise was correct with respect to timing, 5 


so reservoir operation was started just in time. But, he continues, the recession was predicted 6 


much too long, resulting in valuable reservoir volume kept free in vain. 7 


This conversation is fictitious, but nonetheless realistic according to the author's experience in 8 


operational hydrology. If we analyze it, several aspects stand out: First, the meeting took 9 


place after and was focused on an event. Second, in the discussion the event was subdivided 10 


into several segments and points of interest (rising limb, peak, recession), that were deemed 11 


important enough for separate evaluation. Third, the discussion was mainly based on the 12 


comparison of observed and forecasted hydrographs, not e.g. observed groundwater levels. 13 


Fourth, the different users focused on completely different aspects of performance such as 14 


long-term event prediction, peak water level, timing etc. and used different metrics for 15 


evaluation (event occurrence Yes/No, visual comparison of hydrograph shape, water level 16 


exceedence Yeas/No etc.). 17 


These points, based on an example from hydrological forecasting also apply to hydrological 18 


modeling and the evaluation of hydrological model performance in a more general sense: Be 19 


it for parameter estimation during model calibration, model validation, classification of 20 


hydrological systems or identification of scales at which to separate explicit and implicit 21 


representations of structures and processes: metrics, measures and objective functions 22 


(including subjective visual inspection) are applied in all disciplines of Hydrology. The data 23 


used for evaluation may vary with the purpose of the model, however in practice hydrographs 24 


from gauge observations are  the most widely used: They are relatively easy to obtain and still 25 


the most meaningful and relevant expression of integral hydrological behaviour on catchment 26 


scale. Also, historically hydrological modelling was mainly focused on analysis and 27 


reproduction of observed discharge timeseries at the catchment scale. Hence the repertoire of 28 


metrics in Hydrology was, and to a declining degree still is, mainly related to hydrographs. 29 


Hydrographs possess properties that make them (from a hydrological point of view) a 30 


particular subset of time series in general. These properties are worth being considered when 31 
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evaluating the appropriateness of metrics to quantify the similarity or dissimilarity of 1 


hydrographs and we will therefore briefly discuss them in the following. 2 


1.1 Hydrograph characteristics 3 


A hydrograph basically is a time series, i.e. a two-dimensional, time-ordered dataset. This 4 


impedes any straightforward 2-dimensional Euclidean distance calculations as it is for 5 


instance possible with spatial rainfall observations. Hence metrics to quantify the 6 


similarity/dissimilarity of hydrographs can either evaluate the similarity in timing or 7 


amplitude, unless a relation between errors in timing and amplitude is established. 8 


Further, the range of possible values differs among the dimensions: while time, loosely 9 


spoken, is quasi unbounded (and, with it, timing errors when comparing hydrographs), 10 


discharge has a lower limit of zero, which also limits the range of errors: a simulation (please 11 


note that henceforth, we will use the term 'simulation' as representative of any hydrograph 12 


produced by a model, be it a simulation or a forecast), may therefore underestimate the 13 


observation by 100% at most (related to the observation), while the range of possible 14 


overestimations is basically unlimited. This may be an issue in hydrograph evaluation when 15 


considering relative rather than absolute values: to which underestimation does an 16 


overestimation of, say, 150% compare? 17 


Looking at hydrographs from a more process-based point of view, it can be regarded as result 18 


and expression of a hydrometeorological process chain. As such it possesses characteristics 19 


that strongly influence both objective and subjective evaluation: Firstly, a hydrograph is 20 


intermittent, with distinct rainfall-runoff events separated by periods of low flow. As 21 


indicated by the conversation sketched above, in Hydrology often the event is the time scale 22 


relevant for evaluation. Secondly, a hydrograph is not time-symmetrical: the shape of the 23 


rising and falling limbs of an event look different as they are dominated by different parts of 24 


the hydrometeorological causal chain. The first is mainly shaped by the rainfall event, the 25 


latter is mainly influenced by catchment properties such as shape, soil and inclination. As a 26 


consequence, when comparing hydrographs with a time offset, any metric evaluating 27 


amplitude errors at the same points in time possibly compares 'apples with pears', i.e. rising 28 


with falling limbs (see also Sect. 2.2). 29 


 30 







 5 


Keeping in mind the key points of the forecaster's discussion and the hydrograph 1 


characteristics outlined above, we suggest that a metric suitable to quantify the similarity of 2 


two hydrographs should have the right degrees of freedom to adapt to the user's subjective 3 


and case-specific perspective on the hydrographs, but in an objective and reproducible way, 4 


and it should take into account the special properties of hydrographs based on the knowledge 5 


of the underlying physical processes. As such, hydrological time series should neither be 6 


regarded as one single timeseries entity nor as individual records. In our eyes, the best scale of 7 


evaluation is the event scale, which lies in between. Or, as Spate et al. (2003) put it, 'It seems 8 


natural to change the granularity of our (hydrological) time series from days into peaks or 9 


events.' 10 


 It is the aim of this study to propose a new metric to quantify the distance of hydrographs 11 


which obeys these specifications. It is termed 'Series Distance' and it closely follows 12 


subjective reasoning in visual inspection.  13 


The remainder of the paper is structured as follows: In Sect. 2, we discuss established distance 14 


metrics for time series from various fields and their applicability to hydrographs. In the same 15 


section, we also present standard metrics for hydrograph comparison including visual 16 


inspection. In Sect. 3, we introduce the Series Distance method, its underlying assumptions 17 


and output. This is followed by an application to both simple synthetic and real-world 18 


hydrographs in Sect. 4, along with a discussion of results. Finally, conclusions are drawn and 19 


ways forward are discussed in Sect. 5. 20 


 21 


2 Distance metrics for time series and their applicability for hydrographs 22 


2.1 Distance metrics for time series – an overview 23 


Time-series analysis has applications in many fields such as stock market, medicine, ecology, 24 


signal processing, etc. and a multitude of related metrics has been developed. In the 25 


following, we will present some well established methods and discuss their applicability to 26 


quantify the similarity of two hydrographs.  27 


2.1.1 Frechet distance 28 


The Frechet distance was introduced by Frechet (1906) and measures the closeness of two 29 


timeseries if stretching and compression in time is allowed, but temporal succession is to be 30 
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preserved. An intuitive explanation of the Frechet distance is the minimum required length of 1 


a leash between a man and a dog, if both may walk along their predefined paths at varying 2 


speed including standstill, while walking back is prohibited. A variant of the Frechet distance 3 


for discrete time series was presented by Eiter and Mannila (1994). The Frechet distance is 4 


very useful when only the occurring events, not their occurring times, are determinant for the 5 


proximity evaluation. This explains the great success of Frechet distance in the domain of 6 


voice processing. However, as Chouakria-Douzal and Nagabhushan (2006) point out, the 7 


Frechet distance may lead to irrelevant results if the temporal interdependence of values is of 8 


importance, which is true in the case of hydrographs. As an alternative, they propose a 9 


dissimilarity index, which is a weighted combination of the Frechet distance and local 10 


temporal trend correlation (mutual rising or falling). While this is an improvement to the 11 


original Frechet distance, it is essentially a combination of two independent steps, where 12 


global similarity of shape is evaluated by the Frechet distance at the cost of giving up 13 


temporal interdependence, and temporal similarity is based on a value by value basis. 14 


However, events in a hydrograph are essentially trends of intermediate length, which are not 15 


explicitly captured by both components. This makes the use of the dissimilarity index a 16 


suitable, but not perfect metric for hydrograph comparison. 17 


2.1.2 Dynamic Time Warping 18 


The Dynamic Time Warping (DTW) algorithm (Sakoe and Chiba 1978) has been used very 19 


successfully in speech recognition. The basic assumption is that the shape of the test and the 20 


reference series are the same, but one may be stretched or compressed in time (e.g. a word 21 


slowly or quickly spoken by a test person and a reference word spoken at normal speed). By 22 


non-linear warping (stretching and compression) in time, the amplitude error of the two 23 


signals is minimized. The minimized amplitude error is the metric. Comparable to the Frechet 24 


distance, the DTW is a good metric to evaluate agreement of shape if temporal considerations 25 


play no role. Ouyang et al. (2010) have successfully used it in hydrological data mining to 26 


find years with similar discharge patterns from long discharge time series. Here, similarity is 27 


mainly defined by similarity in shape, not the timing, which is valid for long-term studies. 28 


However, the authors also state that '… the elastic shifting of the time axis loses the 29 


information regarding the exact time of the flood peak, which is absolutely critical in flood 30 


prediction.' DTW is therefore not optimal for direct event-by-event based hydrograph 31 


comparison. 32 
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2.1.3 Dominant Mode Analysis 1 


Dominant Mode Analysis approximates a series by decomposition with basis functions and 2 


evaluates agreement of two time series via agreement of their power spectrum. The two best 3 


known approaches are Fourier and Wavelet analysis. 4 


As Schaefli and Zehe (2009) summarize, '... the idea to use Fourier analysis in Hydrology is 5 


not new; Whittle (1953) proposed a method for parameter estimation in the Fourier-domain 6 


matching the theoretical power-density spectrum of the model to the estimated powerdensity 7 


spectrum of the process observations. The Whittle estimator has recently been applied to 8 


rainfall-runoff models by Montanari and Toth (2007).' … 'However, as shown by Contreras-9 


Cristán et al. (2006), it can produce unreliable estimates for non-Gaussian processes or show 10 


an important loss of efficiency if the autocorrelation of the process is high.' Hence the most 11 


important drawback of Fourier analysis is that timing aspects of the original series are not 12 


retained. This is not the case with Wavelet analysis, which makes it a suitable tool for rainfall-13 


runoff model calibration and performance analysis (Schaefli and Zehe 2009). The major 14 


challenge of this method is, however, that it depends strongly on the choice of the base 15 


wavelet and on how similarity between estimated wavelet-power spectra is defined. 16 


2.1.4 Wasserstein Distance 17 


The Wasserstein Distance (WD) is a robust and intuitive metric to quantify the distance 18 


between two probability density distributions. Also known as the Earth Mover's Distance, the 19 


WD is the numerical cost of moving one distribution onto the other (with the probability 20 


being the mass and the transportation distance in the units of the data). The optimal way for 21 


this can be found with a transhipment plan solved by a network simplex algorithm. Among 22 


many others, it has found applications in the distance-based analysis of the long-term 23 


behaviour of non-linear dynamical systems on the basis of probability distributions derived 24 


from time series (Moeckel and Murray 1997, Muskulus and Verduyn-Lunel 2011). While this 25 


approach is suitable to evaluate if a model has captured the essential behaviour of a dynamical 26 


system, it retains temporal aspects which are important in an event-based comparison. 27 


However, if one replaces the pdf's with an event, the distance between an observed and 28 


simulated event could, after normalization, be calculated in the same way. To our knowledge, 29 


this has not been tried for hydrographs yet. The drawback of calculating the distance between 30 


two events with the WD is that 'apples could be compared with pears', when mass (in this case 31 


discharge) would e.g. be moved from a rising to a falling limb. 32 
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2.2 Standard metrics for hydrographs 1 


Probably because they were simple, intuitive and straightforward to compute, the first metrics 2 


used to evaluate the similarity of hydrographs were either time-aggregated average measures 3 


of amplitude error, e.g. the Root Mean Square Error or metrics for timing errors of 4 


characteristic points, e.g. the Peak Time Error. A notable recent exception is the 5 


Multicomponent Mapping approach proposed by Pappenberger and Beven (2004), where the 6 


distance of two hydrographs is measured by the fuzzy degree of membership in boxes placed 7 


around one hydrograph which are intersected by the other. This allows simultaneous but not 8 


separate consideration of timing and amplitude errors. 9 


As both Root Mean Square Error and Peak Time Error are, despite their known deficits, still 10 


widely used in hydrological modelling, their characteristics will be briefly discussed in the 11 


following section. 12 


2.2.1 Metrics for errors in amplitude 13 


Arguably the most widely used metrics in hydrograph analysis are amplitude errors and their 14 


derivatives, e.g. the Mean Square Error, Root Mean Square Error (RMSE), Nash-Sutcliffe 15 


efficiency NSE (Nash and Sutcliffe, 1970) etc.  16 


 (1) 


A formulation of RMSE for discharge [m³/s] is given in Eq. (1), where T is the number of 17 


steps in a time series [-], ot and st are the observation at time step t, respectively [m³/s]. Its 18 


range of values is [0, ∞], with zero being the optimum. The NSE is the RMSE normalized to 19 


[-∞, 1] by division with the deviation of the observations from their mean (see Eq. (2), with  20 


denoting the mean of (o1, ..., oT)). 21 


 (2) 


Here, the optimum value is one. As these metrics are in essence the same, we will discuss 22 


their properties only with the example of the RMSE. 23 


Intuitively, amplitude errors and their derivatives are thought to be sensitive mainly to errors 24 


in amplitude. However, applied on hydrographs, they show interesting and sometimes non-25 







 9 


intuitive characteristics which have been the subject of many studies. As Murphy (1988) and 1 


later Gupta et al. (2009) discussed, the NSE and RMSE can be decomposed into three parts, 2 


evaluating the relative variability, the bias and the correlation coefficient. This means that the 3 


RMSE can be regarded as a weighted three-criteria objective function. However, using only 4 


the NSE/RMSE for evaluation or optimization introduces systematic problems such as 5 


volume balance errors, undersized variability and a tendency to underestimate large peaks 6 


(Gupta et al., 2009). Further, Weglarczyk (1998) reported on interdependencies of the RMSE 7 


with other metrics, Krause et al. (2005) compared several, mainly amplitude-based metrics, 8 


Legates (1999) described the limits of correlation-based measures such as the RMSE. Along 9 


the same lines, Schaefli and Gupta (2007) as well as Jain and Sudheer (2008) found that NSE 10 


is a poor metric if the test series show strong seasonality. In this case, even very simple 11 


periodical models can produce high values of NSE. McCuen (2006) investigated the influence 12 


of sample size, outliers, magnitude bias and time offsets on the NSE, identifying the adverse 13 


effect of time offsets and magnitude bias. Summarizing the findings of the above studies, the 14 


RMSE and related metrics should not be used by themselves, but only in combination with 15 


additional, preferably orthogonal measures and their results should be put in a proper context, 16 


e.g. by comparison of the evaluated simulations to benchmarks. 17 


In addition to the findings reported in the literature, we found more characteristics of RMSE 18 


related to the interplay of errors in timing and amplitude. We will discuss them with the 19 


example of synthetic triangular hydrographs, simple but roughly realistic in shape, as shown 20 


in Fig. 1. The 'observed event' (bold line) is of arbitrary length 17 hours and has a peak of 100 21 


m³/s. From it, artificial simulations were derived by applying all possible combinations of 22 


time offsets in the range [-20, 20] hours and 1-hour increments and multiplicative value 23 


offsets in the range [0, 2] in increments of 0.1. In Fig. 1, three example simulations are 24 


shown. For each combination of time and amplitude offset, we calculated the RMSE and, for 25 


reasons of display and comparison, normalized it by the maximum RMSE to [0, 1]. The 26 


resulting 2-D surface of errors is shown in Fig. 2. Its main characteristics are: 27 


• Starting from the centre (time and value offset zero), the error increases both with 28 


increasing time and value offset. This is in accordance with intuition. 29 


• Considering time offsets, the error surface is symmetrical to time offset zero, rising steeply 30 


at first until, beyond a time offset of around +/- 10 hours, the gradient of the error surface 31 


becomes very small and completely levels out at time offsets ≥ +/ - 18 hours. Note that 32 
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symmetry occurs only if either at least one of the two hydrographs (observed and 1 


simulated) is time-symmetrical or if they are identical in shape. As can be seen in Fig. 1, 2 


simulation 1, a time offset larger than +/- 18 hours completely separates the observed and 3 


simulated hydrograph. This means that the RMSE, especially for short, steep hydrographs 4 


is strongly sensitive to small time offsets, hardly sensitive to larger offsets and completely 5 


insensitive to time offsets larger than the event duration. Note also that for all time offsets, 6 


the RMSE compares 'apples with pears': first rising with falling limbs, with increasing 7 


offset each 'event' is more and more compared to zero, i.e. 'no event'. 8 


• Considering value offsets, the error surface is only symmetrical for time offset zero. With 9 


increasing time offset, the error surface becomes more and more asymmetric. This means 10 


that a simulation with a time offset, which overestimates the observation by 50%,  leads to 11 


a much larger RMSE than a simulation with the same time offset but 50% underestimation. 12 


• As for the relation between RMSE values for time and value offsets, the triangular 13 


hydrograph as used here, shifted by 3 hours (and no value offset), leads to an RMSE value 14 


of 13 m³/s. This is comparable to an RMSE of 12 m³/s for a simulation with a value offset 15 


of factor 1.5 and time offset zero (see simulation 2 and 3 in Fig. 1). This relation may or 16 


may not be in accordance with the user's subjective weighting, but the point is that it is 17 


fixed by the nature of the RMSE calculation and the shape of the hydrograph. And in the 18 


author's subjective view, especially in cases of short events with fast rise and recession, 19 


RMSE puts too much weight on timing errors compared to errors in amplitude. 20 


2.2.2 Metrics for errors in timing 21 


When comparing two hydrographs, time offsets are easily detected by the examiners eye and 22 


strongly influence the process of opinion making. Hence, metrics to quantify timing errors 23 


are, after metrics of amplitude errors, also well-known, especially the Peak Time Error. This 24 


is the time offset between an observed and the related simulated peak (e.g. Yilmaz et al., 25 


2005). The Mean Absolute Peak Time Error (MAPTE) in unit [h] then is the average of all 26 


absolute peak time errors in a hydrograph (see Eq. (3), where N is the number of matching 27 


peaks (observed, simulated) in the time series and Po and Ps are timing of the observed and 28 


simulated peaks, respectively). 29 


 (3) 
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However, peak time metrics are much easier verbalized and applied in visual inspection than 1 


formulated and coded, as it requires automated identification of individual events and within 2 


the events unique peaks, which may be difficult in case of multi-peak events. Further, once 3 


the peaks are found, matching pairs in the observed and simulated hydrograph have to be 4 


found. This is usually done by temporal proximity, but this may not always be correct. Hence, 5 


metrics for time offsets are less frequently applied than amplitude-based metrics. An elegant 6 


solution to this problem is to find the average time offset of the complete hydrograph by 7 


maximizing correlation of the observed and the shifted simulated series (e.g. Fenicia et al., 8 


2008). However, this does not consider the event-based nature of hydrographs, where 9 


individual events may occur too early and others too late. 10 


Some interesting new approaches were proposed by Lerat et al. (2010), who calculate time 11 


offsets not only from event peaks or centroids, but also from comparison of the cumulative 12 


volume of two hydrographs and by the phase difference in a cross wavelet approach. Liu et al. 13 


(2010) also proposed to estimate timing errors in scale-time space using cross-wavelet 14 


transformations, which provides information on scale-dependent time offsets. 15 


For reasons of comparison to the RMSE, we also applied the MAPTE to the synthetic 16 


triangular hydrographs and all possible pairs of time and multiplicative value offsets as 17 


described in Sect. 2.2.1. The resulting 2-D error surface, again normalized by division with 18 


the maximum error to [0, 1], is shown in Fig. 3. Its main characteristics are: 19 


• Its shape is rather simple and resembles a turned ridge roof. As the MAPTE is insensitive 20 


to any differences in peak magnitude, the error along the transect at time offset zero is 21 


always zero. 22 


• Similar to RMSE, the error surface is symmetrical to time offset zero. But, in contrast, it 23 


continuously rises as a linear function of time offset. 24 


 25 


When comparing the error surfaces for RMSE and MAPTE, it becomes apparent that 26 


basically, the directions of largest and smallest gradients are identical. This indicates that 27 


when comparing observed and simulated hydrographs with short and steep events and small 28 


but present time offsets (which is frequently the case with real-world hydrographs), RMSE 29 


and MAPTE are essentially redundant metrics. We tried this also for rectangle-shaped 30 


synthetic hydrographs (not shown): the results were less pronounced but essentially the same. 31 
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This is on one hand unfavourable as errors in amplitude should be distinguishable from errors 1 


in timing in order to provide useful feedback for model calibration. On the other hand it 2 


supports the findings of Murphy (1988) and Gupta et al. (2009), stating that NSE evaluates 3 


not only amplitude errors, but several aspects of a hydrograph.  4 


2.2.3 Visual inspection 5 


Apart from objective metrics, perhaps even more important, is visual inspection and 6 


comparison of hydrographs. Eye and brain are a powerful expert system for simultaneous, 7 


case-specific multi-criteria evaluation which provides results in close accordance with the 8 


user's needs. Due to these obvious advantages, visual inspection is still standard procedure for 9 


calibration and validation in engineering practice.  10 


At this point the reader is, before reading on, encouraged to rank the set of example 11 


simulations displayed in Fig. 4 by her or his own subjective judgement. The ranking can later 12 


be compared to the author's subjective ranking and the result of objective ranking schemes. 13 


However, visual inspection has two major drawbacks: it is subjective and hence 14 


irreproducible and it is not applicable on large data sets. In order to overcome this, in recent 15 


years several objective metrics were proposed which more closely resemble subjective 16 


reasoning in visual inspection (Bastidas et al., 1999, Boyle et al., 2000, 2001). One major step 17 


towards this goal was to change the way of looking at a hydrograph, away from considering it 18 


merely as a sequence of values towards seeing it as the result of a hydrometeorological 19 


process chain, producing distinguishable features such as low flow, events, rising and falling 20 


limbs etc. which contain valuable information on both the processes and the models to be 21 


evaluated. For instance, Pebesma et al. (2005) evaluated the temporal characteristics of 22 


timeseries of amplitude errors. This concept was further developed by Reusser et al. (2008), 23 


who analyzed the temporal dynamics of many metrics applied on hydrographs, clustering 24 


them into typical error classes and from this, drew specific conclusions on structural deficits 25 


of the underlying models. The same trend away from merely amplitude-based scores towards 26 


more intuitive, feature-based comparison can be noticed in the atmospheric sciences:  Ebert 27 


(2008) proposed Fuzzy and neighbourhood-based approaches to account for approximate 28 


agreement; Casati et al. (2004) used scale-decomposition techniques to isolate physical 29 


features such as large-scale frontal systems of small-scale convective showers. Davis et al. 30 


(2006) used object-based techniques to compare identifiable objects such as rain cells, Keil 31 


and Craig (2009) used field verification techniques for the same purpose. 32 
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These approaches not only represent the trend of looking at data (in our case hydrographs) in 1 


a more process-based way, but also the move from single- towards multi-objective evaluation. 2 


Much work has been done in this field in recent years, and both new metrics (e.g. Dawson et 3 


al., 2007, 2010) as well as ways to jointly evaluate them have been proposed, e.g. Taylor 4 


(2001), Yapo et al. (1998), Gupta et al. (1998), van Griensven and Bauwens (2003). 5 


Applications of multi-objective calibration are manifold (e.g. Beldring, 2002); however the 6 


metrics applied are still mainly of the amplitude-error type. Recently, Gupta et al. (2008) 7 


proposed a step beyond multi-objective evaluation towards diagnostic, behavioural evaluation 8 


of catchment/process signature indices. The concept has been applied by Yilmaz et al. (2008), 9 


using three behavioural functions: water balance, vertical and temporal water redistribution. 10 


Other steps towards multi-objective evaluation with hard and soft information have been 11 


proposed by Winsemius et al. (2009). 12 
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3 The metric 'Series Distance' 14 


The Series Distance (SD) was developed with the aim to closely reflect subjective reasoning 15 


in visual hydrograph inspection. In our view, this is mainly characterised by the following 16 


points: 17 


•  A hydrograph is the result and expression of a hydrometeorological process chain and as 18 


such, individual events, separated by periods of low flow are distinguished and considered 19 


individually.  20 


• Each event is composed of characteristic features, namely peaks, troughs, and segments of 21 


rise or recession. 22 


• When comparing observed and simulated hydrographs, only matching events and matching 23 


segments within them are compared. There may be events, simulated or observed, that 24 


have no match. 25 


• Subjective evaluation of an event is typically done by complete comparison of matching 26 


segments, simultaneously but separately for errors in amplitude and timing. A typical 27 


linguistic evaluation could be: 'The simulated flood rise is too early and too steep and the 28 


peak too high, the falling limb drops too slowly and lasts too long'. The resulting synoptic 29 


evaluation compares the overall shape of the hydrographs. This is in our eyes superior to 30 


the approach proposed by Perng et al. (2000), who uses patterns of single characteristic 31 


landmarks such as peaks or troughs for time series comparison. 32 
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• Each user weighs errors in amplitude and timing differently, depending on the intended use 1 


of the simulation. For example in flood forecasting, a person operating a small flood-2 


retention basin is dependent on accurate peak timing, while a person responsible for dike 3 


defence is more interested in maximum water levels.  4 


• The overall comparison of an observed and simulated hydrograph includes the following 5 


components: Did the simulation produce matches of all observed events, or were there 6 


missing or false events? Did the overall shape of the matching events agree with respect to 7 


timing and amplitude? These individual components may point towards different sources 8 


of error (poor data, deficits in different parts of the underlying model structure, etc.). It is 9 


therefore useful to also allow their separate, non-aggregate evaluation. 10 


As the SD aims to consider all these points, a precondition for its use is that the investigated 11 


hydrograph pairs (i) contain events and (ii) have at least something to do with each other in 12 


the sense that they are to a certain degree correlated and that observed and simulated events 13 


can be related. If this is not the case, e.g. for long spells of low flow, an event-based 14 


comparison is not useful and other measures such as simple amplitude metrics can and should 15 


be applied. 16 


3.1 Procedure 17 


The SD is not a single metric based on a single formula; it is rather a procedure which allows 18 


a combined determination of how many of the observed and simulated events match and how 19 


the matching events differ with respect to timing and amplitude. It consists of the following 20 


steps: 21 


• Identify events: From the hydrograph, individual events are identified by applying a user-22 


defined parameter termed 'no-event threshold' [m³/s]. In its simplest form, this is a constant 23 


discharge threshold separating baseflow conditions from an event. More elaborate 24 


baseflow separation techniques are of course possible. Each event starts with an upward 25 


and ends with a downward crossing of the 'no-event' threshold. In the example hydrograph 26 


shown in Fig. 5, the threshold was set to 88 m³/s. 27 


• Match events: In order to relate events in the observed and simulated hydrograph, a 28 


parameter termed 'match limit' [h] is applied. This is a time offset separating matching 29 


from non-matching events. Two events are considered matching, if the end of the earlier 30 


and the start of the later are no longer apart than the match limit. Hence, in an observed and 31 
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simulated hydrograph, there can, following the nomenclature used for contingency tables, 1 


be matching events ('hits'), observed events with no match ('misses') and simulated events 2 


with no match ('false events'). Only 1:1 relations are allowed, i.e. in the case of two 3 


simulated events matching one observed (or vice versa), the relation is only established 4 


between the pair with larger overlap. 'Match limit' can assume negative or positive values, 5 


usually it is set to zero. For more detailed information on the matching algorithm, see the 6 


pseudo code in Table A1. In Fig. 5, with match limit set to zero, the two events were 7 


considered matching. In simulations based on observed forcing, events usually match. 8 


Simulations based on weather forecasts however, especially long-term forecasts in small 9 


catchments, may contain misses or false events. 10 


• Assign hydrological cases: Each point of the observed and simulated hydrograph is 11 


assigned one of the following hydrological cases, defined by the sequence of gradients 12 


from the previous to the current and from the current to the next point: 'rise' (positive-13 


positive), 'peak' (positive-negative), 'recession' (negative-negative), 'trough' (negative-14 


positive). In addition, all points below the no-event threshold are labelled 'no event'. 15 


Ensuring meaningful assignments usually requires pre-processing of the timeseries: 16 


− Smoothing: Peaks and troughs mark important turning points in the hydrograph. In 17 


order to capture only the relevant peaks and troughs by the gradient-based approach, 18 


and not just small fluctuations (possibly caused by the manner of observation), the latter 19 


should be removed, e.g. by a moving average filter. 20 


− Avoid equal values: Sequences of equal values sometimes occur under low-flow 21 


conditions, corrupt data or human impact (e.g. weir operation). As this obviates unique 22 


determination of hydrological cases, we modify them in a very simple manner: each 23 


value in the sequence is raised by 1/1000 of its precursor. The impact of this 24 


modification on the overall result is in most cases negligible. 25 


For more detailed information on the algorithm, see the pseudo code in Table A2. In Fig. 5, 26 


each point of the observed and simulated hydrograph is marked with its hydrological case. 27 


An event invariably consists of the sequence of components shown in Eq. (4), where xi Є 28 


[0, ∞]. 29 


 (4) 
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This means that in the simplest case, an event consists of a start, a peak and an end (a, b, c, 1 


d, e = zero). Note that the sequence of peaks and troughs alternates and that it always starts 2 


and ends with a peak. Hence, there is always one more peak than the number of troughs. 3 


• Attune matching events: Although the principal order and relative frequency of peaks and 4 


troughs is predetermined, the absolute number can differ between matching observed and 5 


simulated events. For example in Fig. 5, there are 4 peaks and 3 troughs in the observed 6 


event, and only 1 peak and no trough in the simulated. However, in order to calculate the 7 


distance between the observed and simulated event (explained below), the number of peaks 8 


and troughs in the observed and simulated event must be equal. This is achieved by 9 


eliminating the less relevant peaks and troughs in the event with the higher number of 10 


turning points: 11 


− In the event, find the sequence of peakn/troughn/peakn+1 where the amplitude difference 12 


calculated as (peakn - troughn) + (peakn+1-troughn) is minimal. In other words, this is the 13 


least pronounced 'dent' in the event. 14 


− From this sequence, erase the trough and the smaller (less important) of the two peaks. 15 


'Erase' here does not mean that the point are removed, but their hydrological case is 16 


changed to 'rise' or 'recession', depending on the neighbouring points. 17 


− This is repeated until the number of turning points in the observed and simulated event 18 


is equalized. 19 


− Having thus ensured that each segment of the observed event finds its counterpart in the 20 


simulated event, the distance calculation is done in a loop over all segments. 21 


− Note that for misses and false events, this procedure is not required. 22 


For more detailed information on the attuning algorithm, see the pseudo code in Table A3. 23 


In the example shown in Fig. 5, this procedure removes the last three peaks and troughs 24 


from the observed hydrograph. This is in accordance with visual inspection, as the 25 


dominant peak at the beginning of the event is maintained. 26 


• Distance calculation for matching events: Having ensured that the number of peaks and 27 


troughs (and with it, the number of rising and falling segments) is attuned, the distance 28 


between matching segments can be calculated. This is the core of the Series Distance 29 


procedure. The idea is that the shape of each observed segment, expressed by the number 30 


of points and their respective time and amplitude values, is the reference, against which the 31 


matching simulated segment is compared. As the simulated segment may be longer or 32 
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shorter than the observed, 1:1 mapping of observed and simulated points is usually not 1 


possible. To overcome this, the simulated segment is considered as a polygon line. From 2 


this, applying linear interpolation, points are sampled with equal temporal spacing, the 3 


number being equal to the number of points in the observed segment. With this, each point 4 


in the observed segment can be assigned a point in the simulated segment. Now for each 5 


pair of points the offset in time and amplitude can be calculated. For more detailed 6 


information on the distance algorithm, see the pseudo code in Table A5. The advantage is 7 


thus that (i) only matching segments are compared, (ii) not single points (e.g. peaks) are 8 


used to calculate the distance, but complete segments are scanned, (iii) the relative 9 


contribution/importance of each segment to the overall event is determined by the length of 10 


the observed segment, (iv) matching points are found in a way comparable to visual 11 


inspection and (v) timing and amplitude errors are calculated between the same pairs of 12 


points, simultaneously but separately. To illustrate this, connecting lines between matching 13 


points are shown in Fig. 6. The small inserted figure reveals that the observed points in a 14 


segment do not necessarily match with a simulated point, but with a point on the polygon 15 


line representing the simulation, located at the same fraction of overall segment length. 16 


• Distance calculation for non-matching events: In the case of misses and false events, there 17 


is no matching event available for comparison. Consequently, there is neither a timing 18 


error nor an amplitude error that can be calculated from them. This may seem non-intuitive 19 


at first, as misses and false events are most unfavourable and should therefore strongly 20 


affect any metric. In fact, their influence is accounted for by the third component of the 21 


Series Distance, a contingency table (see also Sect. 3.2). The advantage of this procedure is 22 


that three basically independent characteristics of agreement between two hydrographs (do 23 


the features match? is the timing of the matching features correct? is the magnitude of the 24 


matching features comparable?) are treated separately. With a suitable weight of the 25 


contingency table in a final combined evaluation of the three metrics, misses and false 26 


events can be considered appropriately. 27 


• Distance calculation for low flow periods: As the Series Distance focuses on comparison 28 


of events, neither time nor value errors are calculated for values below the no-event limit. 29 


• Altogether, the SD procedure has three free parameters, namely the 'no-event' threshold 30 


[m³/s], the match limit [h] and the manner of the smoothing. 31 
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3.2 Output 1 


Based on the identification of events in the observed and simulated hydrograph and the 2 


distances in magnitude and timing, calculated for all matching point pairs as described in 3 


Sect. 3.1, a number of metrics can be calculated: 4 


• Contingency table: The frequency of matching, missing and false events can be listed in a 5 


contingency table as shown in Table 1. This provides useful information on the overall 6 


agreement of simulated and observed events. Note that here the number of correct 7 


negatives, i.e. occasions where both the observation and simulation show no event, cannot 8 


be calculated as this would require the definition of a typical period of time for evaluation 9 


(in weather forecasting, this is typically the aggregation time of interest, e.g. 12 hours). 10 


However, as the SD is intended to evaluate the agreement of events, this is in our eyes no 11 


substantial drawback. 12 


• Threat Score: The information in the contingency table can be further condensed to the 13 


well known Threat Score or Critical Success Index (Donaldson et al., 1975) as shown in 14 


Eq. (5). Ranging from zero to one, a Threat Score of one indicates optimal reproduction of 15 


events. For the definition of hits, misses and false alarms see Table 1. 16 


 (5) 


• Mean Absolute Amplitude and Timing error: From the set of amplitude and timing errors 17 


(all point pairs in all segments in all matching events), standard aggregate metrics such as 18 


the mean, mean absolute or mean squared error can be calculated. In this work, we applied 19 


the Mean Absolute Error both for timing (SDt) and value (SDv) for the following reasons: 20 


Firstly, taking the absolute value avoids cancellation of positive and negative errors. 21 


Secondly, we used the simple (i.e. non-squared) distance, as the goal of the Series Distance 22 


is to evaluate overall agreement rather than amplifying individual gross errors. SDt and 23 


SDv are also displayed in Eq. (6) and Eq. (7), respectively, with M being the number of 24 


time steps within all observed events that have a matching simulated event. Dist_t and 25 


Dist_v are the differences between matching observations and simulations, respectively, as 26 


explained in Table A4. 27 
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• Many other metrics can be derived from the Series Distance procedure, e.g. scatterplots of 1 


timing error vs. amplitude error, which potentially allows insight into typical error 2 


combinations useful for deficit analysis of the underlying models. This could be further 3 


refined by doing the analysis separately for each hydrological case. 4 


Applied in the manner as proposed above, the Series Distance procedure yields three metrics, 5 


namely the Threat Score, the SDv and the SDt. They are essentially non-redundant, as the first 6 


evaluates agreement in overall event occurrence, the second agreement in amplitude and the 7 


last agreement in timing and as such, they can be evaluated separately. For tasks such as 8 


automated model optimization however, a single metric may be desirable. In this case the 9 


three metrics can be combined to one, using some kind of weighted combination function. 10 


The choice of this function and the relative metric weights of course introduces a subjective 11 


element in the evaluation procedure. However, as discussed above, each user weighs errors in 12 


event occurrence, amplitude and timing differently, depending on the intended use of the 13 


simulation. In contrast to visual inspection, where the weighted combination is carried out in 14 


an irreproducible way, the application of a combination function is objective and reproducible 15 


while still giving the user the freedom of customizing it according to her or his subjective 16 


needs. 17 


3.3 Alternatives 18 


Development of the SD procedure as described in Sect. 3.1 and 3.2 was a matter of trial and 19 


error and frequently ended in dead ends. As we think that much can be learned from going 20 


astray, we will now present a line of thought we tested and abandoned. 21 


Seeking a way to compare hydrographs in a more holistic manner, it was tempting to establish 22 


a relation between errors in amplitude and timing at the very beginning of the SD procedure. 23 


This can be done either in a subjective, user-specific manner by formulating a direct relation 24 


(e.g. 'an error in timing of one hour is equivalent to an error in magnitude of ± 10%'), or it can 25 


be done in the form of an objective relation based on hydrograph characteristics (e.g. for each 26 


event, the difference of peak and lower threshold is considered as 100% error in amplitude, 27 


while a time offset equal to the event length is considered 100% error in timing). Thus 28 
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transforming both errors to dimensionless units allows 2-D distance calculations in the 1 


transformed time-amplitude space. With this, matching points on the observed and simulated 2 


hydrograph are simply those that are closest to each other, given that they are of the same 3 


hydrological case. The 2-D point distances can then simply be added to the overall Series 4 


Distance. This approach, however, had two major disadvantages. Firstly, it may lead to non-5 


intuitive sets of point pairs as complete scanning of each segment is not assured. For instance, 6 


if a simulated flood rise severely underestimates the observed rise, for most points on the 7 


simulated hydrograph the closest points will be found in the lower part of the observed 8 


hydrograph, leaving the upper part completely unconsidered. Secondly, while on one hand 9 


combining errors in time and amplitude from the beginning is attractive as it allows direct 10 


computation of a single metric, on the other hand it means a loss of information which can be 11 


drawn from the relative contributions and correlations of errors in timing and amplitude. 12 


Although this line of thought is no longer pursued at the moment, it may at a later time be 13 


interesting to relate (i.e. normalize) the components of the Series Distance to characteristic 14 


features of the hydrograph under consideration, such as mean event duration, mean event 15 


distance, distribution of discharge values, etc. Thus transforming the errors to dimensionless 16 


numbers would facilitate combination to a single metric and make their relative weighting 17 


more objective. Also, it would facilitate comparison of metrics among hydrographs from 18 


different sites with different characteristics (e.g. hydrographs from alpine catchments with 19 


short, intensive events or hydrographs from large lowland catchments with drawn-out, smooth 20 


events). 21 
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4 Application, results and discussion 23 


In this section, we apply the Series Distance both to artificial and realistic hydrographs in 24 


order to evaluate its behaviour under different conditions and to compare its results both to 25 


standard metrics (RMSE and Mean Absolute Peak Time Error) and visual inspection. 26 


4.1 Application on a synthetic hydrograph 27 


Similar to the discussion of the RMSE and MAPTE characteristics in Sect. 2.2.1 and 2.2.2, 28 


respectively, we first applied the SD procedure to the synthetic triangular hydrographs shown 29 


in Fig. 1. Each 'simulated' event is simply derived from the 'observed' event by an offset in 30 


time and a multiplicative offset in amplitude. As with RMSE and MAPTE, we calculated the 31 
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SDv and SDt for all offset combinations in the range of [-20, 20] hours and multiplicative 1 


value offsets in the range [0, 2]. The free SD parameters were set to the following values: 2 


match limit = 0 h, 'no-event' threshold = 1.9 m³/s, smoothing = none. With the 'observed' 3 


values ranging from 0 to 100 and an event length of 17 hours, time shifts ≥ 18 hours lead to 4 


non-matching events. The contingency table here simply contains one 'hit' for time offsets 5 


smaller than 18 hours and one 'miss' and one 'false alarm' beyond. With the event threshold 6 


set to a very low value, even strongly downsized simulations are still above the threshold and 7 


thus considered as events. The resulting 2-D surfaces of error for SDv and SDt are shown in 8 


Fig. 7 and Fig. 8, respectively, again normalized by division with the maximum error to [0, 1]. 9 


Their main characteristics, especially in comparison to those of RMSE and MAPTE are: 10 


• Both surfaces resemble a turned ridge roof, but in contrast to RMSE and MAPTE, the 11 


(turned) ridges point in different directions: SDv is sensitive to amplitude offsets only, 12 


while SDt is sensitive to time offsets only. Both error surfaces are symmetrical to the 13 


respective ridge (amplitude offset one and time offset zero, respectively) and, unlike 14 


RMSE, rise linearly. This means that the two metrics are basically orthogonal, which 15 


makes them suitable for joint, non-redundant evaluation. 16 


• For time offsets beyond the matching limit (≥ 18 hours), both SDv and SDt drop to zero, as 17 


for non-matching events, no distances are calculated (see Sect. 3.1). The disagreement of 18 


the observed and simulated hydrograph is in this case captured in the contingency table. 19 


4.2 Application on realistic hydrographs 20 


Finally, we applied the SD procedure to eight realistic pairs of observed and modelled 21 


hydrographs as shown in Fig. 4. The observed hydrograph is from the Kempten gauge on the 22 


river Iller (Germany), which drains an alpine catchment of 954 km². The discharge was 23 


observed during a small 5-day flood event from 21.-27. April 2008. The related modelled 24 


hydrographs are based on forecasts from an operational, conceptional flood forecasting model 25 


based on Larsim (Ludwig, 1982, Ludwig and Bremicker, 2006), driven by Cosmo-Leps 26 


ensemble weather forecasts (Marsigli, 2005), which are widely used in operational 27 


hydrological forecasting . We chose an ensemble forecast as with this, a number of different 28 


modelled hydrographs are available which are all related to the same observed hydrograph. 29 


This facilitates performance comparisons among the simulations and allows ranking. 30 


However, this does not mean that the Series Distance is only applicable on hydrological 31 
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forecasts; the hydrograph ensemble might just as well have been a set of simulations based on 1 


different model parameter sets in a calibration procedure. 2 


As the model application is not of central interest here, for the sake of brevity we are not 3 


going into greater detail on the model setup. We also did not use the hydrographs as produced 4 


by the hydrological model directly, but modified them slightly. We did so because the aim of 5 


this study is to present and analyse the behaviour of SD for a variety of hydrograph pairs with 6 


different characteristics such as overestimation, timing errors, matching and missing events, 7 


etc. This is hard to find in a single forecast ensemble. The modifications we carried out were 8 


small changes in magnitude (of the order of ±10%) or timing (of the order of ± 5 hours). 9 


However, care was taken that the resulting hydrographs remained realistic. 10 


In order to apply the Series Distance, its free parameters were set to the following values: 11 


match limit = 0 h, 'no-event' threshold = 88 m³/s (see e.g. Fig. 5), smoothing = 5 hour moving 12 


average. Note that we deliberately omitted the threshold from Fig. 4 to avoid biasing the 13 


reader's own subjective evaluation and ranking. 14 


For comparison, we also calculated the RMSE and MAPTE for all eight events. In order to 15 


base them on the same dataset as the Series Distance metrics, RMSE was also only calculated 16 


for values above the 'no-event' threshold (i.e. low flow was omitted) and the Mean Absolute 17 


Peak Time Error was only calculated between peaks of events that were considered matching 18 


by the SD procedure. 19 


The observed and simulated hydrographs for event 5 are shown in Fig. 6 and Fig. 9. In 20 


addition, connection lines between related points (i.e. the point pairs used for distance 21 


calculations) on the two timeseries are shown in Fig. 6 according to the SD procedure and in 22 


Fig. 9 as used by the RMSE. While in both cases points below the 'no-event' threshold are 23 


neglected, there are obvious differences for the points above: RMSE relates points with equal 24 


position in time, while SD relates points at equal relative position in matching segments of 25 


matching events. In our view, the latter is in closer accordance with intuition than the first. 26 


For example, the detailed subplot in Fig. 9 reveals that between time steps 88 and 99, RMSE 27 


is calculated between non-matching parts of the hydrographs: the simulation already recedes 28 


while the observation still rises. Another example is the first steep flood rise at time steps 15 29 


to 20. Here, the simulated hydrograph closely resembles the observed one, but runs ahead for 30 


about two hours. The resulting point pairs for RMSE are far apart with respect to amplitude, 31 


which results in large values of RMSE, while a user might consider the simulation as 32 
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relatively good, despite the time offset. In our opinion, the distance between the hydrographs 1 


is in this case better represented by the point pairs of SD as shown in Fig. 6. They also have 2 


the advantage that both the errors in amplitude and timing are calculated on the same point 3 


pairs, simultaneously but separately. In contrast, the MAPTE is calculated only on a single 4 


pair of points. 5 


All metrics (RMSE, MAPTE, Threat Score, SDv and SDt) for each of the eight simulations 6 


are shown in Table 2. Irrespective of whether the eight simulations stand for a set of ensemble 7 


forecasts or a set of simulations in a parameter optimization process, the task is the same: to 8 


evaluate them according to their performance and then select the best (or the best few). This is 9 


no problem if single metrics are used, but if several metrics with different units are jointly 10 


considered the problem of unit mixing and of assigning relative weights to individual metrics 11 


occurs. The first can, for example, be overcome by transforming values to relative ranks 12 


within the set while the latter requires a (subjective) fixing of weights by the user. With 13 


respect to the first problem, in this study we used a simple ranking transformation: for each 14 


metric, the relative rank of each simulation is shown in Table 3.  15 


In addition to ranking the individual metrics (columns I, II, IV, V, and VII), we also 16 


calculated the ranks of combined metrics. First, we combined RMSE and MAPTE, giving 17 


equal weights to each of them. To this end, the ranks of RMSE and MAPTE for each 18 


simulation were added and the resulting sums ranked again (see column III). It is noteworthy 19 


that for the set of simulations presented in this study, both RMSE and MAPTE lead to rather 20 


similar ranking orders: hydrographs three and four (both with small timing errors for the main 21 


event, but almost completely missing the secondary event) were placed at the top, hydrograph 22 


five (both events reproduced in the correct order of magnitude but with a timing error) was 23 


placed in the lower half. As a consequence of the similar ranks, the combined ranking is 24 


comparable to the ranking of the individual metrics. 25 


Moreover, we merged the two SD distance metrics: in column VII, the ranks of SDv and SDt 26 


were combined in the same manner as RMSE and MAPTE. In contrast to RMSE and 27 


MAPTE, however, the rankings of the two SD distances are dissimilar. For example, 28 


hydrograph eight was ranked best by the SDv and worst by the SDt. In that case, the matching 29 


simulated and observed hydrographs were similar in shape and amplitude, but offset by a 30 


large time shift. Note that for hydrograph eight, SD identified only one matching event: the 31 


secondary observed event found no match. Consequently, the Threat Score was low (rank 5,5 32 
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in column IV, row '8'). In contrast to this, in hydrograph one (where simulation and 1 


observation of the main event are also similar in amplitude and offset in time), the secondary 2 


observed event matches a simulated one. This results in a high rank for the Threat Score. 3 


Ranks for SDv were lower, though, as the matching simulation underestimated the observed 4 


secondary event. 5 


Also, all three SD metrics were combined in column VIII by adding the (weighted) ranks of 6 


Threat Score, SDv and SDt. We (subjectively) chose the following relative weights: as 7 


principal agreement of the hydrographs (expressed by the Threat Score) was considered to be 8 


most important, we gave it a weight of 50%. SDv and SDt ranks were equally weighted with 9 


25%, respectively. 10 


Finally, the author's subjective ranking of the eight test hydrographs is also shown in Table 3, 11 


column IX. During the underlying visual hydrograph inspection, we followed the general 12 


guidelines discussed in Sect. 3. The resulting ranks are of course highly subjective and may or 13 


may not be in accordance with the reader's ranking, nevertheless we compared the agreement 14 


of the rankings based on the objective metrics (columns I – VIII) with the subjective ranking 15 


by calculating the Sum of Absolute Rank Errors. This is simply the sum of absolute 16 


deviations from the subjective ranks, accumulated for all eight hydrographs, separately for 17 


each objective metric. The magnitude of the Rank Error expresses the degree of agreement 18 


between the objective and the subjective ranking scheme: the smaller it is, the better the 19 


agreement. The results are shown in the last line of Table 3 ('Rank Diff'). Comparing the 20 


Rank Errors for the different metrics reveals several interesting points: 21 


• Combining RMSE and MAPTE results in a Rank Error of 23. This is in between those of 22 


the two metrics evaluated separately. It seems that in the example presented here, 23 


combining the two did not improve much the overall closeness to subjective classification. 24 


• The Threat Score seems to be a good metric to mimic visual inspection: without 25 


combination with other metrics it has a Rank Error of only 11, which is the third-best from 26 


the tested eight metrics. It should be noted, though, that it is only useful for simulations or 27 


forecasts, where substantial numbers of false alarms or misses really occur (see also Sect. 28 


3.1). 29 


• In contrast to RMSE and MAPTE, combination of the SD metrics continually improves the 30 


agreement with subjective classification: while SDv and SDt taken separately still show 31 
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relatively weak agreement (although better than for RMSE or MAPTE), a combination of 1 


the two leads to a Rank Error of only 10 (column VII). 2 


• Finally, combining the Threat Score, SDv and SDt (column VIII) leads to the smallest 3 


Rank Error of only 3. This suggests that this final combination constitutes a metric 4 


reflecting visual inspection relatively closely. Further, it seems that the Threat Score and 5 


the combined SDv and SDt are essentially non-redundant information, as their combination 6 


decreased the Rank Error substantially. 7 


 8 


5 Summary and conclusions 9 


In this paper, we proposed a new metric to quantify the similarity of hydrographs. Termed 10 


Series Distance, it is aimed to reproduce the advantages of visual inspection, namely 11 


simultaneous, case-specific multi-criteria evaluation, but in an objective manner. The Series 12 


Distance quantifies the similarity of two hydrographs on the scale of hydrological events. It 13 


consists of three parts, namely a Threat Score which evaluates overall agreement of event 14 


occurrence, and the overall distance of matching observed and simulated events with respect 15 


to amplitude and timing. Within matching events, point pairs on the observed and simulated 16 


hydrographs for distance calculation are identified by the same relative position in matching 17 


segments (rise or recession) of the event, indicating the same underlying hydrological 18 


condition. Thus, amplitude and timing errors are calculated simultaneously but separately, 19 


from point pairs that also match visually, considering complete events rather than only 20 


individual points (as is the case with Peak Time Errors). Relative weights can be freely 21 


assigned to each component of the Series Distance, which allows (subjective) customization 22 


of the metric to various fields of application in a traceable way. Each of the three components 23 


of the Series Distance components can be used in an aggregated or non-aggregated way, 24 


which makes the Series Distance a suitable tool for differentiated, process-based model 25 


diagnostics.  26 


For the example of simple, triangular hydrographs we demonstrated that the resulting Mean 27 


Absolute Errors in Timing and Amplitude are less redundant than the Root Mean Square 28 


Error and the Mean Absolute Peak Time Error, two metrics commonly used in hydrograph 29 


evaluation. Applied on an ensemble of real hydrographs, the three Series Distance metrics 30 


lead to different rankings, but in combination came close to the author's subjective ranking, at 31 


least closer than single or combined rankings based on the Root Mean Square Error and the 32 







 26 


Mean Absolute Peak Time Error. Although this reasoning is partly based on strongly 1 


subjective components, namely the ranking by the authors and the way of combining the three 2 


metrics, the results seem to suggest that the Series Distance jointly evaluates several 3 


hydrograph characteristics in a way similar to visual inspection. 4 


The Series Distance currently requires the selection of three parameters: a discharge threshold 5 


separating events from low flow conditions, a minimum time overlap to consider two events 6 


as matching, and the way of hydrograph smoothing to remove minor peaks and troughs. In 7 


order to facilitate and standardize selection of these parameters and also the weighting of the 8 


three components, it could be helpful to relate them to general hydrograph properties such as 9 


the mean event duration and distance or the distribution of discharge values. This could also 10 


facilitate the intercomparison of metrics based on hydrographs from different sites with 11 


different characteristics. Also, the Series Distance as presented makes two events comparable 12 


by equalizing their number of segments, but does not consider the degree of attunement 13 


necessary to achieve this. We propose to count the number and magnitude of peak/trough 14 


removals necessary to achieve attunement and to include this information of disagreement in 15 


the overall Series Distance metric. This remains to be done in the future.  16 


Recalling the fictitious post-flood conversation of hydrologists and flood managers from the 17 


introduction, we hope to contribute with the Series Distance to a better (i.e. non-redundant 18 


and traceable) evaluation of hydrological models adaptable to a range of user-specific needs. .  19 


The Series Distance is available as Matlab code from the corresponding author. 20 
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Table 1: Contingency table 1 


 2 


  observation 
  > threshold ≤ threshold 
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> threshold hits false alarms 


≤ threshold misses correct 
negatives 


 3 
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Table 2. Metrics for 8 pairs of simulated and observed hydrographs as shown in Fig. 4. RMSE 1 


= Root Mean Square Error, MAPTE = Mean Absolute Peak Time Error, SDv = Amplitude 2 


Error of Series Distance, SDt = Timing Error of Series Distance. 3 


Sim # RMSE 


[m³/s] 


MAPTE 


[h] 


Threat Score 


[ - ] 


SDv 


[m³/s] 


SDt 


[h] 


1 22,2 13,0 1,0 6,7 13,8 


2 15,5 2,0 0,5 18,1 12,1 


3 15,2 0,0 0,3 7,5 4,6 


4 14,0 1,0 0,5 10,3 5,5 


5 17,9 7,5 1,0 5,8 8,4 


6 15,8 6,5 1,0 6,8 6,5 


7 24,1 6,0 0,5 10,6 15,5 


8 25,8 8,0 0,5 5,0 15,6 


 4 
  5 
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Table 3. Ranked metrics from Table 2 for 8 pairs of simulated and observed hydrographs as 1 


shown in Fig. 4. Ranks are determined separately for each column. Highest ranks are shaded 2 


grey. RMSE = Root Mean Square Error, MAPTE = Mean Absolute Peak Time Error, I&II = 3 


ranks of columns I and II added and ranked, SDv = Amplitude Error of Series Distance, SDt = 4 


Timing Error of Series Distance, V&VI = ranks of columns V and VI added and ranked, 5 


IV&VII = ranks of columns IV and VII added and ranked, Subjective = subjective 6 


classification by the authors, Rank Diff = Accumulated rank difference between subjective 7 


ranking (column IX) and the ranks in the respective column. 8 


Sim 


# 


RMSE MAP-


TE 


I & II Threat 


Score 


SDv SDt V & VI IV & 


VII 


Subjec-


tive 


 I II III IV V VI VII VIII IX 


1 6 8 7 2 3 6 5,5 3 3 


2 3 3 3 5,5 8 5 7 7 6 


3 2 1 1,5 8 5 1 1,5 4,5 4 


4 1 2 1,5 5,5 6 2 4 4,5 5 


5 5 6 5,5 2 2 4 1,5 1 1 


6 4 5 4 2 4 3 3 2 2 


7 7 4 5,5 5,5 7 7 8 8 8 


8 8 7 8 5,5 1 8 5,5 6 7 


Rank 


Diff 


20 26 23 11 14 16 10 3 0 


 9 


  10 
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 1 


Figure 1. Synthetic, triangular events. 'Observation' (bold line) and three example 2 


'simulations' (normal lines) derived from the 'observation' by time offsets and multiplicative 3 


value offsets.  4 


 5 


Figure 2. Error surface of the Root Mean Square Error (RMSE) for synthetic, triangular 6 


events as shown in Fig. 1. Simulations are shifted in time (offset range [-20h, 20h]) and 7 


amplitude (multiplier range [0, 2]). The error surface is normalized to [0, 1] by means of 8 


division with the maximum error. 9 


 10 


Figure 3. Error surface of the Mean Absolute Peak Time Error (MAPTE) for synthetic, 11 


triangular events as shown in Fig. 1. Simulations are shifted in time (offset range [-20h, 20h]) 12 


and amplitude (multiplier range [0, 2]). The error surface is normalized to [0, 1] by means of 13 


division with the maximum error. 14 


 15 


Figure 4. Observed discharge at gauge Kempten/Iller (954 km²) for period 2008/04/21 14:00 – 16 


2008/04/27 00:00 (132 h) and 8 simulations with hydrological model 'Fgmod' (Ludwig, 1982) 17 


based on Cosmo-Leps ensemble weather forecasts (Marsigli et al., 2005). 18 


 19 


Figure 5. Example of a matching observed (black) and simulated (grey) event (detail of event 20 


5 in Fig. 4). The hydrological case is shown for each point: 'rise' (filled circle), 'peak' (upward 21 


triangle), 'recession' (empty circle), 'trough' (downward triangle), 'no event' (no marker). The 22 


'no-event' threshold (thin grey line) separating events from low flow conditions is set to 88 23 


m³/s. 24 


 25 


Figure 6. Example of a matching observed (black) and simulated (grey) event (event 5 in Fig. 26 


4). Connections (thin grey lines) between matching points of observation and simulation 27 


according to the Series Distance procedure are shown. The small inserted figure reveals that 28 


the observed points in a segment (rise or recession) do not necessarily match with a simulated 29 
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point, but with a point on a polygon line representing the simulation at the same fraction of 1 


overall segment duration. 2 


 3 


Figure 7. Error surface of the value/amplitude error of the Series Distance (SD) for synthetic, 4 


triangular events as shown in Fig. 1. Simulations are shifted in time (offset range [-20h, 20h]) 5 


and amplitude (multiplier range [0, 2]). The error surface is normalized to [0, 1] by means of 6 


division with the maximum error. 7 


 8 


Figure 8. Error surface of the timing error of the Series Distance (SD) for synthetic, triangular 9 


events as shown in Fig. 1. Simulations are shifted in time (offset range [-20h, 20h]) and 10 


amplitude (multiplier range [0, 2]). The error surface is normalized to [0, 1] by means of 11 


division with the maximum error. 12 


 13 


Figure 9. Example of a matching observed (black) and simulated (grey) event (event 5 in Fig. 14 


4). Connections (thin grey lines) between matching points of observation and simulation 15 


according to the RMSE are shown. Note that connections may exist between non-matching 16 


segments of the hydrographs (rise with recession or vice versa). 17 


 18 
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Appendix A - Pseudocode 1 


 2 


Table A1: Algorithm to find matching events in an observed and simulated hydrograph. A 3 


match occurs when two events are closer to each other than the distance defined by 4 


'limitformatch'. Matches are unique, i.e. only one event can match another. If several 5 


simulated events match one observed (or vice versa), the pair with the largest overlap is used. 6 


 7 


function MatchEvents 8 


input 9 
O = (o1, …, on ): all observed events, each represented by an object with properties start time 10 
(o.ts), end time (o.te), and number of the matching simulated event (o.match) 11 


S = (s1, …, sn ): all simulated events, each represented by an object with properties start time 12 
(s.ts), end time (s.te), and number of the matching observed event (s.match) 13 


limitformatch: maximum time gap between end of the first event (obs or sim) and start of the 14 
second (sim or obs) to be still considered matching 15 


 16 


returns: for each o in O and s in S the number of the matching event or -999 (if no match was 17 
found) 18 


 19 


begin 20 
dim overlap (1, …, n, 1, …, m) 21 


for i = 1 to n 22 


 for j = 1 to m 23 


  overlap (oi , sj) = min (oi.te , sj.te) – max (oi.ts , sj.ts ) +1 24 


if overlap (n, m)  < limitformatch then overlap (n, m) = -999 25 


next j 26 


next i 27 


 28 


while max (overlap) > -999 29 


i,j = index (max(overlap)) 30 


oi.match = j; sj.match = i 31 


overlap (i,*) = -999; overlap (*, j) = -999;  32 


end 33 


end 34 
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Table A2: Algorithm to find the hydrological case for each time step of a hydrograph.  1 


Possible cases are: -2=valley, -1=drop, 0=not within an event, 1=rise, 2=peak. 2 


 3 
function HydCase 4 


 5 


input 6 
Q = (q1, …, qn): hydrograph with n observations or simulations, each represented by an object 7 
with property value (q.v) and hydrological case (q.hydcase) 8 


lolim = discharge threshold; any values below are considered as not within an event 9 


 10 


returns: for each q Є Q the hydrological case in property q.hydcase 11 


 12 


begin 13 
q1.hydcase = 0; qn.hydcase = 0;  14 


for i = 2 to n-1 15 


 if qi > lolim then 16 


 if (qi.v– qi-1.v) < 0 and (qi+1.v – qi.v) > 0 then qi.hydcase = -2; end 17 


 if (qi.v – qi-1.v) < 0 and (qi+1.v – qi.v) < 0 then qi.hydcase = -1; end 18 


 if (qi.v – qi-1.v) > 0 and (qi+1.v – qi.v) > 0 then qi.hydcase = 1; end 19 


 if (qi.v – qi-1.v) > 0 and (qi+1.v – qi.v) < 0 then qi.hydcase = 2; end 20 


 else 21 
  qi.hydcase = 0 22 


 end 23 
next i 24 


end 25 
 26 


  27 
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Table A3: Algorithm to equalize the number of peaks and valleys in matching observed and 1 


simulated events by erasing the least pronounced pairs of peaks and troughs 2 


 3 
function EqualizeEvents 4 


 5 


input 6 
O = observed event, represented by an object with property .P = (p1, …, pn) containing all 7 
peak values and property .T = (t1, …, tn-1) containing all trough values, both ordered by time. 8 


S = simulated event matching the observed, represented by an object with property .P = (p1, 9 
…, pm) containing all peak values and property .T = (t1, …, tm-1) containing all trough values, 10 
both ordered by time. 11 


 12 


returns: O and S, with the number of peaks and troughs equalized 13 


 14 


begin 15 
for i = 1 to abs(n – m) 16 


if (n – m) > 0 then 17 


dim diff (1, …, n-1) 18 


for i = 1 to n - 1  19 


diff (i) = (O.P(i) - O.T(i)) + (O.P(i+1) - O.T(i)) 20 


next i 21 


i = index (min (diff)) 22 


O.T(i) = nothing; min (O.T(i), O.T(i+1)) = nothing 23 


elseif (n – m) < 0 then 24 


dim diff (1, …, m-1) 25 


for i = 1 to m - 1  26 


diff (i) = (S.P(i) - S.T(i)) + (S.P(i+1) - S.T(i)) 27 


next i 28 


i = index (min (diff)) 29 


S.T(i) = nothing; min (S.T(i), S.T(i+1)) = nothing 30 


end 31 
next i 32 


end 33 
 34 


  35 







 40 


Table A4: Algorithm to calculate the time and amplitude distance between matching segments 1 


in an observed and simulated event. The simulated segment is approximated by a polygon 2 


line. The polygon is sampled with n equally spaced points (n being the number of points in 3 


the observed segment). These are used to calculate the distance from the n observed points in 4 


the segment. 5 


 6 
function SegmentDistance 7 


 8 


input 9 
O = segment (rise or decline) of length n in an observed event, represented by an object with 10 
property .V = (v1, …, vn) containing the amplitude of all segment points and property .T = (t1, 11 
…, tn) containing the timing of all segment points. The elements are ordered in time. 12 


S = segment (rise or decline) of length m in a simulated event matching the observed 13 
segment. It is represented by an object with property .V = (v1, …, vm) containing the 14 
amplitude of all segment points and property .T = (t1, …, tm) containing the timing of all 15 
segment points. The elements are ordered in time. 16 


 17 


returns 18 
Dist_v = (d_v1, …, d_vn) containing n amplitude differences between O and S 19 


Dist_t = (d_t1, …, d_tn) containing n timing differences between O and S 20 


 21 


begin 22 
dim poly_t = (1, …, n); dim poly_v = (1, …, n) 23 


poly_t = linspace (S.T, n)  rem: create n equally spaced points within [S.T(1), 24 
S.T(m)] 25 


poly_v = linintpol (S.T , poly_t)  rem: find point values by linear interpolation 26 


 27 


for i = 1 to n 28 


 Dist_t(i) = poly_t(i) - O.T(i) 29 


 Dist_v(i) = poly_v(i) – O.V(i) 30 


next i 31 


end 32 
 33 


 34 
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