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Answer to reviewers 
 
First, we want to thank the reviewers and editor for their very constructive remarks. We thought 
they highly help us to seriously improve the paper. We have followed their suggestions and take 
into account most of their comments (answers to reviewers follow). This leads to an almost 
complete revision of the paper. 
 
Answer to reviewer1 
 
Multi-scale estimation of surface moisture in a semi-arid region using ENVISAT ASAR radar data, Zribi, et al., 
2010  
The study presents two independent methods for soil moisture estimation over two land cover types in Tunisia - 
non-irrigated olive trees and irrigated wheat fields. The laborious work should be appreciated that included a) 
collection of in-situ data on the Tunisian site (roughness, surface moisture, and different vegetation measures), b) 
processing of several sources of satellite data (SPOT, SAR, SRTM) and c) development of algorithms.  
I am convinced that below suggested changes can significantly improve the quality of the paper:  
 
Major comments:  
1) Abstract – can you please shortly discuss what novelties your research brings into the soil moisture research and 
how can your results be used in future research.  
 
Answer: The semi-arid regions are characterised with dispersed vegetation, therefore soil evaporation could 
have a strong contribution in surface fluxes, particularly after rain events. Soil evaporation has to be 
estimated, for areas with trees, in order to estimate water stock reserved for vegetation, and also for wheat 
fields for irrigation management. We propose in this paper to estimate soil moisture simultaneously for the 
two types of vegetation covers. In order to improve the paper discussions, we add another section for soil 
evaporation evaluation, based on moisture estimations. We do changes in abstract, particularly by adding to 
the first paper version the final application for soil moisture estimation which is soil evaporation evaluation. 
“ The present paper proposes a method for the evaluation of soil evaporation, using soil moisture 
estimations based on radar satellite measurements. We present firstly an approach for the estimation 
and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, 
over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of 
moisture variability related to rainfall events, over areas in the ‘non-irrigated olive tree’ class of land use. 
The developed approach is based on a simple linear relationship between soil moisture and the 
backscattered radar signal normalised at a reference incidence angle. The second process is proposed over 
wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical 
model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from 
the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between 
irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both 
ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, 
roughness), during the 2008-2009 vegetation cycle. Finally, a semi-empirical approach is proposed in 
order to relate surface moisture to the difference between soil evaporation and the climate demand, 
as defined by the potential evaporation. Mapping of the soil evaporation is proposed.” 
 
2) The method section prevails over results and discussions. I would recommend reducing the methods and adding 
section where the results and their significance will be discussed.  
 
Answer:  Yes, we agree with reviewers, we change the order of sections. We propose a section for 
methodology with the two proposed approaches for olive and wheat fields. We reduce the size of this part. 
We add more details for results and validation. We add a new section for soil evaporation based on soil 
moisture mapping. 
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3) Similar study has been published by the author in IJoRS in 2006 “Soil moisture mapping based on 
ASAR/ENVISAT radar data over a Sahelian region”. To avoid any further discussions I suggest adding a section in 
the introduction that would summarize results of previous study and connection to current study.  
 
Answer: We agree with reviewer that similar points exist between the two proposed studies over sahelian 
region and our studied site. For soil moisture estimation over olive trees, we apply approximately the same 
method, based on change detection approach. We add, in introduction, the description of the approach used 
in IJRS. We reduce the description of the proposed approach in methodology section. 
We add in introduction 
“ Two methodologies are proposed to map soil moisture over non-irrigated olive groves and wheat 
fields. Moisture estimations over olive groves are based, in particular, on a change-detection 
approach using ASAR/ENVISAT data, developed for the Sahel (Zribi et al., 2007). The 
methodology was broken down into several successive steps: (1) normalisation of radar data to one 
incidence angle equal to 20°, (2) for each cell, estimation of the areas with a low vegetation density, 
(3) elimination of surface roughness by subtracting the radar data recorded during the dry season 
from that used for the soil moisture determination, (4) retrieval of soil moisture, by inverting a 
linear relationship between the processed signals and the soil moisture. Moisture estimations over 
wheat fields are based on the Cloud water model (Attema et al., 1978), using parameters estimated 
empirically from our database.” 
 
4) Page 8064, line 10: “..two-dimensional estimation of soil moisture…” the methods seem rather independent. 
What do you mean by the two-dimensionality?  
 
Answer: The text was not clear, we mean a spatialisation and mapping of soil moisture. We correct the text: 
“The present study describes an approach for mapping of soil moisture” 
 
5) The methodology section needs reductions and changes that would ease its understanding: i.e. a) bring 
discussion about comparisons between the two methods; where are the differences, where are the similarities, b) 
improve notations, c) the names of the methodology section do not fully express their content (..mapping of soil 
moisture..), d) enhance where validation is performed..e) do not discuss methods if citations can be used.  
 
Answer: We agree with reviewer. We change methodology section with important reduction, for olive and 
wheat fields; we add more details about database used for validation and calibration of models. Validation 
and mapping are considered in results section. 
 
6) Were all in-situ stations used for calibration of the model and then for consequent validation?  
 
Answer: We add details concerning database used for calibration and validation of the models. 
Measurements are realised over test fields and also with three thetaprobe stations. We use all these data in 
calibration and validation of the models. 
We add details to section: moisture estimation over wheat fields: 
“The database is divided into three sets: the first of these contains measurements acquired just 
before the vegetation starts to develop: from the end of December until the end of January, the soils 
are bare with no vegetation cover on the wheat fields. This set is used to estimate the backscattering 
contribution from bare soil. A second set is used to estimate the parameters of the radiative 
transfer model (A and B). Finally, a third set is used for model validation.” 
For olives trees, we precise also the existence of two parts of database: a first one for model 
calibration and a second one for validation. 
 
Minor comments  
 
1) Page 8046, line 15, “based on the reduction of a large database..” What do you mean by that?  
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Answer: It is just an error 
“This study is based on a large database, including both ENVISAT ASAR and simultaneously 
acquired ground-truth measurements…” 
 
2) Page 8047, line 15-27, You provided an overview of current research. But can you explain how does your work 
fall within this recent development?  
 
Answer: We reduce the details proposed on the first version of introduction. We write “For bare soils, 
various theoretical and empirical approaches have been developed (Fung et al., 1992; Oh et al., 
1992; Dubois et al., 1995; Zribi and Dechambre 2003; Baghdadi et al., 2006, Thoma et al., 2008). 
Among these, the ‘linear approach’ linking surface soil moisture to calibrated and validated SAR 
(Synthetic Aperture Radar) measurements (SIRC, ERS, RADARSAT, ASAR, TerraSAR-X …) is 
widely used (Quesney et al. 2000, Zribi et al. 2006, Paris et al. 2010). The backscattered 
contribution from the vegetation is determined using physical or empirical models (Ulaby et al., 
1986, Magagi et al., 1997, Wigneron et al., 1999).” 
Concerning our approach, we use linear relationship between soil moisture and radar signal. In order to 
analyse the different hypothesis, particularly linked to roughness effect on soil moisture, we use theoretical 
analytical models like IEM. Finally, in order to retrieve soil moisture from radar signal over our studied site 
with vegetation cover, we consider a correction of vegetation effect. So, our approach is based on these 
different approaches cited in this limited overview. The details added for developed approach over Sahel 
helps to understand the relationship with our development.  
 
3) Page 8048, line 3, “we propose a …” Some of the studies you presented also proposed a methodology for SAR. 
This sentence feels as if the SAR is a novelty in this paper.  
 
Answer: We agree with reviewer. We do changes in the text. 
“we propose to use high resolution SAR images to estimate soil moisture.” 
 
4) Page 8050, line 22, Can you better describe (or provide a graphic) the setting of the measurements (location and 
distance between measurements)?  
 
Answer: Yes, we add details in the text.  
“For each field, we made approximately twenty measurements, distributed over each field, at the time 
of each satellite acquisition. The distance between two successive measurement points was 
approximately 20m.”  
 
5) Page 8054, line 15, you said you consider the influence of the vegetation on the radar signal as negligible, but 
the Alfa is dependant on C and attenuation due to the olive trees. Please explain.  
 
Answer: We agree with reviewer that the text is not clear. In fact, the alpha slope is depdent on vegetation 
parameters (fraction and attenuation). We mean that because of low density and no temporal change of 
vegetation cover, we don’t need to propose a correction of vegetation cover effect because estimation of 
relationship between moisture and radar signal. We do changes in the text and we delated the word 
‘negligeable’. 
 
6) Page 8054, line 11, “we make assumption” I would suggest further discussion on possibly introduced errors by 
this assumption  
 
Answer:  
“We make therefore the assumption that the influence of the vegetation on the radar signal is 
negligible.” 
As we said in the last question, we agree with reviewer that the word ‘negligeable’ is not correct. We do 
modifications in the text. 
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7) Page 8054, line 25, “defining..” How? At what scale? Refer to a further section if needed  
 
Answer:  
Defining a relationship between the ground soil moisture and the processed radar signals from different 
olive tree test fields. This step is discussed in section 3.1 
 
 
8) Page 8055, line 4, did you perform second normalization?  
 
Answer: No, there is just an error in sections order. We do corrections in the new version of methodology 
section. 
 
9) The approach used in 3.1.2 reminds classical change detection approach; in that case I would suggest adding 
appropriate citations.  
 
Answer: Yes, we agree with reviewer. We add references of scientific studies based on classical change 
detection approach (Wagner et al., Morin et al., 2000, Zribi et al., 2006). 
“ In order to limit roughness and vegetation effects, we consider a change-detection approach 
(Wagner et al., 1999, Moran et al., 2000, Zribi et al., 2007).”  
Wagner, W., G. Lemoine, H. Rott, 1999,  A Method for Estimating Soil Moisture from ERS Scatterometer 
and Soil Data, Remote Sensing of Environment, Volume 70, Issue 2, November 1999, Pages 191-207. 
 
Moran, M.S., D.C. Hymer, J. Qi, and E.E. Sano. 2000. Soil moisture evaluation using multitemporal 
synthetic aperture radar SAR in semiarid rangeland. Agr. For. Meteorol. 105: 69- 80. 
Zribi, M., Saux-Picart, S., André, C., Descroix, L., Ottlé, O., Kallel, A. (2006), Soil moisture mapping 
based on ARSAR/ENVISAT radar data over a sahelian site, International Journal of remote Sensing, 28, 
16, 3547-3565. 
 
10) Page 8056, line 16, You concluded that he backscatter is a function of soil moisture differences. The graphic 6 
however represents the backscatter differences as a function of soil moisture. Please explain.  
 
Answer: Our approach is based on relationship between backscatter difference and soil moisture. So, we do 
changes in the text to clarify this point. 
 
11) Page 8056, line 16, The final formula in graphic 6 presents intercept (constant) and slope in the linear 
relationship, the intercept should thus be included in the equation 5 and 6 
 
Answer: In equation (5) relationship consider difference for vegetation and roughness effects between two 
dates. This difference is considered negligible in equation (6). However, we agree with reviewer that this 
difference induce a small term that could be added in equation (6), as we observe in graphic 6. So, we add a 
term in equation 6.  

( ) εασ +−≈∆ 1
0 MvMvtotal  

 
12) Page 8057, line 9, “The accuracy of this outcome demonstrates..” As I understood the accuracy was computed 
between in-situ stations and satellite data after the same in-situ data were used for model calibration. This applies 
also on the algorithm over wheat. Please comment.  
 
Answer: Authors write: “ Fig. 8 illustrates a good coherence between soil moisture estimations with HH 
and VV radar signals, with an RMSE equal to 2% and bias equal to 1.6% over tested fields. The accuracy 
of this outcome demonstrates the robustness of the proposed algorithm, in spite of its simplicity.” 
Our approach is based on the development of an empirical relationship between moisture and radar 
processed signals. We consider two different parts in our data base. A first one used for model calibration 
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and a second part for model validation. Validation shows an rms error lower than 4% for HH and VV 
polarisations and also, a limited difference between the two polarisation estimations (RMSE equal to 2%). 
For these reasons, we add this conclusion about accuracy.  
 
13) Page 8057, line 11 “It’s thus possible”.. the effect of vegetation is still incorporated in the Alfa parameter. How 
do you guarantee that application of the model over different spacing or different kind of olive trees will be 
successful?  
 
Answer: As we said in our data base, we consider only dry olive trees. We don’t consider irrigated olives. 
For dry olive agriculture, framers respect the same rules for the region, particularly concerning kind of 
olives, with high resistance to drought events, and also distance between olives (about 20m) in order to allow 
to olive roots to look for water stock not only in limited area. So, generally, we don’t observe difference 
between olive fields, because farmers respect for many kilometres the same rules. 
 
14) Page 8058, line 15, “in order to eliminate the effects of local..” at the beginning of the paper you say that the 
goal is to use high resolution SAR to monitor strongly localized phenomena why do you want to average?  
 
Answer: We agree with reviewer that we consider high resolution SAR in the objective of having high spatial 
precision of moisture estimation. This is the case of moisture estimation over wheat fields, with a precision 
corresponding to 5X 5 pixels (just to eliminate speckle). For this case, we apply a correction of vegetation 
attenuation, we consider roughness effect. For the case of dry olives, we do an average of 100 X 100 pixels, 
which means a resolution of approximately 1km. We consider this mean value in order to average different 
local effects, due to some local heterogeneity, that could correspond to small changes in vegetation density 
and olives tree sizes, small changes in roughness or local limited topography. However, for olive trees, we 
consider this resolution sufficient, because we consider only dry olive agriculture (without irrigatio n), and 
therefore moisture variability is only due to precipitation. So it could be monitored with a resolution around 
1 km. 
 
15) Page 8060, line 16.. should that be Ex. 8?  
 
Answer: Yes, we correct the number of equation, it is (7). 
 
16) Page 8061, line 9, explain all parameters in the equation  
 
Answer: We add details for all parameters in the equation. 
“Where ββββ is dependent on roughness and incidence angle, νννν is dependent on incidence angle and correspond 
to the slope between moisture and processed radar signal in dB scale.” 
 
17) Section 3.2.3 can be shortened  
 
Answer: We agree with reviewer. We reduce the size of this section in the new methodology section. 
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Answer to reviewer 2: 
Major comments 
In the two approaches presented, the authors use a linear relationship where there are some coefficients 
to be estimated from the data. This is illustrated at p.8054, equation (2) and at p. 8055 equation (4) (it is 
said that b is derived from the data).The same is for equation (11), where it is said that “the slope of this 
relationship is estimated from measurements..”. In these cases, the authors should explain how they 
divided the dataset into training, test and validation and how they estimate these variables in the linear 
relationships. Furthermore the stability of these variables should be addressed. For equations (5) and (6) 
how is chosen the reference image? 
Minor comments - In the title, they mention “Multi-scale” but it is not clear how and where the multi-scale 
analysis is performed? - At p. 8054-8055, point1 and point 5 are the same procedure? 
In the two approaches presented, the authors use a linear relationship where there are some coefficients 
to be estimated from the data. This is illustrated at p.8054, equation (2) and at p. 8055 equation (4) (it is 
said that b is derived from the data).The same is for equation (11), where it is said that “the slope of this 
relationship is estimated from measurements..”. In these cases, the authors should explain how they 
divided the dataset into training, test and validation and how they estimate these variables in the linear 
relationships. Furthermore the stability of these variables should be addressed. 
We thank reviewer for comments. We try to answer the different comments. We introduce changes in 
methodology and results section to be clearer. We add details about the use of database in calibration 
and validation of the models. We add a new section to estimate soil evaporation using our results of 
moisture mapping. 
 
Answer:  
 
- In order to improve our study presentation and to show its contribution, we do changes on 
methodology and results sections. We add details about our data base. We add a final section to 
estimate soil evaporation using our soil moisture maps. 
- Concerning olive trees, the data base is divided on two sets with different time acquisitions; 
a first one used for calibration of developed approach, the second one is used for validation. 
- Concerning wheat fields moisture estimation, we divide database on three sets. We add these 
details in the text: 
We add to section “moisture estimation over wheat fields”: 
“The database is divided into three sets: the first of these contains measurements acquired just 
before the vegetation starts to develop: from the end of December until the end of January, the soils 
are bare with no vegetation cover on the wheat fields. This set is used to estimate the backscattering 
contribution from bare soil. A second set is used to estimate the parameters of the radiative 
transfer model (A and B). Finally, a third set is used for model validation.” 
For olives trees, we precise also the existence of two parts of database: afirst one for model 
calibration and a second one for validation. 
 
- In the title, they mention “Multi-scale” but it is not clear how and where the multi-scale analysis is 
performed? 
 
Answer:  
In the title, we mention, “multi-scale” to mean that our moisture estimation is realized for olives with 100 
pixel X 100 pixel resolution and for wheat fields with 5X 5 pixel resolution. We agree with reviewer that 
it could be not clear. So, we change the title:  
“Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for 
soil evaporation evaluation” 
 
For equations (5) and (6) how is chosen the reference image? 
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Answer:  
« The reference image is chosen in a very dry data, corresponding to approximately constant soil 
moisture for the entire studied site.  
 
At p. 8054-8055, point1 and point 5 are the same procedure? 
 
Answer: It is just an error, we do correction. There is no point 5 in the 



 8 

Soil surface moisture estimation over a semi-arid region using 

ENVISAT ASAR radar data for soil evaporation evaluation  
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Abstract 

The present paper proposes a method for the evaluation of soil evaporation, using soil moisture 

estimations based on radar satellite measurements. We present firstly an approach for the estimation 

and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, 

over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of 

moisture variability related to rainfall events, over areas in the ‘non-irrigated olive tree’ class of land use. 

The developed approach is based on a simple linear relationship between soil moisture and the 

backscattered radar signal normalised at a reference incidence angle. The second process is proposed over 

wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical 

model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from 

the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between 

irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both 

ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, 

roughness), during the 2008-2009 vegetation cycle. Finally, a semi-empirical approach is proposed in 

order to relate surface moisture to the difference between soil evaporation and the climate demand, 

as defined by the potential evaporation. Mapping of the soil evaporation is proposed. 

Keywords: soil moisture, radar, inversion, soil evaporation, irrigation, rainfall 

1 Introduction 



 9 

Soil moisture is a key parameter, influencing the manner in which rainwater is shared between the 

phenomena of evapotranspiration, infiltration and runoff (Engman, 1991, Beven et al., 1996; Koster et al., 

2004). In the case of semi-arid and arid regions, this parameter is particularly important for irrigation 

management (Bastiaassen et al., 2000). In order to optimise and protect water resources, which are often 

very limited, an accurate estimation of the soil’s water content is needed, in order to determine the 

expected evapotranspiration flux. Considerable efforts are thus devoted to improving the evaluation of 

evapotranspiration, and to understanding its relationship with the vegetation cover and the soil’s water 

content (Simonneaux et al., 2007). Soil evaporation estimations are essential in these regions, which 

are generally characterised by a dispersed vegetation cover associated with a strong contribution to 

the surface flux, following rainfall events in particular. Knowledge of the soil evaporation also 

allows the volume of water available for vegetation to be estimated. Several theoretical and 

experimental studies have already been published, dealing with the use of surface moisture for the 

estimation of evaporation. In the case of the land surface models, for example, the soil surface 

moisture is often considered to be the upper boundary condition (Bernard et al., 1986, Saux-Picart 

et al., 2009). These models require different parameterisations, and in particular the hydraulic 

conductivity or diffusivity between the surface and deeper layers. The difficulty in characterizing 

these parameters makes such approaches complex to use under operational conditions, or in 

regions with limited ground-truth measurements. The second type of approach relates the surface 

moisture estimation to the difference between soil evaporation and climatic demand. Various 

empirical relationships, relating the soil resistance to the surface soil moisture, have been proposed 

(Chanzy, 1991, Mahfouf et al., 1991, Chanzy et al., 1993, Simonneaux et al., 2009). Chanzy et al., 

(1993) proposed an empirical model linking soil evaporation to soil moisture and climate demand, 

for different types of soil texture. 

Concerning soil moisture estimation, over the last twenty years, radar remote sensing has demonstrated its 

strong potential (Ulaby et al., 1996, Moran et al., 2000, Le Hégarat-Mascle et al., 2002, Wagner et al., 
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2007). Using SAR observations, soil moisture can be estimated with a high spatial resolution, which is 

not the case with other types of remote sensing measurement (Jackson et al., 1996; Baup et al., 2007; 

Rahman et al., 2008). 

The backscattered radar signal over bare soil strongly depends on soil moisture and surface roughness 

(Zribi et al., 2006; Baghdadi et al., 2007). In the case of sparse vegetation, the return signal depends both 

on the vegetation’s backscattering characteristics, and on the attenuation it introduces to backscattering 

from the soil (Binslish et al., 2001, Le Hégarat-Mascle et al., 2002). For bare soils, various theoretical and 

empirical approaches have been developed (Fung et al., 1992; Oh et al., 1992; Dubois et al., 1995; Zribi 

and Dechambre 2003; Baghdadi et al., 2006, Thoma et al., 2008). Among these, the ‘linear approach’ 

linking surface soil moisture to calibrated and validated SAR (Synthetic Aperture Radar) measurements 

(SIRC, ERS, RADARSAT, ASAR, TerraSAR-X …) is widely used (Quesney et al. 2000, Zribi et al. 

2006, Paris et al. 2010). The backscattered contribution from the vegetation is determined using physical 

or empirical models (Ulaby et al., 1986, Magagi et al., 1997, Wigneron et al., 1999). Because of the high 

spatial variability of soil moisture in the studied region, resulting from variable convective phenomena 

causing the rainfall to be strongly localized in small areas, and as a consequence of the presence of a large 

fraction of irrigated areas, we propose a methodology in which soil moisture is estimated from SAR radar 

data. Our approach in this study is based on ASAR/ENVISAT radar data, acquired simultaneously with in 

situ measurements of surface parameters (moisture, roughness and vegetation). Two methodologies are 

proposed to map soil moisture over non-irrigated olive groves and wheat fields. Moisture estimations 

over olive groves are based, in particular, on a change-detection approach using ASAR/ENVISAT 

data, developed for the Sahel (Zribi et al., 2007). The methodology was broken down into several 

successive steps: (1) normalisation of radar data to one incidence angle equal to 20°, (2) for each 

cell, estimation of the areas with a low vegetation density, (3) elimination of surface roughness by 

subtracting the radar data recorded during the dry season from that used for the soil moisture 

determination, (4) retrieval of soil moisture, by inverting a linear relationship between the 
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processed signals and the soil moisture. Moisture estimations over wheat fields are based on the 

Cloud water model (Attema et al., 1978), using parameters estimated empirically from our 

database. 

The present paper is organised as follows: Section II presents the data collected from the Kairouan 

plain region (Tunisia) under study: the database including satellite and ground-truth 

measurements is discussed. In section III, the proposed methodology for soil moisture retrieval is 

described. The derived results, including the validation of soil moisture estimations and mapping, 

are presented in section IV. The evaluation of soil evaporation is discussed in section V.  Finally, 

our conclusions are provided in Section VI. 

 

2 Site description and ground-truth measurements 

2.1  Site description 

The Kairouan plain (Leduc et al., 2007) is situated in central Tunisia (9°30’E-10°15’E, 35°N, 35°45’N) 

(Fig. 1). The climate in this region is semi-arid, with an average annual rainfall of approximately 300 mm 

per year, characterised by a rainy season lasting from October to May, with the two rainiest months being 

October and March. As is generally the case in semi-arid areas, the rainfall patterns in this area are highly 

variable in time and space. The mean temperature in Kairouan City is 19.2 °C (minimum of 10.7 °C in 

January and maximum of 28.6 °C in August). The mean annual potential evapotranspiration (Penman) is 

close to 1600 mm.  

The landscape is mainly flat. The vegetation in this area is dominated by agriculture (cereals, olive trees, 

and market gardens). Crops are various and their rotation is typical of semi-arid regions. The aquifer of 

the Kairouan plain represents the largest basin in central Tunisia. It is fed by the infiltration of surface 

waters during floods in the natural regime, or at the time of dam releases since the construction of the Sidi 

Saad and El Haouareb dams. Surface and groundwater streams are drained into Sebkha Kelbia, a large 

salt lake. 
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2.2  Satellite data 

2.2.1  Description 

In March 2002, the European Space Agency launched the ENVISAT platform, carrying ASAR in its suite 

of instruments. Compared with ERS/SAR, this instrument has an extended measurement capacity, due to 

its multiple operating modes (Rosich, 2002). In particular, it has a greatly improved measurement 

repetition rate, with less than three days between two successive images taken at two different incidence 

angles, as opposed to a 35-day repeat cycle for ERS/SAR. In the present study, we chose to use the 

narrow observation mode, which generates high-resolution data (12.5m x 12.5m pixel spacing). 

Acquisitions were made between 2008 and 2010, at three different incidence angles (18° “IS1”, 23° “IS2” 

and 27° “IS3”) in co-polarized, alternating HH and VV polarization mode. Details of the SAR image 

characteristics are provided in Table 1. A large number of SPOT/HRV images was acquired 

simultaneously with the radar soundings. SPOT/HRV is a multi-spectral optical sensor, with two bands in 

the visible domain, one in the near infrared, and one in the medium infrared. These proved particularly 

useful for the mapping of land use and vegetation dynamics. 

2.2.2 Data processing 

Radar data: 

Absolute calibration of the ASAR images was carried out, to transform the radar signals (digitized values) 

into a backscattering coefficient (σ°). All images were geo-referenced using a geo-referenced SPOT/HRV 

image, resulting in an RMS control point error of about 10 m. The registration error of the ASAR images 

was taken into account in selecting Areas Of Interest (AOI) within each test field. 

- SPOT data: 

The SPOT/HRV images were firstly geo-referenced. Radiometric and atmospheric corrections were then 

applied in order to estimate the reflectance of the vegetation canopy. Finally, for each image, the 

Normalized Difference Vegetation Index (NDVI) was estimated. This index, given by the ratio between 
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the difference between the visible and near-infrared channels, and the sum of these two channels, is 

related to the green vegetation photosynthetic activity (Rouse et al., 1973). 

2.3  Ground truth measurements 

Ground-truth measurements were carried out over different test fields, simultaneously to different satellite 

acquisitions. Ten test fields were selected for these measurements, to represent different types of land use: 

wheat fields (P4 (2ha), P6 (1.5ha), P7 (6ha), P9 (3ha) and Pst2 (2ha)), non-irrigated olive groves (P4bis 

(6ha), P10 (2h), P12 (6ha)), and bare soils (P5 (2.5ha)). The studied site is characterised by the reduced 

size of most fields.  

2.3.1  Surface moisture 

Moisture measurements were taken simultaneously with the satellite acquisitions. The in situ collection of 

soil was extremely important in this experiment, as it was needed to validate the soil moisture retrieval 

algorithm. For each field, we made approximately twenty measurements, distributed over each field, at 

the time of each satellite acquisition. The distance between two successive measurement points was 

approximately 20m. These were made using a handheld Thetaprobe, and by means of gravimetric 

measurements at depths between 0 and 5 cm. Thetaprobe measurements are calibrated with gravimetric 

measurements. Table 2 illustrates moisture values over field tests during different ground campaigns. 

2.3.2   Soil roughness 

Roughness measurements were made using a pin profiler (total length of 1 m, and resolution of 2 cm). In 

order to guarantee suitable precision in the roughness computations, approximately 10 profiles were 

recorded for each field. As the surface height profile is considered to be ergodic and stationary, we can 

compute the correlation function for each profile (Zribi et al., 1997), and derive two statistical parameters: 

the rms height (vertical scale of roughness), and the correlation length (l) which represents the horizontal 

scale over which similar roughness conditions are detected. The rms height values are approximately 

equal to 0.7 cm for wheat fields, and are generally greater than 1.5 cm for olive groves, as illustrated in 

Table 3. 
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2.3.3  Vegetation covers 

In order to characterise the vegetation covers, we considered three types of measurement. For the non-

irrigated olive groves, we measured the distances between trees and the size of the trees in a large number 

of test fields. Distance between olive trees is of approximately 20m, and the mean projected surface area 

of an adult olive tree, is approximately 16 m2 (Fig. 2). 

In the case of wheat fields, we implemented two types of measurement: 

- Leaf Area Index data 

The Leaf Area Index (LAI) is defined as the total one-sided area of leaf tissue per unit ground surface 

area. According to this definition, the LAI is a dimensionless quantity characterizing the canopy of an 

ecosystem. During the 2008/2009 agricultural season, the LAI was derived from hemispherical digital 

photography based on analysis of the canopy gap fraction (Duchemin et al., 2008). These measurements 

were applied to each wheat field, on different days during the vegetation season. Irrigated wheat fields are 

generally characterised by a higher LAI than non-irrigated wheat fields. Before the end of March, the 

highest observed LAI was approximately 2. At the end of April we observed the highest vegetation 

density, with its maximum generally lying in the interval (4-6). Table 4 illustrates measurement values 

over wheat test fields. 

- Vegetation water content (VWC) data 

The VWC was measured several times in five fields during the 2009 vegetation cycle (Table 4). For each 

field, measurements were made at three locations, each having a 1m2 surface area. The above ground 

biomass was removed, and wet and dry weights were used to compute the VWC. A mean value was 

computed from the three measurements.  

- Land use 

Land use validation was carried out in March 2009, with different fields being selected from the studied 

region (more than 150 fields) with two parts, a first one for the identification of empirical NDVI limits 
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between different types of vegetation classes, and a second one for the validation of our approach to land 

use classification.  

Land use mapping is based on a decision tree, using three types of satellite data: four SPOT images, 

SRTM data and finally two radar images. We established eight classes of land use: non-irrigated olive 

trees, irrigated olive trees, irrigated winter vegetables, irrigated summer vegetables, bare soils, urban 

areas, mountainous areas, water cover and areas of coastal salt flats “sebkhas”. In the case of vegetables, 

as previously mentioned, we considered two classes, one for winter and the other for summer. We used 

empirical NDVI thresholds with the images acquired at the end of December 2008 (NDVI > 0.4) and 

during July 2009 (NDVI>0.3). In fact, during these two periods, only irrigated vegetables presented a 

high NDVI. For the wheat classes (irrigated or non-irrigated), we made our analysis on two different 

dates, the first at the beginning of the cycle (in December 2008), and the second at the end of the 

vegetation development period (April 2009). The distinction between irrigated and non-irrigated wheat is 

based on a NDVI threshold equal to 0.5, since the irrigated class has a higher NDVI. Irrigated and non-

irrigated olive trees are separated using a K-mean approach, based on a single optical SPOT image. The 

DTM provided by the Shuttle Radar Topography Mission (SRTM, http://srtm.usgs.gov/) allowed certain 

zones to be eliminated from our land use analysis. We excluded mountainous areas with an altitude 

greater than 300m. We also identified water cover and urban classes. Validation of these remotely sensed 

classifications, based on ground verification over more than 100 fields with different types of land uses, 

reveals an accuracy of around 94%. Fig. 3 illustrates the results of our land use mapping for the 2008-

2009 season. The non-irrigated olive tree class covers 43% of the studied site, and the wheat class 

corresponds to 12% of the surface area of the studied site. 

3 Methodology of soil moisture estimation 

Our approach to soil moisture estimation and mapping is carried out on two types of land use: Non-

irrigated olive groves and wheat fields, which represent the two most important land use classes. 

3.1  Soil moisture estimation over non- irrigated olive groves 
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- Introduction 

For the purposes of surface soil moisture estimation, we used the IS1, IS2, IS3 configurations, 

corresponding to low incidence angles of less than 30°. The aim of this approach was to limit the 

influence of vegetation and soil roughness, thereby increasing the accuracy of the moisture estimations. 

The signal received from the non-irrigated olive groves can be written as the incoherent sum of two 

contributions (bare soil and vegetation cover), weighted by their respective percentages of terrain 

coverage. Using the estimated distance between olive trees of approximately 20m, and the mean projected 

surface area of an adult olive tree, i.e. approximately 16 m2, we derive for different incidence angles 

lower than 30 degrees a value between 4% and 10% for vegetation fraction. We propose to use the 

approach proposed by Zribi et al., 2007, detailed in introduction, and applied over disperse vegetation 

cove. The radar signal could be modelled with a linear relationship between radar signal and moisture, as: 

( ) ( )vegRoughnessgMvvegtotal ,0 +×≈ ασ        (1) 

Where α  is related to vegetation fraction and to the attenuation due to the olive tree characteristics. 

g is a function of soil roughness and vegetation cover effects on radar signal. 

Mv is volumetric soil moisture. 

The inversion process is based on three successive steps: 

- Normalisation of the radar signals to an incidence angle of 20° 

Normalisation of the ASAR data is based on the interpretation of radar signal data, for different incidence 

angles, recorded over large olive tree AOIs. These areas are selected to be in the olive tree class, and only 

those radar images recorded on very dry dates are considered, in order to eliminate noise contributed by 

soil moisture effects. The angular dependence of backscattering coefficient is modelled with a 

mathematical function (Baghdadi et al., 2001) written as:  

( )( )ba θσ cos0 =     (2) 

We retrieve b respectively equal to 5.5 and 6.3 for HH and VV polarisation. 

- Roughness and vegetation effect reduction 
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In order to limit roughness and vegetation effects, we consider a change-detection approach (Wagner et 

al., 1999, Moran et al., 2000, Zribi et al., 2007). We computed the difference between each raw data 

image and a reference image taken under dry conditions at the beginning of the vegetation season 

(21/12/2008), with a moisture content of approximately 5% over the studied site without spatial 

variations. 

In the case of the olive groves, we observed very small variations during the vegetation cycle, due in 

particular to the olive trees being evergreen. We thus consider, as an initial hypothesis, that the vegetation 

has an approximately constant effect on the radar signal.  

If we now consider a reference image, with a roughness R1 and moisture content Mv1 and a data image 

with a roughness R and moisture content Mv, 

( ) ( ) ( )11
0 ,, RveggRveggMvMvtotal −+−=∆ ασ     (3) 

As for surface roughness, the olive groves generally have a tillage corresponding to ploughed soil with an 

rms height of around 1.5-3 cm, as shown in ground measurements. Only small variations could be 

observed after rainfall events. However, the soil is ploughed at different times during the year, which 

induces low variations on rms heights. For such roughness levels the backscattered radar signals are 

nearly saturated (Fung, 1994, Zribi et al., 1997). The subtraction of a reference image is therefore 

sufficient to considerably reduce the influence of roughness in the observed pixels, even for cases where 

there are small differences in roughness between the two images. We can thus simplify the above 

expression to: 

( ) εασ +−≈∆ 1
0 MvMvtotal       (4) 

- Relationship between moisture and processed radar signals 

Fig. 4 illustrates the linear relationship found between a part of ground surface moisture measurements 

and radar signals over different test fields. Each point corresponds to a set of two measurements (ground-

truth measurement, radar signal) recorded for different test fields. A strong correlation can be seen 
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between the two types of data, for HH and VV polarisations, with a correlation coefficient R2 equal to 

0.67 and 0.53 respectively. The measured moisture contents range between 5% and 22%. 

3.2  Moisture estimation over wheat fields 

- Introduction 

Following an estimation of soil moisture related to precipitation effects, carried out over non-irrigated 

olive groves, we propose a second methodology over wheat fields. Because of limited fields scale 

(generally lower than 2ha), and high spatial variability of moisture between irrigated and non-irrigated 

wheat fields, we need to realize moisture estimation in higher spatial resolution. 

In this case, the inversion algorithm is based on two steps: 

- Vegetation correction 

In order to estimate the soil moisture over fields covered by vegetation, we first need to eliminate the 

vegetation’s influence on the backscattered radar signal. We propose to use the water-cloud model 

developed by Attema and Ulaby (1978). For an incidence angle θ, the backscatter coefficient is 

represented in the water cloud model by the expression: 

02000
soilsoilcanopycanopy στσσσ ++= +     (5) 

where 2τ  is the two-way vegetation transmissivity. The first term represents scattering due to the 

vegetation; the second term is linked to multiple scattering effects, and the third term represents the soil 

scattering attenuated by the vegetation cover. The second term can be neglected in the case of wheat 

scattering (Ulaby et al., 1986). Expression (5) can thus be simplified to: 

0200
soilcanopy στσσ +=      (6) 

with )sec..2exp(2 θτ VWCB−=     (7) 

and ( )20 1cos.. τθσ −= VWCAcanopy    (8) 

 where VWC is the vegetation water content (kg/m2). 
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A and B are parameters which depend on the type of canopy. This formulation represents a first-order 

solution for the radiative transfer equation through a weak medium, where multiple scattering is 

neglected.  

The database is divided into three sets: the first of these contains measurements acquired just 

before the vegetation starts to develop: from the end of December until the end of January, the soils 

are bare with no vegetation cover on the wheat fields. This set is used to estimate the backscattering 

contribution from bare soil. A second set is used to estimate the parameters of the radiative 

transfer model (A and B). Finally, a third set is used for model validation. 

- Relationship between soil moisture and bare soil radar signals 

For bare soil backscattering, we consider a simple relationship between moisture and radar signal.  

( ) ( ) ( )Mvsoil .exp0 γθβθσ =    (9) 

Where ββββ is dependent on roughness and incidence angle, and γγγγ corresponds to the slope of the moisture 

expressed as a function of the logarithm (dB) of the processed radar signal. 

The slope γ is estimated using the first of the aforementioned database sets. 

After sowing, the farmers do not till the soil again before harvesting. Our roughness ground 

measurements indicated the presence of smooth soils with an rms height approximately between 0.6 and 

0.8 cm. It is reasonable to assume that for some wheat fields roughness could have a small decrease 

throughout our period of inversion. IEM simulations show approximately a 2dB decrease of 

backscattering coefficient, at low incidence angles, for surfaces with a rms height going from 0.8 cm to 

0.6 cm (Zribi et al., 2002). Our hypothesis of a constant mean β value for all wheat fields during period of 

inversion could then introduce a supplementary maximum error in volumetric moisture estimation of 

about 3% due to ±1 dB error in roughness effect.  

4- Results and discussions of soil moisture estimation 

4-1 Moisture estimation over olive trees 

- Validation of the proposed algorithm 
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Validation of the proposed algorithm is based on a comparison between a second part of ground-truth 

(gravimetric, and handheld Thetaprobe) measurements and estimations derived from ENVISAT ASAR 

data, for data acquired in 2010 and moisture conditions ranging from dry to wet, over the tested olive 

groves (P4bis, P10, P12). The resulting RMSE is equal to 3.8% for the HH and 4% for the VV 

polarisations, as illustrated in Fig. 5. Fig. 6 illustrates a good coherence between soil moisture estimations 

with HH and VV radar signals, with an RMSE equal to 2% and bias equal to 1.6% over tested fields. The 

accuracy of this outcome demonstrates the robustness of the proposed algorithm, in spite of its simplicity. 

Our decision to develop an inversion algorithm, for olive trees only, considerably reduces the influence of 

roughness and vegetation on the soil moisture estimations. It is thus possible to apply this validated model 

to each ENVISAT ASAR image, to produce soil moisture maps over fields in the non-irrigated olive tree 

class. 

- Mapping of soil moisture 

In order to eliminate the effects of local terrain heterogeneities (due to soil texture, vegetation dispersion 

heterogeneity, discontinuities between fields, etc) in the processed radar signal, the soil moisture was 

estimated over large cells defined by 100 x 100 pixel areas (about 1km²). For each resulting cell, the soil 

moisture estimation is applied only if more than 25% of the cell’s pixels belong to olive groves. The 

value of the computed moisture can be then considered to be representative of the whole cell. To validate 

these estimations, the ground-truth measurements taken within the same cell are averaged. When the 

inversion is applied to the HH and VV radar signals, we observe similar results for both polarisations. In 

order to increase the precision of our estimations, we took the mean value of the two polarisations as the 

final result in the mapping process. In Fig. 7, soil moisture maps are shown for three different dates. 

These maps are directly related to the temporal and spatial variability of the precipitation over this region. 

For example, on date 09/12/2009, dry soil is observed over the full studied site, with a low moisture 

content of around 10%. Indeed, no rainfall was recorded during the 15 days preceding the acquisition of 

this satellite image. In the case of the image taken on 11/04/2009, strong spatial variability of the surface 
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moisture can be observed. In fact, a rainfall event arriving from the West occurred during the afternoon of 

the 11th of April. In the Eastern part of this image, the soil moisture remained low. The third image in this 

figure provides the moisture map produced one day later, on the 12th of April, showing generalised 

rainfall throughout the studied site, associated with a global increase in soil moisture with a mean value of 

around 25%. Our approach allows the moisture to be estimated over approximately 50% of the studied 

site. It is presented particularly in the South East, where irrigated agriculture is absent. The interest of the 

choice of this class of land use is evident, since the computed moisture has only a small sensitivity to 

roughness and vegetation, both of which are affected by very limited changes from one year to another. 

This type of algorithm can thus be applied each year, with no need for it to be adapted to variations in 

local conditions. 

4-2 Moisture estimation over wheat fields 

- Validation of moisture estimation 

Validation of the proposed algorithm is based on comparisons between ground-truth measurements made 

in test wheat fields (P4, P6, P7, P9, Pst2) characterised by different soil moistures, ranging between dry 

and wet conditions and different vegetation development states, and estimations derived from ENVISAT 

ASAR radar signal acquisitions, made in 2009 and 2010. The results are illustrated in Fig. 8. We observe 

more validation points in HH polarisation because of the use of one ASAR image with just this 

configuration.  

The resulting rms error is equal to 5.3% and 6.4%, in the respectively HH and VV polarisations. 

Although this accuracy could be considered to be adequate, in the case of irrigated fields we often 

observed a high spatial variation of the soil’s moisture content. In addition, our measurements were often 

carried out within a three hour period before or after the site was overflown by the satellite. Some 

differences could arise due to a high evaporation rate, and in some cases it is possible that our ground-

truth measurements were affected by irrigation which commenced during the satellite measurements. 
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Finally, as discussed in the last section, the hypothesis of a constant roughness effect could increase the 

rms error.  

- Mapping of soil moisture over wheat fields 

For the studied site, application of the inversion algorithm requires some information related to the 

vegetation’s water content. For this reason, we developed an approach based on the interpretation of 

SPOT satellite optical measurements, linking VWC to LAI and then to NDVI index estimations. 

Fig. 9 illustrates the relationship between measurements of water content and LAI over different test 

fields. We observe a good correlation between the two variables, with R2 equal to 0.61. Therefore, 

knowledge of the LAI values can be used to estimate the vegetation’s water content (VWC), using the 

following equation: 

004.046.0 −= LAIVWC      (10) 

For the LAI estimations, we made use of the NDVI vegetation index derived from SPOT images acquired 

during the full vegetation cycle. We proposed a relationship between NDVI and LAI estimations for 

wheat, based on a large database of ground and SPOT/HRV satellite measurements. 

This expression is:  

)( LAIk
soil eNDVINDVINDVINDVI −

∞∞ ×−+=   (11) 

with ∞NDVI =0,75, soilNDVI =0,15 and k=-1.24. 

 

For LAI<2, we observe an increase in the LAI with NDVI indices. For higher values of LAI, the 

estimation becomes more complex, with saturation of the NDVI values resulting in reduced accuracy for 

the LAI estimations. In order to make reliable estimations of the vegetation moisture content, allowing 

accurate vegetation corrections, we ran the inversions only for the period between January and March, for 

which the LAI were still not high (lower than about 1.5). The expressions for water content estimation 

could then be applied with good accuracy. In the case of dense vegetation cover, it is very difficult to 
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retrieve the soil moisture with sufficient precision. This is also an intrinsic limitation of the use of C-band 

SAR data, since the radar signal is strongly attenuated by the vegetation.  

Our process thus involves, firstly NDVI mapping from SPOT satellite images, from which the LAI and 

then vegetation water content are deduced over wheat fields. Finally, after applying corrections for the 

influence of vegetation, we derive the soil moisture. All pixels in the wheat class of land use are 

considered to be valid candidates for soil moisture estimations. However, a radar signal from a minimum 

number of neighbouring pixels is required to avoid adding speckle noise to the results. We thus 

considered 5 x 5 pixel windows (about 0.4 ha) for the computation of effective radar signals in the wheat 

class, which were then used to estimate the soil moisture. Fig. 10 illustrates the resulting soil moisture 

maps, computed over wheat fields at different dates. For wet days corresponding to rainfall events, such 

as that of 16/01/2009, a high soil moisture value can be observed for all wheat fields. For dry dates such 

as 07/03/2009, we observe different moisture values. Increasing moisture values can be observed over 

irrigated fields. On 24/12/2008 date, non-irrigated wheat fields are found to have soil moisture of 

approximately 6%. For irrigated wheat fields, the values are generally higher; even very high moistures 

(around 40%) can be observed in some cases. The variability of these moisture observations is in 

complete agreement with the land use classification, distinguished by two classes, i.e. non-irrigated and 

irrigated wheat. This type of mapping process, if enhanced by means of high temporal monitoring, could 

become a very useful tool for the regional analysis of irrigation and water consumption, particularly in 

semi-arid areas with limited water resources. 

4-3 Final moisture mapping 

Fig. 11 provides an illustration of our mapping process in a small area of our studied region, in 

07/03/2009, in which moisture map computed for non irrigated olive groves and wheat fields are 

combined. Differences in moisture level can be observed between the two classes. The mean moisture 

level in the olive groves is approximately equal to 10%, as opposed to 15% for the wheat class fields. 

This difference is not due to irrigation alone, but also to differences in soil texture. In particular, the 
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percentage of sand in the soil of olive groves is higher than in wheat fields (???), such that soil moisture 

of the former decreases more rapidly after rainfall events. 

5- Soil evaporation evaluation 

5.1 Proposed methodology 

As discussed in the introduction, the estimation of soil evaporation is essential in arid and semi-arid 

regions. In fact, for agriculture with a low density of vegetation cover, the contribution from soil 

evaporation is significant, particularly after rainfall events. An accurate estimation of this term 

thus allows a reliable estimation to be made of the stock of water available for use by the 

vegetation. In this section, we propose a simple approach for the estimation of soil evaporation.  

(Simonneaux et al., 2009) have proposed an integrating of the soil evaporation into a semi-empirical 

FAO evapotranspiration model (Allen et al., 2000), with a soil model represented with three layers: 

surface layer, root zone layer and a deeper layer. They consider the evaporation to be equal to ETP 

if surface layer is saturated. In this paper, we propose a simple approach for relating the soil 

evaporation to surface soil moisture (0-5 cm) estimated from radar satellite measurements. The soil 

evaporation can be written as: 

ETP
MvMv

MvMv
Es

is

i .








−
−

=    (12) 

where Es is the soil evaporation, and ETP is the potential evaporation, which depends on climate 

demand and can be estimated using the FAO Penman–Monteith equation (Allen et al., 1998).  

Mvi is the minimum soil surface moisture, as measured on the site. This is estimated from 

continuous ground thetaprobe measurements, acquired over a period of two years. 

Mvs is the soil saturation moisture. It is also estimated from continuous and spot ground 

measurements, acquired over a period of two years. 

The soil evaporation is assumed to be at its maximum for saturated soils, with a value equal to the 

ETP. It is close to zero for very dry surfaces. 
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5.2 Application  

In this section, we propose to generate a map of the soil evaporation, using retrieved soil moisture 

maps based on the inversion of ASAR/ENVISAT and ETP data acquired over the studied site. 

Fig. 12 illustrates the ETP variations during the 2008-2009 season, in which we observe a maximum 

during the summer season, with values of approximately 15mm. The soil evaporation is however 

very low in this season, as a result of an absence of rainfall events, with surface soil moisture levels 

generally close to 0%. During the rainy season, as shown in Fig. 12, we observe a small number of 

rainfall events, followed by an increase in soil moisture. Thetaprobe continuous measurements 

show a drying process of the soil moisture lasting many days.  

In the case of olive trees, we apply Expression (12) to each pixel of the moisture maps, without 

taking the vegetation cover fraction into account. In fact, soil evaporation takes place even directly 

beneath the olive trees.  An Mvs value of 28% is estimated for olive areas.  

In the case of wheat fields, the soil evaporation is relevant only to the fraction without vegetation 

cover. The vegetation fraction Fc is estimated using the NDVI index retrieved from SPOT 

vegetation data. We apply the relationship proposed by (Er-Rakki et al., 2007) over wheat fields in 

semi-arid areas. The soil evaporation can then be written as:  

( ) ETP
MvMv

MvMv
FcEs

is

i .1 








−
−

−=    (13) 

Mvs  value of 37% is estimated for wheat fields. 

Fig. 13 provides an example of soil evaporation mapping, on March 7, 2009. Particularly highest 

evaporation values can be observed over the olive fields without vegetation cover. The mean soil 

moisture over the olive groves is approximately 12%, and the soil evaporation is therefore 

approximately equal to 1.2 mm/day. 
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4 Conclusion 

The objective of this paper was to propose a simple approach to evaluate soil evaporation using soil 

moisture retrievals from SAR radar measurements. Numerous studies have been published on the topic of 

soil moisture estimation over bare soil, or over land with one type of vegetation. The present study 

describes an approach for the mapping of soil moisture over two types of vegetation cover. The first 

of these concerns the ‘non-irrigated olive tree’ land use class, dependent on rainfall events. A relationship 

is established between ground-truth measurements and backscattered radar signals. The proposed 

inversion approach is based on three main steps:  

-  Normalisation of the ENVISAT ASAR data to one incidence angle; 

-  Reduction of roughness effects through the subtraction of a reference image corresponding 

to a dry day; 

-  Implementation of an empirical relationship, enabling the soil moisture to be derived from the 

processed radar signals.  

The validation of this approach has been demonstrated to have good accuracy in terms of moisture 

estimation. Moisture mapping using this process is shown for several dates, revealing various temporal 

and spatial variations, linked only to rainfall events. This estimation is proposed at a cell resolution of 100 

x 100 pixels. The approach developed for fields in the non-irrigated olive tree class (about 43% of used 

land) allows nearly all areas of the studied region to be covered, from which a quantitative and precise 

estimation of the spatial variability of soil moisture can de derived.  

A second type of moisture estimation is proposed over wheat fields. The principal objective of this 

estimation is to identify a relationship between moisture variability and irrigation in the studied region. 

The methodology developed for this application is based on two steps: 

- Correction for vegetation effects using a simple first-order radiative transfer model. This 

correction is based on the relationships established between vegetation water content and optical 

satellite measurements (SPOT/HRV data). 
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- Determination of a linear relationship between ground moisture measurements and processed bare 

soil radar signals.  

Good agreement is found between the inversion results and the ground-truth measurements, with a mean 

rms error of about 5.8%. Moisture mapping over wheat fields allows those fields that are irrigated, and 

thus characterised by generally higher moisture values, to be clearly identified, particularly during dry 

periods.  

Finally, a semi-empirical approach is proposed for the evaluation and mapping of soil evaporation, 

using soil moisture estimations derived from radar measurements, and climate demand defined by 

potential evaporation. If this mapping process were associated with temporal monitoring at a high 

repetition rate, it would make it possible to quantify the water stock available for the vegetation in 

rain-fed agriculture, characterised by a dominant non-covered surface, particularly during 

frequent periods of drought. In addition to the vegetation transpiration estimation, it would also 

allow the wheat fields’ irrigation requirements to be monitored. Using ASAR/ENVISAT data, we 

can propose approximately one to two such estimations per week. With the arrival of new sensors, 

the SENTINEL-1 and RADARSAT constellations in particular, it will be possible to propose nearly 

daily estimations of soil evaporation which allows a high potential of surface moisture assimilation 

on land surface models. 

Acknowledgments 

This study was funded by two programs: the PNTS (French National Remote Sensing Program), and the 

AUF (Agence Universitaire de la Francophonie) and Institut de Recherche pour le D´eveloppement. The 

authors wish to thank ESA (European Space Agency) and ISIS program for kindly providing 

ASAR/ENVISAT and SPOT images. ASAR images were obtained 5 under proposal C1.P 5962. We 

would like also to thank CTV Chbika, the cereal institute, and the CRDA for their assistance with the 

ground-truth measurements. We also thank all of the technical 5 teams of the IRD and the INAT for their 

strong collaboration and support in implementing the ground-truth measurements. 



 28 



 29 

References 
 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration-Guidelines for 

Computing Crop Water Requirements, Irrigation and Drain, Paper No. 56. FAO, Rome, Italy, 

300 pp. 

Allen, R.G., 2000. Using the FAO-56 dual crop coefficient method over an irrigated region as part 

of an evapotranspiration intercomparison study. J. Hydrol. 229, 27–41. 

Attema, E. P.W. and Ulaby, F. T.: Vegetation modeled as a water cloud, Radio Sci. 13, 357–364, 1978. 

Baghdadi, N., Bernier, M., Gauthier, R., and Neeson, I.: Evaluation of C-band SAR data for wetlands 

mapping, Int. J. Remote Sens., 22(1), 71–88, 2001. 

Baghdadi, N., King, C., Bourguignon, A., and Remond, A.: Potential of ERS and RADARSAT data for 

surface roughness monitoring over bare agricultural fields: application to catchments in Northern 

France, Int. J. Remote Sens., 23(17), 3427–3442, 2002. 

Baghdadi, N., Holah, N., and Zribi, M.: Soil moisture estimation using multi-incidence and multi-

polarization ASAR SAR data, Int. J. Remote Sens., 27(10), 1907–1920, 2006. 

Baghdadi, N., Aubert, M., Cerdan, O., Franchist´eguy, L., Viel, C., Martin, E., Zribi, M., and Desprats, J. 

F.: Operational mapping of soil moisture using synthetic aperture radar data: application to Touch 

basin (France), Sensors J., 7, 2458–2483, 2007. 

Bastiaanssen, W. G. M., Molden, D. J., and Makin, I. W.: Remote sensing for irrigated agriculture: 

examples from research and possible applications, Agr. Water Manage., 46, 137–155, 2000. 

Baup, F., Mougin, E., De Rosnay, P., Timouk, F., and Chˆenerie, I.: Surface soil moisture estimation over 

the AMMA Sahelian site in Mali using ENVISAT/ASAR data, Remote Sens. Environ., 109(4), 473–

481, 2007. 

Bernard, R., Soares, J. V., Vidal Madjar, D., Differential bare field drainage properties from 

airborne microwave observations, Water. Resours. Res., 22, 869-875, 1986. 



 30 

Beven, K. J. and Fisher, J.: Remote Sensing and Scaling in Hydrology, Scaling in Hydrology Using 

Remote Sensing, edited by: Stewart, J. B., Engman, E. T., Feddes, A., and Kerr, Y., Wiley, New 

York, 93-111, 1996. 

Bindlish, R. and Barros, A. P.: Parameterization of vegetation backscatter in radar-based soil moisture 

estimation, Remote Sens. Environ., 76, 130–137, 2001. 

Chanzy, A., Modélisation simplifiée de l’évaporation du sol nu utilisant l’humidité et la 

température de surface accessibles par télédétection, Thèse de doctorat, 208p, 1991. 

Chanzy, A., Bruckler, L., Significance of soil surface moisture with respect to daily bare soil 

evaporation, Water Resources Research, vol. 29, no. 4, 1113-1125, 1993. 

Dubois, P. C., Van Zyl, J., and Engman, T.: Measuring soil moisture with imaging radars, IEEE T. 

Geosci. Remote, 33(4), 915–926, 1995. 

Duchemin, B., Maisongrande, P., Boulet, G., and Benhadj, I.: A simple algorithm for yield estimates: 

Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index, Environ. 

Modell. Softw., 23, 876–892, 2008. 

Engman, E. T.: Applications of microwave remote sensing of soil moisture for water resources and 

agriculture, Remote Sens. Environ., 35(2–3), 213–226, 1991. 

Er-Raki, S., Chehbouni, A., Guemouria, N., Duchemin, B., Ezzahar, J., Hadria, R., 2007. 

Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of 

wheat crops in a semi-arid region. Agricultural Water Management, 87: 41-54. 

Fung, A. K., Li, Z., and Chen, K. S.: Backscattering from a randomly rough dielectric surface, IEEE T. 

Geosci. Remote, 30(2), 356–369, 1992. 

Jackson, T.-J., Schmugge, J., and Engman, E.-T.: Remote sensing applications to hydrology: soil 

moisture, Hydrol. Sci., 41(4), 517–530, 1996. 

Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., 

Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, 



 31 

D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and 

Yamada, T.: Regions of Strong Coupling Between Soil Moisture and Precipitation, Science, 305, 

1138–1140, doi:10.1126/science.1100217, 2004. 

Le Hégarat-Mascle, S., Zribi, M., Alem, F., Weisse, A., and Loumagne, C.: Soil moisture estimation from 

ERS/SAR data: Toward an operational methodology, IEEE T. Geosci. Remote, 40(10), 1–12, 2002. 

Leduc, C., Ben Ammar, S., Favreau, G., B´ eji, R., Virrion, R., Lacombe, G., Tarhouni, J., Aouadi, C., 

Zenati Chelli, B., Jebnoun, N., O. M., Michelot, J. L., and Zouari, K.: Impacts of hydrological changes 

in the Mediterranean zone: environmental modifications and rural development in the Merguellil 

catchment, central Tunisia, Hydrolog. Sci. J., 52(6), 1162–1178, 2007. 

Magagi, R. D. and Kerr, Y. H.: Retrieval of soil moisture and vegetation characteristics by use of ERS-1 

wind scatterometer over arid and semi-arid areas, J. Hydrol., 188–189, 361–384,1997. 

Mahfouf, J. F., and Noilhan, J., Comparative study of various formulations of evaporation from 

bare soil using in-situ data, J. Appl. Meteorol, 30(9), 1354-1365, 1991. 

Moran, M.S.; Hymer, D.C.; Qi, J.; Sano; E.E. Soil moisture evaluation using multitemporal 

synthetic aperture radar (SAR) in semiarid rangeland. Agric. Forest Meteorol. 2000, 105, 69-80.  

Oh, Y., Sarabandi, K., and Ulaby, F. T.: An empirical model and an inversion technique for radar 

scattering from bare soil surfaces, IEEE T. Geosci. Remote, 30(2), 370–381, 1992. 

Paris Anguela, T., Zribi, M., Baghdadi, N., and Loumagne, C.: Analysis of local variation of soil surface 

parameters with TerraSAR-X radar data over bare agricultural fields, IEEE T. Geosci. Remote, 48(2), 

874–881, 2010. 

Quesney, A., Le H´egarat-Mascle, S., Taconet, O., Vidal-Madjar, D., Wigneron, J. P., Loumagne, C., and 

Normand, M.: Estimation of watershed soil moisture index from ERS/SAR data, Remote Sens. 

Environ., 72, 290–303, 2000. 



 32 

Rahman, M. M., Moran, M. S., Thoma, D. P., Bryant, R., Holifield, Collins, C. D., Jackson, T., Orr, B. J., 

and Tischler, M.: Mapping surface roughness and soil moisture using multi-angle radar imagery 

without ancillary data, Remote Sens. Environ., 112(2), 391–402, 2008. 

Rosich, B.: ASAR Validation Review, ESRIN, Frescatti, 11–12 December, 2002. 

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in the great 

plains with ERTS, Third ERTS Symposium, NASA SP-351 I, 309–317, 1973. 

Saux-Picart S., C. Ottlé, A. Perrier, B. Decharme, B. Coudert, M. Zribi, N. Boulain , B. Cappelaere, 

D. Ramier, 2009,  “SEtHyS_Savannah : a multiple source land surface model applied to sahelian 

landscapes”, Agricultural and Forest Meteorology, Volume 149, Issue 9, 1, 1421-143. 

Simonneaux, V., Duchemin, B., Helson, D., ER-Raki, S., Olioso, A., and Chehbouni, A. G.: The use of 

high-resolution image time series for crop classification and evapotranspiration estimate over an 

irrigated area in central Morocco, Int. J. Remote Sens., 29(1–2), 95–116, 

doi:10.1080/01431160701250390, 2007. 

Simonneaux, V., Lepage, M., Helson, D., Metral, J., Thomas, S., Duchemin, B., Cherkaoui, M., 

Kharrou, H., Berjami, B., Chehbouni, A., Estimation spatialisée de l’évapotranspiration des 

cultures irriguées par télédétection : application a` la gestion de l’irrigation dans la plaine du 

Haouz (Marrakech, Maroc), Sécheresse ; 20 (1) : 123-30, 2009. 

Thoma, D. P., Moran, M. S., Bryant, R., Rahman, M. M., Holifield Collins, C. D., Keefer, T. O., Noriega, 

R., Osman, I., Skrivin, S. M., Tischler, M. A., Bosch, D. D., Starks, P. J., and Peters- Lidard, C. D.: 

Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally 

vegetated soils, Remote Sens. Environ., 112(2), 403–414, 2008. 

Ulaby, F. T., Moore, 5 R. K., and Fung, A. K.: Microwave Remote Sensing Active and Passive, Artech 

House, inc., 1986. 

Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture from ERS Scatterometer 

and soil data, Remote Sens. Environ., 70, 191–207, 1999. 



 33 

Wagner, W., Bloschl, G., Pampaloni, P., Calvet, J.-C., Bizzarri, B., Wigneron, J.-P., and Kerr, Y.: 

Operational readiness of microwave remote sensing of soil moisture for hydrologic applications, 

Nord. Hydrol., 38, 1–20, 2007. 

Wigneron, J. P., Ferrazzoli, P., Olioso, A., Bertuzzi, P., and Chanzy, A.: A Simple Approach To Monitor 

Crop Biomass from C-Band Radar Data, Remote Sens. Environ., 69(2), 179–188, 1999. 

Zribi, M., Taconet, O., Le Hégarat-Mascle, S., Vidal-Madjar, D., Emblanch, C., Loumagne, C., and 

Normand, M.: Backscattering behavior and simulation comparison over bare soils using SIRC/XSAR 

and ERASME 1994 data over Orgeva, Remote Sens. Environ., 59(2), 256–266, 1997. 

Zribi, M. and Dechambre, M.: A new empirical model to retrieve soil moisture and roughness from Radar 

Data, Remote Sens. Environ., 84(1), 42–52, 2003. 

Zribi, M., Saux-Picart, S., André, C., Descroix, L., Ottlé, O., and Kallel, A.: Soil moisture mapping based 

on ARSAR/ENVISAT radar data over a sahelian site, Int. J. Remote Sens., 28(16), 3547–3565, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

Tables and figures 

Table 1: Characteristics of ENVISAT ASAR and SPOT data used in this study. 

Table 2: Gravimetric volumetric soil moisture measurements (%) over test fields 

Table 3: Roughness Rms height (cm) measurements 

Table 4: Leaf Area Index and vegetation water content measurement 

Fig. 1: Illustration of the studied site  

Fig. 2: View of a typical non-irrigated olive tree field  

Fig. 3: Illustration of land use conditions during the 2008-2009 vegetation season 

Fig. 4: Processed ENVISAT ASAR signals (in decibels) versus measured volumetric moisture over olive 

tree fields, (a) HH polarization, (b) VV polarization. 

Fig. 5: Soil moisture estimations from ENVISAT ASAR data, expressed as a function of the soil moisture 

derived from ground-truth measurements, for fields in the ‘olive tree’ class of land use, (a) HH 

polarisation, (b) VV polarisation 

Fig. 6: Inter-comparison between HH and VV radar signal moisture estimations 

Fig. 7: Illustration of moisture mapping for an area containing fields in the ‘olive tree’ class of land use, 

(a) 11/04/2009, (b) 12/04/2009, (c) 09/12/2009 

Fig. 8: Soil moisture estimations from ENVISAT ASAR data, versus soil moisture derived from ground 

truth measurements, for different test wheat fields. 

Fig. 9: Vegetation water content as a function of Leaf Area Index measured over wheat fields. 

Fig. 10: Example of moisture mapping over wheat fields on three different dates: (a) 16/01/2009, (b) 

20/02/2009, (c) 27/03/2009 

Fig. 11: Example of moisture mapping, showing soil moisture estimations for fields in the ‘olive tree’ and 

‘wheat’ classes of land use on 07/03/2009 

Fig. 12: Illustration of potential evapotransipration, calculated using Pennaman Monteith equation, 

during the agricultural season 2008-2009 

Fig. 13: Example of soil evaporation mapping over olive tree and wheat classes of land use on 

07/03/2009. 

 

 

 

 

 


