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This paper addresses uncertainties in quantifying future climate change impacts on
river runoff. Uncertainties due to the degree of spatial aggregation in the hydrological
model are compared to uncertainties caused by variations in future climate change
predicted by various climate models. The paper is well written, clearly structured, and
of interest to the HESS readership. Overall, the work constitutes a nice contribution and
should be suitable for publication after minor revisions. Briefly, additional discussion is
needed to address issues related to methods and conclusions, and some changes to
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the presentation are suggested to improve impact.

Thank you for taking the time to review our research and for your positive comments
and suggestions to improve the manuscript. We have addressed each comment in
turn. Our responses are provided below.

*************************************************************

Methods and conclusions

One of the main conclusions is that climate model uncertainty dominates hydrological
model uncertainty. However, this conclusion is based on the prior uncertainty assigned
to both climate and hydrological models; in other words, the (subjective) selection of
models and scenarios included in the analysis determines the outcome. Two questions
arise:

1. Do the selected models adequately account for model structural uncertainty? For
example, one could argue that hydrological model uncertainty is underestimated since
only two hydrological models are considered in each basin.

This relates to a point made by the other reviewer. We have added the following text
to the Discussion section to address this: “A key conclusion is that climate model un-
certainty dominates hydrological model uncertainty. However, it is acknowledged that
this conclusion is based on the prior uncertainty assigned to both climate and hydro-
logical models. Moreover, we have not sampled downscaling uncertainty, emissions
uncertainty, and hydrological model parameter uncertainty (see Fig. 1). Therefore,
we are likely underestimating the magnitude of climate and hydrological uncertainty in
our analysis. Given the constraints of computational resources, we considered seven
climate models and two hydrological models for each catchment. It can be argued
that the application of seven climate models presents a reasonable representation of
climate model structural uncertainty, given that previous climate change hydrological
impact assessments have tended to apply a similar or lower number of climate mod-
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els (Arnell et al. in review; Hayashi et al. 2010; Prudhomme et al. 2003). The prior
uncertainty from climate model structural uncertainty could be reduced by comparing
GCM simulations of baseline climate with observations. Such considerations have led
to the calculation of performance metrics for GCMs, such as ranking them according
to a measure of relative error (Gleckler et al., 2008). Forming a single index of model
performance, however, can be misleading in that it hides a more complex picture of the
relative merits of different models. Furthermore, for one specific region, Chiew et al.
(2009) concluded that there was no clear difference in rainfall projections between the
‘better’ and ‘poorer’ 23 GCMs included in the CMIP3 archive (7 of which we applied
here) based on their abilities to reproduce observed historical rainfall. Therefore in
their analysis, using only the better GCMs or weights to favour the better GCMs gave
similar runoff impact assessment results as the use of all the 23 GCMs. Moreover, on
a conceptual level, it has been argued that, because of deep and structural uncertainty,
it is not appropriate to seek to estimate the relative weight of different GCMs, and to do
so would lead to significant over-interpretation of model-based scenarios (Stainforth et
al., 2007): all models are only partial representations of a complex world, and miss
important processes. For these reasons, in the present analysis, we assumed that all
the GCMs are equally credible, although they are not completely independent. The
computational resources required to perform multiple GHM simulations are relatively
small compared with those required to run multiple CHMs because in previous work
ClimGen was integrated with the GHM and adapted to run by high throughput com-
puting (HTC) on the University of Reading Campus Grid, which reduced simulation
time by a factor of over 80 relative to running on a single compute node (see Gosling
et al. 2010). A more thorough consideration of downscaling uncertainty would apply
climate projections from regional climate models (RCMs), which have been dynami-
cally downscaled, and/or a range of different statistical downscaling algorithms other
than that included in ClimGen (e.g. see Maraun et al. 2010). However, this would
effectively at least double the computing and time resources required from what was
used in the present analysis. A more thorough consideration of hydrological model
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uncertainty would explore 1) hydrological model parameter perturbations, and 2) the
application of several CHMs for each catchment. However, this would be demanding in
terms of computational and human resources. For instance, to address the latter sug-
gestion above, each CHM (SLURP, SWAT, etc.) would need to be calibrated for each
individual catchment (Liard, Mekong etc.) and would then involve performing 216 CHM
simulations (6 CHMs x 6 catchments x 6 increases in global-mean air temperature) for
a single GCM pattern. As such, a computer cluster with around 216 nodes would be
ideal, but each CHM would need to be adapted for running by HTC. This is not straight-
forward; see Gosling et al. (2010) for a detailed discussion on the issues regarding
adapting a hydrological model to run by HTC. To address the former suggestion, Multi-
Method Global Sensitivity Analysis (MMGSA; Cloke et al., 2007) presents a method
for systematically perturbing all model parameters systematically but again, the exten-
sive computing resources required for this precluded such an analysis here. Moreover,
each CHM and GHM will include different parameters, so a like-with-like comparison is
not straightforward. Nevertheless, Arnell (this issue) demonstrates that the uncertainty
associated with 100 CHM model parameter sets is vastly smaller than the uncertainty
across 21 GCM climate projections, which supports our conclusion that climate model
uncertainty dominates hydrological model uncertainty. Moreover, evidence from other
climate change impact assessment sectors (e.g. agriculture; Challinor et al. 2009)
suggests that climate model uncertainty is effectively damped once other non-climatic
uncertainties, such as decision-making processes or socio-economic uncertainties are
considered, in a wider decision-making framework.”

2. Can the prior uncertainty be reduced by confronting the models (climate and hy-
drological) to historical data? For example, it may turn out that some climate models
perform much better on historical data from the specific basins in this study than other
models, thereby reducing climate (posterior) model uncertainty. The authors touch
upon this at the end of the discussion section, but I think this issue should be made
more explicit throughout the paper.
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We have added the following text to the Methods section (Section 2.2.) and to the
Discussion section, to address this comment, and to make sure the point is made
explicitly relatively early on in the paper:

To the Methods we have added: “The prior uncertainty from climate model structural
uncertainty could be reduced by comparing the GCM simulations of baseline climate
with observations (e.g. Gleckler et al. 2008) but the calculation of single indices of
model performance can be misleading because it hides a more complex picture of the
relative merits of different GCMs (see Arnell (this issue) for a more detailed discussion).
Therefore all seven GCMs are assumed to be equally credible in this analysis.”

To the Discussion we have added: “A key conclusion is that climate model uncertainty
dominates hydrological model uncertainty. However, it is acknowledged that this con-
clusion is based on the prior uncertainty assigned to both climate and hydrological
models. Moreover, we have not sampled downscaling uncertainty, emissions uncer-
tainty, and hydrological model parameter uncertainty (see Fig. 1). Therefore, we are
likely underestimating the magnitude of climate and hydrological uncertainty in our
analysis. Given the constraints of computational resources, we considered seven cli-
mate models and two hydrological models for each catchment. It can be argued that
the application of seven climate models presents a reasonable representation of cli-
mate model structural uncertainty, given that previous climate change hydrological im-
pact assessments have tended to apply a similar or lower number of climate models
(Arnell et al. in review; Hayashi et al. 2010; Prudhomme et al. 2003). The prior
uncertainty from climate model structural uncertainty could be reduced by comparing
GCM simulations of baseline climate with observations. Such considerations have led
to the calculation of performance metrics for GCMs, such as ranking them according
to a measure of relative error (Gleckler et al., 2008). Forming a single index of model
performance, however, can be misleading in that it hides a more complex picture of the
relative merits of different models. Furthermore, for one specific region, Chiew et al.
(2009) concluded that there was no clear difference in rainfall projections between the
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‘better’ and ‘poorer’ 23 GCMs included in the CMIP3 archive (7 of which we applied
here) based on their abilities to reproduce observed historical rainfall. Therefore in
their analysis, using only the better GCMs or weights to favour the better GCMs gave
similar runoff impact assessment results as the use of all the 23 GCMs. Moreover, on
a conceptual level, it has been argued that, because of deep and structural uncertainty,
it is not appropriate to seek to estimate the relative weight of different GCMs, and to do
so would lead to significant over-interpretation of model-based scenarios (Stainforth et
al., 2007): all models are only partial representations of a complex world, and miss
important processes. For these reasons, in the present analysis, we assumed that all
the GCMs are equally credible, although they are not completely independent.”

*************************************************************

- Can the authors discuss other uncertainties that have not been accounted for, such
as within-model uncertainties (due to parameter errors, data mismatch...)?

We now discuss uncertainties that we have not accounted for, in the Discussion.
Please see our response to the previous comment for details.

*************************************************************

- An implicit assumption is that the CHM can be used as a reference to evaluate the
GHM (see eg p. 7205, line 27). It seems that the CHMs should indeed be better
since they were calibrated on the specific basins, but that should be shown with explicit
numbers in a table by comparing all models to historical data.

We have included in Table 1 now, a summary of Nash-Sutcliffe model efficiency coeffi-
cients that are calculated in each of the respective CHM papers in the Special Issue. It
is attached here to this HESSD comment. Furthermore, we have edited the Methods
section to include the following text: “All the CHMs had already been calibrated typi-
cally using local gauge networks. For each catchment, the CHM was re-calibrated for
use with gridded (0.5◦x0.5◦) climate data from the CRU TS 3.0 dataset (Mitchell and
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Jones, 2005) for the period 1961-90. This process is described in each of the individual
papers in this issue, listed in Table 1. A summary of the Nash-Sutcliffe model efficiency
coefficients (E) (Nash and SutcliïňĂe, 1970) that were calculated in validation exercises
presented by each paper is also presented in Table 1. According to the classification
scheme of Henriksen et al. (2008), the CHMs generally performed “fair” to “excellent”,
although for a very small number of gauging stations in the Okavango and Mekong, the
performance was “poor” (see Hughes et al. (this issue) and Kingston et al. (this issue)
for more details).”

The references list has been updated accordingly, with the following new references:

Henriksen, H. J., Troldborg, L., Højberg, A. J., and Refsgaard, J. C.: Assessment of
exploitable groundwater resources of Denmark by use of ensemble resource indicators
and a numerical groundwater – surface water model, J. Hydrol., 348, 224–240, 2008.

Nash, J. E. and SutcliïňĂe, J. V.: River ïňĆow forecasting through conceptual models:
Part 1 – a discussion of principles, J. Hydrol., 10, 282–290, 1970.

*************************************************************

- I believe that ideally all models should have been calibrated using downscaled GCM
output, as that is what is used to estimate future impacts. That would make for a more
consistent approach and allow the model parameters in calibration to compensate for
some of the errors in the downscaled GCM output. Can the authors comment on
this? Calibration with downscaled GCM output was not necessary for this analysis.
This is because we used ClimGen to create the climate change scenarios. ClimGen
essentially applies GCM-derived changes in mean climate to the baseline climate, to
produce climate change scenarios. This means that the baseline and climate scenarios
are compatible. Importantly, the result of this is that the simulated flows calculated from
the different forcing GCMs can be compared. This is described in Todd et al. (this
issue), but we have added the following text to the Methods section anyway, just to
make this point clearer: “All the CHMs had already been calibrated typically using local
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gauge networks. For each catchment, the CHM was re-calibrated for use with gridded
(0.5◦x0.5◦) climate data from the CRU TS 3.0 dataset (Mitchell and Jones, 2005) for
the period 1961-90. This dataset was the baseline for all analyses presented here and
for the papers listed in Table 1. Importantly, the climate change scenarios (described
in Section 2.2.) are compatible with the baseline (Todd et al. this issue), which is why
each CHM was re-calibrated against the baseline.”

- p. 7197, line 12: since GHM grids are disconnected, why not run the model for only
the grid cells in the basins of interest? That would reduce the computational load to a
few hundred grid cells (based on numbers in Table 1).

*************************************************************

This could have been done. However, the preferred choice was to run the GHM glob-
ally, i.e. for all ∼65,000 cells because the output from the model will be, and has been
used in other, larger spatial scale analyses. Moreover, given that the GHM had already
been integrated with ClimGen and setup to run by high throughput computing (HTC),
it was actually easier to run the model globally, rather than for just a few hundred grid
cells. This did, of course, produce a much larger amount of output, than if the model
was run for a few hundred cells, but like we mention above, this data has and will be
used for further analyses.

Presentation

- A diagram or flowchart may be beneficial in clarifying the various uncertainties that
come into play when assessing climate change impacts on river runoff. This would
clearly show which uncertainties are accounted for here and which uncertainties are
ignored; that may also help the discussion later on.

*************************************************************

We have created a new Figure, Fig. 1, which is attached with this HESSD comment.
The figure summarises the main stages of a climate change hydrological impact as-
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sessment and the inherent uncertainties. The figure highlights which uncertainties we
sample in our analysis. We have also added the following text to the manuscript, in
a new sub-section (“1.3 Uncertainties in climate change hydrological impact assess-
ment”), to support the new figure: “Climate change will affect the global terrestrial
hydrological system (Kundzewicz et al., 2007) and there is evidence that it has already
responded to the observed warming over recent decades (Bates et al., 2008). The
most common method for assessing the magnitude of this impact is to run a hydrologi-
cal model driven by various climate projections from general circulation models (GCMs,
i.e. global-scale climate models) as input forcing data (e.g. Gosling et al., 2010). The
simulations of key hydrological indicators, such as river runoff, can then be used to as-
sess the potential impact of climate change and to inform policy- and decision-making.
However, there are a number of uncertainties associated with making such projections.
Fig. 1 summarises the four main stages of performing a climate change hydrological
impact assessment, which is broadly similar to other climate change impact sector as-
sessments (Gosling et al. 2009). The first stage is to determine the greenhouse gas
emissions scenarios with which the climate model (e.g. a GCM) will be driven with,
in order to produce the climate change projections (the second stage). GCMs typi-
cally represent the atmosphere, ocean, land surface, cryosphere, and biogeochemical
processes, and solve the equations governing their evolution on a geographical grid
covering the globe. Some processes are represented explicitly within GCMs, large-
scale circulations for instance, while others are represented by simplified parameter-
isations. The use of these parameterisations is sometimes due to processes taking
place on scales smaller than the typical grid size of a GCM (a horizontal resolution of
between 250 and 600 km) or sometimes to the current limited understanding of these
processes. Different climate modelling institutions will use different plausible represen-
tations of the climate system, which is why climate projections for a single greenhouse
gas emissions scenario will differ between modelling institutes. Two main methods can
be used to sample this so called “climate model structural uncertainty”. The first is to
use a range of climate projections from ensembles of plausible GCMs, to produce an
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ensemble of impact projections for comparison. Such multi-model datasets are often
described as “ensembles of opportunity”, e.g. the World Climate Research Programme
Third Coupled Model Intercomparison Project (WCRP CMIP3; Meehl et al. 2007). A
second approach generates a “perturbed physics ensemble” (PPE) that introduces per-
turbations to the physical parameterisation schemes of a single climate model, leading
to many plausible versions of the same underlying model. If sufficient computer power
is available, then very large ensembles can be generated in this way. For example,
Stainforth et al. (2005) ran an ensemble of 2,578 simulations that sampled combina-
tions of low, intermediate, and high values of 6 parameters. As well as climate model
structural uncertainty, climate models are sensitive to the initial conditions with which
the models are initialised, which adds a further level of uncertainty. The third stage of
a climate change hydrological impact assessment is to downscale the climate model
output to a finer resolution, suitable for application to a hydrological model. Two ap-
proaches are typically available, statistical downscaling and dynamical downscaling.
The former uses statistical relationships to convert the large-scale projections from a
GCM to fine scales. Different statistical methods can be applied for the downscaling,
which introduces uncertainty. The latter approach uses a dynamic model similar to a
GCM to cover a region. The dynamic model is then forced at its lateral boundaries
using results from the coarse scale GCM. The dynamic method is typically more com-
putationally expensive but does not rely on the central assumption of most statistical
downscaling, that the downscaling relationship derived for the present day will also
hold in the future. In the final stage, the downscaled climate data is applied to a hy-
drological model. Uncertainty at this stage can arise from the application of different
hydrological models, e.g. CHMs and GHMs (similar in essence to the uncertainty that
can be sampled from a GCM ensemble of opportunity), and from different parameters
sets and perturbations within a given hydrological model, i.e. parameter uncertainty
(similar in essence to the uncertainty that can be sampled from a GCM PPE). For six
catchments, we compare the simulated runoff response of a GHM and CHM to pro-
jected future climate associated with (1) several prescribed increases in global-mean
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temperature from a single GCM to explore simulated response to different amounts of
climate forcing, and (2) a prescribed increase in global-mean temperature of 2.0◦C for
seven GCMs to explore response to climate model structural uncertainty. The main
sources of uncertainty sampled by this methodological framework are shaded in Fig.
1. Note that emissions uncertainty and downscaling uncertainty are not sampled, i.e.
they are held constant, and nor do we consider GCM perturbed physics or hydrological
model parameter uncertainty.”

*************************************************************

- Hydro-models calibration results: I understand that details of the model calibrations
have or will be reported in separate papers; however, it would still be necessary to
report here a summary of the calibration results, for example listing some performance
metrics of each model in each basin in a table or figure. That would give the reader
some feeling for the relative performance of these models, including how the CHMs
compare to the GHM.

We have included in Table 1 now, a summary of Nash-Sutcliffe model efficiency coef-
ficients that are calculated in each of the respective CHM papers in the Special Issue.
Furthermore, we have edited the Methods section to include the following text: “All
the CHMs had already been calibrated typically using local gauge networks. For each
catchment, the CHM was re-calibrated for use with gridded (0.5◦x0.5◦) climate data
from the CRU TS 3.0 dataset (Mitchell and Jones, 2005) for the period 1961-90. This
process is described in each of the individual papers in this issue, listed in Table 1. A
summary of the Nash-Sutcliffe model efficiency coefficients (E) (Nash and SutcliïňĂe,
1970) that were calculated in validation exercises presented by each paper is also pre-
sented in Table 1. According to the classification scheme of Henriksen et al. (2008),
the CHMs generally performed “fair” to “excellent”, although for a very small number
of gauging stations in the Okavango and Mekong, the performance was “poor” (see
Hughes et al. (this issue) and Kingston et al. (this issue) for more details).”
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The references list has been updated accordingly, with the following new references:

Henriksen, H. J., Troldborg, L., Højberg, A. J., and Refsgaard, J. C.: Assessment of
exploitable groundwater resources of Denmark by use of ensemble resource indicators
and a numerical groundwater – surface water model, J. Hydrol., 348, 224–240, 2008.

Nash, J. E. and SutcliïňĂe, J. V.: River ïňĆow forecasting through conceptual models:
Part 1 – a discussion of principles, J. Hydrol., 10, 282–290, 1970.

*************************************************************

- Please clarify in the abstract already that the main difference between the GHM and
CHMs is the level of spatial aggregation of hydrological processes. And I guess also
the fact that the GHM does not include lateral flow between elements.

The following text has been added to the abstract: “The CHMs typically simulate wa-
ter resource impacts based on a more explicit representation of catchment water re-
sources than that available from the GHM and the CHMs include river routing, whereas
the GHM does not.”

*************************************************************

- Abstract, line 21: specify here how big the “substantial differences” are

The text has been edited to read: “We find that the differences in projected changes of
mean annual runoff between the two types of hydrological model can be substantial for
a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage
change for UKMO HadCM3 2◦C warming of up to 25%).”

*************************************************************

- Throughout the paper I suggest replacing “inter-comparison” by “comparison”

In cases where “inter-comparison” was referred to, this has been replaced with “com-
parison”.
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*************************************************************

- Section 3.1: instead of showing global maps of projected precipitation changes (figs.
2 and 3), it would be more relevant to show specific results for the basins studied in
this paper, eg time-series plots of climate time-series for each basin.

The other reviewer made a similar comment, and we are in agreement that this is
more useful. Therefore we have replaced the maps with graphs that show percent-
age change in average annual runoff for each catchment. They are attached with this
HESSD comment.

Furthermore, we have edited the text in Section 3.1. to read: “Precipitation is the main
driver of runoff (Chiew et al., 2009) so it is important to understand the magnitude
by which it changes in each of the climate change scenarios we considered. Fig. 3
shows the percentage change from baseline in total-annual precipitation for UKMO
HadCM3 prescribed warming of 1-6◦C, for each catchment. The greatest changes in
precipitation are observed for the Liard (around +33% with 6◦C prescribed warming),
Xiangxi (around +31% with 6◦C prescribed warming) and Okavango (around -44%
with 6◦C prescribed warming). Harper’s Brook is associated with a small change in
precipitation with 6◦C prescribed warming (-7%). Analyses in Section 3.2. demon-
strate how the simulated changes in precipitation from each prescribed increase in
global-mean air temperature are realised in changes in runoff. Fig. 4 shows the
percentage change from baseline in total annual precipitation projected by seven
GCMs for a prescribed increase in global-mean air temperature of 2◦C, for each
catchment. Whilst all GCMs simulate increases in precipitation with climate change
for the Liard, there is not consensus in the sign of precipitation change across the
seven GCMs for the remaining catchments. For instance, with the Mekong, four GCMs
simulate increases in precipitation with climate change and three GCMs simulate
decreases. It could be argued that this precludes a hydrological analysis using
all seven GCMs. However, given the large dependence of runoff on precipitation
(Chiew et al., 2009) and that complex non-linear interactions are common between
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climate forcing and runoff (Majone et al. 2010), it is important to demonstrate how
the uncertainty in the projections of precipitation across GCMs translates into runoff
projections. Moreover, the consequent uncertainty across runoff simulations could
have important implications for water resources management. Analyses in Section
3.3. demonstrate how the simulated changes in precipitation from each GCM are
realised in changes in runoff.”

Please also note the supplement to this comment:
http://www.hydrol-earth-syst-sci-discuss.net/7/C4123/2010/hessd-7-C4123-2010-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 7, 7191, 2010.
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Fig. 1. Figure 1. The four stages of a climate change hydrological impact assessment and
the inherent uncertainties. The shaded areas denote the uncertainties we considered in this
analysis.
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Fig. 2. Figure 3. Change in total-annual precipitation relative to baseline (vertical axis; %) for
UKMO HadCM3 prescribed warming of 1-6◦C (horizontal axis), for each catchment.
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Fig. 3. Figure 4. Change in total-annual precipitation relative to baseline (vertical axis; %) for
for the 7 GCMs under 2◦C prescribed warming (horizontal axis), for each catchment.
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