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This paper is extremely well written and contains some important research and use-
ful discussion. The paper demonstrates future runoff projection comparison of global
and various catchment modelling approaches over catchments with varying properties.
Overall I think the paper is certainly publishable subject to some minor points detailed
below:

Thank you for taking the time to review our research and for your positive comments
and suggestions to improve the manuscript. We have addressed each comment in
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turn. Our responses are provided below.

*****************************************************************************************

1. A missing step is perhaps to compare like with like – catchments using the same
catchment model and groups of similar catchments. I imagine due to the size of this
task (time/computer and person power) this was not undertaken – but some brief com-
mentary about how a completely thorough test could be done would be useful. It would
be helpful to give more information on the computational resource (nodes, speed etc.)
required. I’m guessing a full uncertainty approach was impossible because of this
problem. Could be further discussed.

We have added the following text to the Discussion section, and added some extra
references to support the discussion, which are also shown below. We have also
created a new figure, which highlights which uncertainties we have considered, and
which we have not (the new figure is attached to this HESSD comment).

“A key conclusion is that climate model uncertainty dominates hydrological model un-
certainty. However, it is acknowledged that this conclusion is based on the prior un-
certainty assigned to both climate and hydrological models. Moreover, we have not
sampled downscaling uncertainty, emissions uncertainty, and hydrological model pa-
rameter uncertainty (see Fig. 1). Therefore, we are likely underestimating the mag-
nitude of climate and hydrological uncertainty in our analysis. Given the constraints
of computational resources, we considered seven climate models and two hydrologi-
cal models for each catchment. It can be argued that the application of seven climate
models presents a reasonable representation of climate model structural uncertainty,
given that previous climate change hydrological impact assessments have tended to
apply a similar or lower number of climate models (Arnell et al. in review; Hayashi et
al. 2010; Prudhomme et al. 2003). The prior uncertainty from climate model structural
uncertainty could be reduced by comparing GCM simulations of baseline climate with
observations. Such considerations have led to the calculation of performance metrics
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for GCMs, such as ranking them according to a measure of relative error (Gleckler et
al., 2008). Forming a single index of model performance, however, can be misleading
in that it hides a more complex picture of the relative merits of different models. Fur-
thermore, for one specific region, Chiew et al. (2009) concluded that there was no clear
difference in rainfall projections between the ‘better’ and ‘poorer’ 23 GCMs included in
the CMIP3 archive (7 of which we applied here) based on their abilities to reproduce
observed historical rainfall. Therefore in their analysis, using only the better GCMs
or weights to favour the better GCMs gave similar runoff impact assessment results
as the use of all the 23 GCMs. Moreover, on a conceptual level, it has been argued
that, because of deep and structural uncertainty, it is not appropriate to seek to esti-
mate the relative weight of different GCMs, and to do so would lead to significant over-
interpretation of model-based scenarios (Stainforth et al., 2007): all models are only
partial representations of a complex world, and miss important processes. For these
reasons, in the present analysis, we assumed that all the GCMs are equally credible,
although they are not completely independent. The computational resources required
to perform multiple GHM simulations are relatively small compared with those required
to run multiple CHMs because in previous work ClimGen was integrated with the GHM
and adapted to run by high throughput computing (HTC) on the University of Reading
Campus Grid, which reduced simulation time by a factor of over 80 relative to running
on a single compute node (see Gosling et al. 2010). A more thorough considera-
tion of downscaling uncertainty would apply climate projections from regional climate
models (RCMs), which have been dynamically downscaled, and/or a range of different
statistical downscaling algorithms other than that included in ClimGen (e.g. see Ma-
raun et al. 2010). However, this would effectively at least double the computing and
time resources required from what was used in the present analysis. A more thorough
consideration of hydrological model uncertainty would explore 1) hydrological model
parameter perturbations, and 2) the application of several CHMs for each catchment.
However, this would be demanding in terms of computational and human resources.
For instance, to address the latter suggestion above, each CHM (SLURP, SWAT, etc.)
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would need to be calibrated for each individual catchment (Liard, Mekong etc.) and
would then involve performing 216 CHM simulations (6 CHMs x 6 catchments x 6 in-
creases in global-mean air temperature) for a single GCM pattern. As such, a computer
cluster with around 216 nodes would be ideal, but each CHM would need to be adapted
for running by HTC. This is not straightforward; see Gosling et al. (2010) for a detailed
discussion on the issues regarding adapting a hydrological model to run by HTC. To ad-
dress the former suggestion, Multi-Method Global Sensitivity Analysis (MMGSA; Cloke
et al., 2007) presents a method for systematically perturbing all model parameters sys-
tematically but again, the extensive computing resources required for this precluded
such an analysis here. Moreover, each CHM and GHM will include different param-
eters, so a like-with-like comparison is not straightforward. Nevertheless, Arnell (this
issue) demonstrates that the uncertainty associated with 100 CHM model parameter
sets is vastly smaller than the uncertainty across 21 GCM climate projections, which
supports our conclusion that climate model uncertainty dominates hydrological model
uncertainty. Moreover, evidence from other climate change impact assessment sec-
tors (e.g. agriculture; Challinor et al. 2009) suggests that climate model uncertainty
is effectively damped once other non-climatic uncertainties, such as decision-making
processes or socio-economic uncertainties are considered, in a wider decision-making
framework.”

Arnell, N. W., van Vuuren, D. P., Isaac, M. The implications of climate policy for the
impacts of climate change on global water resources. Global Environmental Change,
in review.

Challinor, A. J., Wheeler, T., Hemming, D. and Upadhyaya, H. D.: Ensemble yield
simulations: crop and climate uncertainties, sensitivity to temperature and genotypic
adaptation to climate change. Climate Research, 38, 117-127, 2009.

Hayashi, A.., Akimoto, K., Sano, F., Mori, S., Tomoda, T.: Evaluation of global warming
impacts for different levels of stabilisation as a step toward determination of the long-
term stabilisation target, Climatic Change, 98, 87-112, 2010.
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Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann,
M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P.,
Goodess, C. M., Jones, R. G., Onof, C., Vrac, M. and Thiele-Eich, I.: Precipitation
downscaling under climate change: Recent developments to bridge the gap between
dynamical models and the end user. Rev. Geophys., 48, RG3003, 2010.

Prudhomme, C., Jakob, D. and Svensson, C.: Uncertainty and climate change impact
on the flood regime of small UK catchments. Journal of Hydrology, 277, 1–23, 2003.

*****************************************************************************************

2. I cannot see any baseline comparison of the precipitation that is being fed into
the hydrological models, especially on a catchment integrated basis. It is difficult to
compare the outputs if you do not have a benchmark comparison of the inputs. Can
you provide this as figures/table?

The other reviewer made a similar comment, and suggested that we replaced the maps
(original Fig. 2 and Fig. 3) with catchment precipitation data. We are in agreement
that this is more useful. Therefore we have replaced the maps with charts that show
percentage change in average annual runoff for each catchment. They are attached
with this HESSD comment.

Furthermore, we have edited the text in Section 3.1. to read: “Precipitation is the main
driver of runoff (Chiew et al., 2009) so it is important to understand the magnitude by
which it changes in each of the climate change scenarios we considered. Fig. 3 shows
the percentage change from baseline in total-annual precipitation for UKMO HadCM3
prescribed warming of 1-6◦C, for each catchment. The greatest changes in precipita-
tion are observed for the Liard (around +33% with 6◦C prescribed warming), Xiangxi
(around +31% with 6◦C prescribed warming) and Okavango (around -44% with 6◦C
prescribed warming). Harper’s Brook is associated with a small change in precipitation
with 6◦C prescribed warming (-7%). Analyses in Section 3.2. demonstrate how the
simulated changes in precipitation from each prescribed increase in global-mean air
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temperature are realised in changes in runoff. Fig. 4 shows the percentage change
from baseline in total annual precipitation projected by seven GCMs for a prescribed
increase in global-mean air temperature of 2◦C, for each catchment. Whilst all GCMs
simulate increases in precipitation with climate change for the Liard, there is not con-
sensus in the sign of precipitation change across the seven GCMs for the remaining
catchments. For instance, with the Mekong, four GCMs simulate increases in precipita-
tion with climate change and three GCMs simulate decreases. It could be argued that
this precludes a hydrological analysis using all seven GCMs. However, given the large
dependence of runoff on precipitation (Chiew et al., 2009) and that complex non-linear
interactions are common between climate forcing and runoff (Majone et al. 2010), it is
important to demonstrate how the uncertainty in the projections of precipitation across
GCMs translates into runoff projections. Moreover, the consequent uncertainty across
runoff simulations could have important implications for water resources management.
Analyses in Section 3.3. demonstrate how the simulated changes in precipitation from
each GCM are realised in changes in runoff.”

*****************************************************************************************

3. The discharge results are not presented along with the known performance or bias
with observed-baseline projections (as it would also be useful to do for precipitation).
How well do the models perform compared to observed data? Obviously this does
not guarantee good performance for future datasets and indeed calibrations may not
be optimal in a future state. Some discussion on this would be useful as well as a
description of bias/performance of models.

We have included in Table 1 now, a summary of Nash-Sutcliffe model efficiency coef-
ficients that are calculated in each of the respective CHM papers in the Special Issue.
The edited table is attached to this HESSD comment. Furthermore, we have edited
the Methods section to include the following text: “All the CHMs had already been
calibrated typically using local gauge networks. For each catchment, the CHM was re-
calibrated for use with gridded (0.5◦x0.5◦) climate data from the CRU TS 3.0 dataset
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(Mitchell and Jones, 2005) for the period 1961-90. This process is described in each
of the individual papers in this issue, listed in Table 1. A summary of the Nash-Sutcliffe
model efficiency coefficients (E) (Nash and SutcliïňĂe, 1970) that were calculated in
validation exercises presented by each paper is also presented in Table 1. According
to the classification scheme of Henriksen et al. (2008), the CHMs generally performed
“fair” to “excellent”, although for a very small number of gauging stations in the Oka-
vango and Mekong, the performance was “poor” (see Hughes et al. (this issue) and
Kingston et al. (this issue) for more details).”

The references list has been updated accordingly, with the following new references:

Henriksen, H. J., Troldborg, L., Højberg, A. J., and Refsgaard, J. C.: Assessment of
exploitable groundwater resources of Denmark by use of ensemble resource indicators
and a numerical groundwater – surface water model, J. Hydrol., 348, 224–240, 2008.

Nash, J. E. and SutcliïňĂe, J. V.: River ïňĆow forecasting through conceptual models:
Part 1 – a discussion of principles, J. Hydrol., 10, 282–290, 1970.

*****************************************************************************************

4. The time period of runoff projections is not clear throughout the text.

The time periods are arbitrary. The following text has been added to the Methods
section to explain this: “ClimGen generates 30-year long monthly timeseries of forc-
ing data for a given GCM and prescribed increase in global-mean temperature (e.g.
UKMO HadCM3 2.0◦C). This means that the 30-year long climate change scenarios
for a given GCM are representative of a world that is warmer from baseline by a pre-
scribed temperature, but they are not assigned a specific time period in years, which is
arbitrary. Therefore the runoff simulations are also presented for arbitrary 30-year pe-
riods, representative of worlds where global-mean temperature is a prescribed amount
warmer than baseline (1.0, 2.0, 3.0◦C etc.).”

*****************************************************************************************
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5. You have only used one type of GHM. Worth discussing. What are the uncertainties
because of this? Do you think your conclusion that GHMs are equally feasible to apply
as CHMs stands up for all cases? I think you undersell the GHM in your text. You have
some good evidence that it can be used for this type of assessment. Cite it clearly and
sell your conclusion that GHM is useful.

We have added the following text to the Discussion, to address this comment: “Our
analysis demonstrates that the GHM is able to represent the broad climate change
signal that is represented by the CHMs, for each catchment. Therefore where future
climate change impacts assessments seek to quantify and assess the range of hydro-
logical projections across an ensemble of GCMs, it may be as equally feasible to apply
a GHM as it is to apply a CHM to explore catchment-scale changes in runoff with global
warming. However, in the present analysis, we only considered only one GHM, Mac-
PDM.09 (Gosling and Arnell, 2010). Recent work highlights that there is uncertainty
across diefferent GHMs in the simulation of runoff (Haddeland et al., in review), so it
can not be assumed that all GHMs will perform in the same way as the GHM presented
here.”

Also, to highlight the value of the GHM, we have added the following text:

To the Abstract: “This implies that for studies that seek to quantify and assess the role
of climate model uncertainty on catchment-scale runoff, it may be equally as feasible
to apply a GHM (Mac-PDM.09 here) as it is to apply a CHM, especially when climate
modelling uncertainty across the range of available GCMs is as large as it currently is.”

To the Conclusion: “Therefore, where future climate change impacts assessments seek
to quantify and assess the range of hydrological projections across an ensemble of
GCMs, it may be as equally feasible to apply a GHM (Mac-PDM.09 here) as it is to
apply a CHM to explore catchment-scale changes in runoff with global warming.”

Furthermore, given that it appears we “undersell” the GHM, we have removed the
second sentatnce from the text below, which appeared in the original version of the
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manuscript: “The results imply that the GHM we applied here may be a useful and com-
plimentary tool to the set of CHMs we applied for assessing catchment-scale changes
in runoff where ensembles (instead of a single GCM) of GCMs are applied. How-
ever, this does by no means advocate the application of any GHM over any CHM for
catchment-scale studies – the results merely suggest that the GHM we applied could
be seen as complimentary to the CHMs we applied”

*****************************************************************************************

6. The sensitivity of the ClimGen/weather generator downscaling approach is not dis-
cussed. This is not the only approach to downscaling (e.g. Maraun et al 2010 Reviews
of Geophysics doi:10.1029/2009RG000314) – and of course adds further uncertainty
into your results. What might be the ‘true’ uncertainty bounds for your results? Can you
discuss this? Surely they are bigger than those shown in figure 8. Can you be explicit
about all of the different components that go to make up the total uncertainties in your
results – what are they and how big are they relatively speaking?

We have created a new Figure, Fig. 1, which is attached with this HESSD comment.
The figure summarises the main stages of a climate change hydrological impact as-
sessment and the inherent uncertainties. The figure highlights which uncertainties we
sample in our analysis. We have also added the following text to the manuscript, in
a new sub-section (“1.3 Uncertainties in climate change hydrological impact assess-
ment”), to support the new figure: “Climate change will affect the global terrestrial
hydrological system (Kundzewicz et al., 2007) and there is evidence that it has already
responded to the observed warming over recent decades (Bates et al., 2008). The
most common method for assessing the magnitude of this impact is to run a hydrologi-
cal model driven by various climate projections from general circulation models (GCMs,
i.e. global-scale climate models) as input forcing data (e.g. Gosling et al., 2010). The
simulations of key hydrological indicators, such as river runoff, can then be used to as-
sess the potential impact of climate change and to inform policy- and decision-making.
However, there are a number of uncertainties associated with making such projections.
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Fig. 1 summarises the four main stages of performing a climate change hydrological
impact assessment, which is broadly similar to other climate change impact sector as-
sessments (Gosling et al. 2009). The first stage is to determine the greenhouse gas
emissions scenarios with which the climate model (e.g. a GCM) will be driven with,
in order to produce the climate change projections (the second stage). GCMs typi-
cally represent the atmosphere, ocean, land surface, cryosphere, and biogeochemical
processes, and solve the equations governing their evolution on a geographical grid
covering the globe. Some processes are represented explicitly within GCMs, large-
scale circulations for instance, while others are represented by simplified parameter-
isations. The use of these parameterisations is sometimes due to processes taking
place on scales smaller than the typical grid size of a GCM (a horizontal resolution of
between 250 and 600 km) or sometimes to the current limited understanding of these
processes. Different climate modelling institutions will use different plausible represen-
tations of the climate system, which is why climate projections for a single greenhouse
gas emissions scenario will differ between modelling institutes. Two main methods can
be used to sample this so called “climate model structural uncertainty”. The first is to
use a range of climate projections from ensembles of plausible GCMs, to produce an
ensemble of impact projections for comparison. Such multi-model datasets are often
described as “ensembles of opportunity”, e.g. the World Climate Research Programme
Third Coupled Model Intercomparison Project (WCRP CMIP3; Meehl et al. 2007). A
second approach generates a “perturbed physics ensemble” (PPE) that introduces per-
turbations to the physical parameterisation schemes of a single climate model, leading
to many plausible versions of the same underlying model. If sufficient computer power
is available, then very large ensembles can be generated in this way. For example,
Stainforth et al. (2005) ran an ensemble of 2,578 simulations that sampled combina-
tions of low, intermediate, and high values of 6 parameters. As well as climate model
structural uncertainty, climate models are sensitive to the initial conditions with which
the models are initialised, which adds a further level of uncertainty. The third stage of
a climate change hydrological impact assessment is to downscale the climate model
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output to a finer resolution, suitable for application to a hydrological model. Two ap-
proaches are typically available, statistical downscaling and dynamical downscaling.
The former uses statistical relationships to convert the large-scale projections from a
GCM to fine scales. Different statistical methods can be applied for the downscaling,
which introduces uncertainty. The latter approach uses a dynamic model similar to a
GCM to cover a region. The dynamic model is then forced at its lateral boundaries
using results from the coarse scale GCM. The dynamic method is typically more com-
putationally expensive but does not rely on the central assumption of most statistical
downscaling, that the downscaling relationship derived for the present day will also
hold in the future. In the final stage, the downscaled climate data is applied to a hy-
drological model. Uncertainty at this stage can arise from the application of different
hydrological models, e.g. CHMs and GHMs (similar in essence to the uncertainty that
can be sampled from a GCM ensemble of opportunity), and from different parameters
sets and perturbations within a given hydrological model, i.e. parameter uncertainty
(similar in essence to the uncertainty that can be sampled from a GCM PPE). For six
catchments, we compare the simulated runoff response of a GHM and CHM to pro-
jected future climate associated with (1) several prescribed increases in global-mean
temperature from a single GCM to explore simulated response to different amounts of
climate forcing, and (2) a prescribed increase in global-mean temperature of 2.0◦C for
seven GCMs to explore response to climate model structural uncertainty. The main
sources of uncertainty sampled by this methodological framework are shaded in Fig.
1. Note that emissions uncertainty and downscaling uncertainty are not sampled, i.e.
they are held constant, and nor do we consider GCM perturbed physics or hydrological
model parameter uncertainty.”

We have also added the following text to the Discussion, which references the Maraun
et al. (2010) paper you cited: “A key conclusion is that climate model uncertainty domi-
nates hydrological model uncertainty. However, it is acknowledged that this conclusion
is based on the prior uncertainty assigned to both climate and hydrological models.
Moreover, we have not sampled downscaling uncertainty, emissions uncertainty, and
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hydrological model parameter uncertainty (see Fig. 1). Therefore, we are likely under-
estimating the magnitude of climate and hydrological uncertainty in our analysis. Given
the constraints of computational resources, we considered seven climate models and
two hydrological models for each catchment. It can be argued that the application of
seven climate models presents a reasonable representation of climate model struc-
tural uncertainty, given that previous climate change hydrological impact assessments
have tended to apply a similar or lower number of climate models (Arnell et al. in
review; Hayashi et al. 2010; Prudhomme et al. 2003). The prior uncertainty from
climate model structural uncertainty could be reduced by comparing GCM simulations
of baseline climate with observations. Such considerations have led to the calculation
of performance metrics for GCMs, such as ranking them according to a measure of
relative error (Gleckler et al., 2008). Forming a single index of model performance,
however, can be misleading in that it hides a more complex picture of the relative mer-
its of different models. Furthermore, for one specific region, Chiew et al. (2009) con-
cluded that there was no clear difference in rainfall projections between the ‘better’ and
‘poorer’ 23 GCMs included in the CMIP3 archive (7 of which we applied here) based
on their abilities to reproduce observed historical rainfall. Therefore in their analysis,
using only the better GCMs or weights to favour the better GCMs gave similar runoff
impact assessment results as the use of all the 23 GCMs. Moreover, on a concep-
tual level, it has been argued that, because of deep and structural uncertainty, it is
not appropriate to seek to estimate the relative weight of different GCMs, and to do
so would lead to significant over-interpretation of model-based scenarios (Stainforth et
al., 2007): all models are only partial representations of a complex world, and miss
important processes. For these reasons, in the present analysis, we assumed that all
the GCMs are equally credible, although they are not completely independent. The
computational resources required to perform multiple GHM simulations are relatively
small compared with those required to run multiple CHMs because in previous work
ClimGen was integrated with the GHM and adapted to run by high throughput com-
puting (HTC) on the University of Reading Campus Grid, which reduced simulation
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time by a factor of over 80 relative to running on a single compute node (see Gosling
et al. 2010). A more thorough consideration of downscaling uncertainty would apply
climate projections from regional climate models (RCMs), which have been dynami-
cally downscaled, and/or a range of different statistical downscaling algorithms other
than that included in ClimGen (e.g. see Maraun et al. 2010). However, this would
effectively at least double the computing and time resources required from what was
used in the present analysis. A more thorough consideration of hydrological model
uncertainty would explore 1) hydrological model parameter perturbations, and 2) the
application of several CHMs for each catchment. However, this would be demanding in
terms of computational and human resources. For instance, to address the latter sug-
gestion above, each CHM (SLURP, SWAT, etc.) would need to be calibrated for each
individual catchment (Liard, Mekong etc.) and would then involve performing 216 CHM
simulations (6 CHMs x 6 catchments x 6 increases in global-mean air temperature) for
a single GCM pattern. As such, a computer cluster with around 216 nodes would be
ideal, but each CHM would need to be adapted for running by HTC. This is not straight-
forward; see Gosling et al. (2010) for a detailed discussion on the issues regarding
adapting a hydrological model to run by HTC. To address the former suggestion, Multi-
Method Global Sensitivity Analysis (MMGSA; Cloke et al., 2007) presents a method
for systematically perturbing all model parameters systematically but again, the exten-
sive computing resources required for this precluded such an analysis here. Moreover,
each CHM and GHM will include different parameters, so a like-with-like comparison is
not straightforward. Nevertheless, Arnell (this issue) demonstrates that the uncertainty
associated with 100 CHM model parameter sets is vastly smaller than the uncertainty
across 21 GCM climate projections, which supports our conclusion that climate model
uncertainty dominates hydrological model uncertainty. Moreover, evidence from other
climate change impact assessment sectors (e.g. agriculture; Challinor et al. 2009)
suggests that climate model uncertainty is effectively damped once other non-climatic
uncertainties, such as decision-making processes or socio-economic uncertainties are
considered, in a wider decision-making framework.”
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The results of these edits, is that we are more explicit about all of the different com-
ponents that go to make up the total uncertainties in our results. However, we do not
attempt to quantify how large the “total uncertainty range” could be. Without extensive,
detailed and systematic analysis, this would be highly subjective.

*****************************************************************************************

7. For the discharge, I would have thought that also looking at the whole discharge
distribution would be interesting at the catchment scale. Did you consider this at all?

We did consider this. However, the paper explores hydrological impacts for 6 different
degrees of global-man warming, across 7 different GCM climate change projections,
and explores mean annual runoff, mean monthly runoff, and Q5 and Q95 runoff. The
inclusion of a distribution analysis would risk making the paper too lengthy. Moreover,
we believe that a great deal of information can be gained by exploring the Q5/Q95
and mean runoff, which are inherently indicators of the distribution, generally. Also,
we deliberately avoided exploring only mean runoff in this paper. For instance, the
complex nature of the response of river discharge to climate change highlights under-
recognised limitations in the common use of mean river discharge as a measure of (1)
the response of hydrological systems to climate change and (2) freshwater availability
(e.g. water stress index, relative water demand) (Taylor, 2009). As our paper shows,
mean river discharge can mask considerably greater intra-annual (seasonal) variations
which are of fundamental importance to water management and our understanding of
freshwater availability. For example, reductions in low (Q95) flows can lead to acute
water shortages as well as affect environmental ïňĆow requirements and dry-season
water allocations; changes in high (Q05) flows can impact flood risk and basin storage
requirements.

Taylor, R. G.: Rethinking water scarcity: role of storage. EOS, Trans. Am. Geophys.
U., 90(28), 237–238, 2009

*****************************************************************************************
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8. End of section 3.1: If there was no catchment for which all 7 GCMs agreed on ppt
change then what is the point of carrying out the hydrological analysis. Think that you
need to make your story more concrete here and discuss this point. Are the signs of the
runoff response shown in the results directly attributable to the catchment precipitation
used as input? If there was a more thorough front end analysis of the precipitation (as
suggested above) then this would probably be more obvious.

This is a good point. However, it could also be argued that perhaps it is even more
important to carry out the hydrological analysis because of differences in the sign of
projected precipitation change. This is because the climate-runoff relationship is often
non-linear and moreover, it is important to demonstrate the potential uncertainty there
is in runoff simulations that use climate projections from different climate models. This
has important consequences for the decision-making process in water resources man-
agement, for instance. Therefore we have edited the text in Section 3.1. to reflect your
point above, as well as the points we have just discussed. The text now reads: “Whilst
all GCMs simulate increases in precipitation with climate change for the Liard, there
is not consensus in the sign of precipitation change across the seven GCMs for the
remaining catchments. For instance, with the Mekong, four GCMs simulate increases
in precipitation with climate change and three GCMs simulate decreases. It could be
argued that this precludes a hydrological analysis using all seven GCMs. However,
given the large dependence of runoff on precipitation (Chiew et al., 2009) and that
complex non-linear interactions are common between climate forcing and runoff (Ma-
jone et al. 2010), it is important to demonstrate how the uncertainty in the projections
of precipitation across GCMs translates into runoff projections. Moreover, the conse-
quent uncertainty across runoff simulations could have important implications for water
resources management. Analyses in Section 3.3. demonstrate how the simulated
changes in precipitation from each GCM are realised in changes in runoff.”

*****************************************************************************************

9. Page 7205 line 10 – extra ‘that’
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This has been corrected

*****************************************************************************************

10. How does each component of your results compare with previous climate impact
runoff studies from around the globe?

Unfortunately, such a comparison is precluded by the application of different climate
change scenarios, different climate models, different CHMs and GHMs, and different
catchment locations and sizes, which are applied in other studies. This means the
results presented here are not directly comparable with previous climate change hy-
drological impacts assessments. Indeed, neither are many other hydrological impacts
assessments, for this very reason. The purpose of this analysis was to compare a GHM
with several CHMs for six specific catchments, rather than to compare the results with
other studies. Readers interested in multiple model-comparisons are referred to the
EU Water and Global Change Project (WATCH) for more information: http://www.eu-
watch.org.

However, Thorne (this issue) does make some inter-study comparisons based upon his
CHM simulations, because he used a number of SRES emissions scenarios, which are
comparable with some other studies. We used prescribed warming scenarios, which
are less comparable, but were necessary in our case to aid inter-model comparisons.
Also, Kingston et al. (this issue) notes that their results are comparable to those of
previous studies of the Mekong.

Kingston, D. G., Thompson, J. R. and Kite, G.: Uncertainty in climate change projec-
tions of discharge for the Mekong River Basin. Hydrol. Earth Syst. Sci., 2010

Thorne, R. Uncertainty in the impacts of projected climate change on the hydrology
of a subarctic environment: Liard River Basin.: Hydrol. Earth Syst. Sci. Discuss., 7,
3129–3157, 2010
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Please also note the supplement to this comment:
http://www.hydrol-earth-syst-sci-discuss.net/7/C4103/2010/hessd-7-C4103-2010-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 7, 7191, 2010.
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Fig. 1. Figure 1. The four stages of a climate change hydrological impact assessment and
the inherent uncertainties. The shaded areas denote the uncertainties we considered in this
analysis.
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Fig. 2. Figure 3. Change in total-annual precipitation relative to baseline (vertical axis; %) for
UKMO HadCM3 prescribed warming of 1-6◦C (horizontal axis), for each catchment.
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Fig. 3. Figure 4. Change in total-annual precipitation relative to baseline (vertical axis; %) for
for the 7 GCMs under 2◦C prescribed warming (horizontal axis), for each catchment.
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