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Abstract

The trapezoidal relationship between surface temperature (Ts) and vegetation index
(VI) was used to estimate soil moisture in the present study. An iterative algorithm is
proposed to estimate the vertices of the Ts ∼VI trapezoid theoretically for each grid, and
then WDI is calculated for each grid using MODIS remotely sensed measurements of5

surface temperature and enhanced vegetation index (EVI). The capability of using WDI
based on Ts ∼VI trapezoid to estimate soil moisture is evaluated using soil moisture ob-
servations and antecedent precipitation in the Walnut Gulch Experimental Watershed
(WGEW) in Arizona, USA. The result shows that, Ts ∼VI trapezoid based WDI can
well capture temporal variation in surface soil moisture, but the capability of detecting10

spatial variation is poor for such a semi-arid region as WGEW.

1 Introduction

In 1980s’, it was found that, land surface temperature (Ts) and the fraction of vegetation
cover, which is represented by vegetation indices (e.g., NDVI), typically show a strong
negative relationship (e.g., Goward et al., 1985; Nemani and Running, 1989). Such15

a relationship has been widely used to investigate the moisture condition of land sur-
faces. Several studies focused on the slope of the Ts/NDVI curve for providing informa-
tion on vegetation and moisture conditions at the surface (e.g., Smith and Choudhury,
1991; Nemani et al., 1993). Their approach was later extended to use the information
in the Ts/VI scatter-plot space, whose envelope is considered to be in either a triangular20

shape (e.g, Price, 1990; Carlson et al., 1994), or a trapezoid shape (e.g., Moran et al.,
1994).

The idea of triangle Ts/VI space has been used to develop the so called “triangle
method”, and has been applied by a lot of researchers (e.g., Gillies et al., 1997; Sand-
holt et al., 2002; Margulis et al., 2005; Tang et al., 2010). The “triangle” method fits the25

scatter-plot of observed vegetation index (VI) and land surface temperature (Ts) using
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a triangle. The central assumption of the triangle method is that, given a large number
of pixels reflecting a full range of soil surface wetness and fractional vegetation cover,
sharp boundaries (edges) in the data reflect real physical limits: i.e., bare soil, 100%
vegetation cover, and lower and upper limits of the surface soil water content, e.g.,
completely dry or wet (field capacity), respectively. The dry and wet edges ultimately5

intersect at a (truncated) point at full vegetation cover. Then, based on the triangle, the
relative value of surface soil water content and the surface energy fluxes at each pixel
can be defined in terms of its position within the triangle. The advantage of the triangle
method is its independence of ancillary data. The approach, however, has difficulty in
defining the dry and wet edge, especially the dry edge. Even with a large number of10

remotely sensed observations, the boundaries of the triangle space are still hard to be
well established, because on one hand, there are situations when VI−Ts points scatter
in a close range such as during rainy season or in areas with a narrow VI range; on
the other hand, the Ts∼VI relationship is much more complicated at large scale than at
local scale and may vary at different parts due to heterogeneity in land surface proper-15

ties and atmospheric forcing. Furthermore, because the triangle space is established
empirically, the soil moisture estimates according to such an empirical triangle using
an image at one time are hard to be compared with those at another time.

Moran et al. (1994) proposed the idea of vegetation index/temperature (VIT) trape-
zoid, and the water deficit index (WDI) for evaluating evapotranspiration rates of both20

full-cover and partially vegetated sites. However, very few applications were found in
the literature based on the idea of trapezoid Ts/VI space for estimating soil moisture. In
the present paper, we will extend the idea of VIT trapezoid and WDI, for estimating soil
moisture estimation using MODIS products. The method, referred to as the trapezoid
method, will be described in detail in Sect. 2. Then the method will be applied to the25

Walnut Gulch Experimental Watershed in Arizona, USA, for which, the data used and
data pre-process will be introduced in Sects. 3 and 4, and the results will be presented
in Sect. 5. Finally, some conclusions will be drawn in Sect. 6.
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2 Trapezoid method

2.1 The concept of (Ts−Ta)∼V c trapezoid

Idso et al. (1981) and Jackson et al. (1981) proposed the CWSI (Crop Water Stress
Index) for detecting plant water stress based on the difference between canopy and
air temperature. It is designed for full-cover vegetated areas and bare soils at local5

and regional scales. To overcome the difficulty of measuring foliage temperature in
partially vegetated fields, Moran et al. (1994) proposed to use the shape of trapezoid to
depict the relationship between the surface temperature and air temperature difference
(Ts−Ta) vs. the fractional vegetation cover (Vc, ranging from 0 for bare soil to 1 for full-
cover vegetation) (Fig. 1), so as to combine spectral vegetation indices with composite10

surface temperature measurements to allow application of the CWSI theory to partially
vegetated fields without a priori knowledge of the percent vegetation cover. Based
on the trapezoid assumption and the CWSI theory, Moran et al. (1994) introduced the
Water Deficit Index (WDI) for evaluating field evapotranspiration rates and relative field
water deficit for both full-cover and partially vegetated sites. For a given pixel with15

measured surface temperature and air temperature difference, i.e., (Ts −Ta)r, WDI is
defined as:

WDI =
(Ts − Ta)min − (Ts − Ta)r

(Ts − Ta)min − (Ts − Ta)max
(1)

where Ta is air temperature; Ts is surface temperature; the subscripts min, max, and
r refer to minimum, maximum, and measured values, respectively; and the minimum20

and maximum values of (Ts−Ta) are interpolated linearly on the cold edge and warm
edge of the (Ts−Ta)∼Vc trapezoid for the specific Vc value of the pixel. Graphically, WDI
is equal to the ratio of distances AC/AB in Fig. 1.
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2.2 Calculation of vertices of the (Ts −Ta)∼V c trapezoid and its simplification:
the Ts ∼VI trapezoid

The theoretical basis of (Ts−Ta)∼Vc trapezoid is the energy balance equation, i.e.,

Rn = G + H + λ E (2)

where, Rn is the net radiant heat flux density (W m−2), G is the soil heat flux density5

(W m−2), H is the sensible heat flux density (W m−2), and λE is the latent heat flux to
the air (W m−2) and λ the heat of vaporization (kJ/kg).

In their simplest forms, H and λE can be expressed as:

H = Cv (Ts − Ta)/ra (3)

λ E =
[
∆ (Rn − G) + Cv (VPD)/ra

]
/
[
∆ + γ

(
1 + rc/ra

)]
(4)10

where

– Ts and Ta are the land-surface and air temperature (K), respectively;

– Cv is the volumetric heat capacity of air (1295.16 J K−1 m−3);

– VPD (vapor pressure deficit of the air) (hPa) is calculated as a difference be-
tween saturation vapour pressure es and actual vapour pressure ea (hPa), given15

by (WMO, 2008)

eS =6.112exp

(
17.62 T

′

a

T
′
a+243.12

)
(T

′

a is the air temperature in ◦C, T
′

a = Ta−273.15)

ea =µes, (µ is observed relative humidity)
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– ∆ is the slope of the curve of saturation water vapour pressure versus air temper-
ature, calculated with (WMO, 2008)

∆ = 4098 · es/
(

237.3 + T
′

a

)2

– γ the psychrometric constant (hPa/◦C), given by (WMO, 2008)

γ = 0.646 + 0.0006 T
′

a5

– ra the aerodynamic resistance (s m−1);

– rc the canopy resistance to vapor transport (s m−1);

Then, combining Eqs. (2), (3), and (4), we obtain the equation for temperature differ-
ence between air and land surface:

(Ts − Ta) =
[
ra (Rn − G)/Cv

] {
γ
(
1 + rc/ra

)
/
[
∆ + γ

(
1 + rc/ra

)]}
(5)10

− VPD/
[
∆ + γ

(
1 + rc/ra

)]
As suggested by Moran et al. (1994), for the (Ts−Ta)∼Vc trapezoid, its four vertices cor-
respond to (1) well-watered full-cover vegetation, (2) water-stressed full-cover vegeta-
tion, (3) saturated bare soil, and (4) dry bare soil. Using the energy balance equations,
Moran et al. computed the values of the four vertices of the trapezoid as the following:15

(1) For full-covered and well-watered vegetation (Point 1)

(Ts − Ta)1 =
[
ra (Rn − G)/Cv

] {
γ
(
1 + rcm/ra

)
/
[
∆ + γ

(
1 + rcm/ra

)]}
(6)

− VPD/
[
∆ + γ

(
1 + rcm/ra

)]
where rcm is the minimum canopy resistance, i.e., canopy resistance at potential evap-
otranspiration.20
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(2) For full-covered vegetation with no available water (Point 2)

(Ts − Ta)2 =
[
ra (Rn − G)/Cv

] {
γ
(
1 + rcx/ra

)
/
[
∆ + γ

(
1 + rcx/ra

)]}
(7)

− VPD/
[
∆ + γ

(
1 + rcx/ra

)]
where rcx, is the canopy resistance associated with nearly complete stomatal closure.

(3) For saturated bare soil (Point 3), where canopy resistance (rc)=0, we have5

(Ts − Ta)3 =
[
ra (Rn − G)/Cv

]
[γ (∆ + γ)] − VPD/(∆ + γ) (8)

(4) For dry bare soil (Point 4), where rc =∞ (analogous to complete stomatal clo-
sure), and λE =0, we have

(Ts − Ta)4 = ra (Rn − G)/Cv (9)

The (Ts−Ta)∼Vc trapezoid considers that relationship between (Ts−Ta) and Vc. Now we10

think about the issue in another way that, with a given value of Ta, how Ts is related with
Vc. To analysis this Ts∼Vc relationship, we use Eq. (6)∼(9) to calculate the Ts for the
four extreme cases (or trapezoid vertices) by move Ta in the equations to the right side
of the equations. At the same time, Vc is replaced by vegetation index (VI). So that,
we modify the structure of the trapezoid, obtaining a simplified Ts∼VI trapezoid with the15

horizontal axis as VI, and the vertical axis as the surface temperature Ts. We therefore
refer the algorithm proposed here to as Ts−VI trapezoid method.

To obtain the values of Ts with Eq. (6)∼(9), we need to know ra, rc (including rcm and
rcx), Rn, G for the four vertices separately, as shown in the following section.
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2.3 Calculation of the components in the formula for four vertices of Ts ∼VI
trapezoid

2.3.1 Aerodynamic resistance (ra)

The water vapor aerodynamic resistance ra (s/m) can be estimated with the following
equation (Brutsaert, 1982):5

ra =
[

ln
(
z − d
z0m

)
− ψm

] [
ln
(
z − d
z0h

)
− ψh

]
/k2 uz (10)

where

– z is the height (m) above the surface at which uz and Ta are measured (commonly
2 m);

– uz is wind speed (m s−1), which could be measured directly;10

– d is displacement height (m), given by d = 0.667h, and h is the height of vegeta-
tion (Garratt, 1992), which should be given as an input.
z0m is the roughness lengths for momentum (m), given by Z0m = h/8 (Garratt,
1992). For bare soil surface, z0m is commonly taken to be 0.01 m (Shuttleworth
and Wallace, 1985).15

– z0h is the roughness lengths for heat (m), given by

z0h = z0m/exp
(
KB−1

)
(11)

Here, KB−1 is a dimensionless parameter. Kustas et al. (1989) showed that KB−1 is a
linear function of the product of u and Ts−Ta, given by

KB−1 = SKB · u · (Ts − Ta) (12)20
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where SKB is an empirical coefficient, which varies somewhere between 0.05 and 0.25.

– k is the von Karman constant (k =0.41);

– ψh and ψm are the stability corrections for heat and momentum (unitless). ψh and
ψm are calculated differently depend on the atmospheric stability, which could be
indicated by the Monin-Obukhov length L, given by5

L = −ρ Cp u
3
∗ Ta/(kgH) (13)

where g=9.8 m/s2, k =0.41, ρ is the air density (kg m−3), Cp the air specific heat at

constant pressure (1004 J kg−1 K−1), u∗ =uzk/[ln(z/z0m)].
For stable situations (L>0),{
ψm = −5 (z − z0m)/L
ψh = −5 (z − z0h)/L

(14)10

For unstable conditions (L≤0),
ψm = 2 ln

(
1 + x
1 + x0

)
+ ln

(
1 + x2

1 + x2
0

)
− 2 tan−1(x) + 2 tan−1 x0

ψh = 2 ln
(

1 + y
1 + y0

) (15)

where, x=
[
1−16(z−d )/L

]1/4
, x0 =

[
1−16z0m/L

]1/4
, y =

[
1−16(z−d )/L

]1/2
,

y0 =
[
1−16z0h/L

]1/2
.

2.3.2 Net radiant heat flux density (Rn)15

Net radiation is defined as the difference between the incoming and outgoing radiation
fluxes including both long- and shortwave radiation at the surface of Earth. Net radiant
heat flux density (Rn) (W m−2) can be expressed as:

Rn = (1 − α) Rs + εa × σ × T 4
a − εs σ T

4
s (16)
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where

– α is surface shortwave albedo, which can be calculated as a combination of
MODIS narrow band spectral reflectance values (α1 ∼ α7) (Liang et al., 1999),
given by

α = 0.3973 α1 + 0.23821 α2 + 0.3489 α3 + 0.265 α4 + 0.1604 α5 − 0.0138 α65

+ 0.0682 α7 + 0.0036

– Rs is solar radiation, estimated jointly by solar constant, solar inclination angle,
geographical location and time of year, atmospheric transmissivity, ground eleva-
tion, etc. The basic formula for estimating Rs is (Zillman, 1972):

Rs =
S0 cos2 θ

1.085 cos θ + e0 (2.7 + cos θ) × 10−3 + 0.1
10

where S0 is the solar constant at the atmospheric top (1367 w/m2), θ the solar zenith
angle, e0 is the vapor pressure. In consideration of the effects of topography on the
incident short-wave radiation (Rs), the solar zenith angle (θ) is corrected using digital
elevation model (DEM) data (Duffie and Beckman, 1991) with the following formula:

cos θ = sin (δ) sin (ϕ) cos (s) − sin (δ) cos (ϕ) sin (s) cos (r)15

+ cos (δ) cos (ϕ) cos (s) cos (ω) + cos (δ) sin (ϕ) sin (s) cos (r) cos (ω)

+ cos (δ) sin (γ) sin (s) sin (ω)

where φ is the latitude (positive in the north hemisphere); s is the slope, and r is
the slope orientation, both derived from DEM; δ is solar declination, and ω solar hour
angle, given by20

δ = 0.409 sin
(
2 π · DOY/365 − 1.39

)
8712
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ω =
π
12

(t − 12)

where DOY is the day of year, and t is the time when the satellite TERRA pass over
the region.

– εa is the atmospheric emissivity estimated as a function of vapor pressure, given
by Iziomon et al. (2003)5

εa = 1 − 0.35 × exp
(
−10 × ea/Ta

)
– εs is surface emissivity often evaluated as a function of NDVI. For in-

stance, εs could be predicted for the 8–14 µm spectral range from NDVI using
εs =1.009+0.047 Ln (EVI) (Bastiaanssen et al., 1998). Among MODIS Land Sur-
face Temperature and Emissivity products (MOD11), there are emissivity products10

for band 31 and 32, i.e. ε31 and ε32. In the present study, we take the average of
the two products to get surface emissivity, namely, εs = (ε31+ε32)/2.

In our algorithm, Rn is not directly solved with the Eq. (16), because Ts is considered as
an unknown variable. Instead, we replace the term Rn in Eq. (6)∼(9) with the Eq. (10)
respectively, so that we get four quartic equations for Ts at four vertices separately.15

Then the quartic equations are solved with the iterative algorithm which is shown later
in Sect. 2.4 and Fig. 2, by doing so, all the values of Ts for the four vertices are obtained.

2.3.3 Soil heat flux density G

G is normally considered to be linearly related to Rn. Several studies have shown that
the value of G/Rn typically ranges between 0.4 for bare soil and 0.05 for full vegetation20

cover (Choudhury et al., 1987). Idso et al. (1975) conducted some experiments inves-
tigating the impacts of water content on the net radiation∼ soil heat flux relationship
over bare soil surface, and showed that G/Rn ranges from 0.2 for wet bare soil to 0.5
for dry bare soil.
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2.3.4 Canopy resistance (rc)

Canopy resistance (rc), including rcm and rcx that refer to the minimum and maxium
canopy resistance respectively, should be calculated for Point 1 and Point 2. According
to Moran et al. (1994), rcm in Eq. (6) is calculated with rsm/LAI (LAI is the leaf area
index, rsm is minimum stomatal resistance). rcx in Eq. (7) is calculated with rsx/LAI (rsx5

is maximum stomatal resistance).
Values of minimum and maximum stomatal resistance (rsm and rsx, respectively) are

published for many agricultural crops under a variety of atmospheric conditions. Moran
et al. (1994) suggested that, if values are not available, reasonable values of rsm =25–
100 s/m and rsx =1000–1500 s/m will not result in appreciable error, we set rsm =2510

and rsx =1500. Because LAI are mostly less than 8 (Scurlock et al., 2001), we set
LAI=8. Therefore, we have rcm =3.125 and rcx =187.5.

2.4 Iterative procedure for calculating Ts

Values of Ts for the four vertices are obtained by an iterative procedure for each pixel.
An initial value of ra is estimated by ignoring the two stability corrections, i.e., ψh and15

ψm. With the initial ra, initial values of Ts are obtained with Eq. (6)∼(9) for the four
vertices. Then the iterative procedure is proceeded by iteratively changing H , KB−1, ra,
and in consequence, Ts, until the value of Ts is table (i.e., the change of Ts is less than
0.1 k, and the change of ra is less than 0.1 s/m). Normally, it takes 5 to 10 iterations.
While Ts is derived, Rn, G, H , and ra for each vertex are obtained as well.20

The iterative procedure is conducted distributedly based on pixels, that is, the trape-
zoid is constructed separately for each pixel, and each trapezoid has its own values of
Ts.
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3 Case study area and data used

3.1 The Walnut Gulch Experimental Watershed

Data of the Walnut Gulch Experimental Watershed (WGEW) was used in the present
study. The WGEW is defined as the upper 148 km2 of the Walnut Gulch drainage
basin in an alluvial fan portion of the San Pedro catchment in southeastern Arizona5

(Fig. 3). It was developed as a research facility by the United States Department of
Agriculture (USDA) in the mid-1950s. This rangeland region receives 250–500 mm
of precipitation annually, with about two-thirds of it as convective precipitation during
a summer monsoon season. The potential evapotranspiration is approximately ten
times annual rainfall. The runoff in the ephemeral streams is of short duration and is10

typically near critical depth. The topography can be described as gently rolling hills
incised by steep drainage channels which are more pronounced at the eastern end
of the catchment near the Dragoon Mountains. Soil types range from clays and silts
to well-cemented boulder conglomerates, with the surface (0–5 cm) soil textures being
gravelly and sandy loams containing, on average, 30% rock and little organic matter15

(Renard et al., 1993). The mixed grass-brush rangeland vegetation ranges from 20 to
60% in coverage. Grasses primarily cover the eastern half of the catchment, while the
western half is bush-dominated.

3.2 MODIS data and ground observational data used

The moderate resolution imaging spectroradiometer (MODIS) instrument is very popu-20

lar for monitoring soil moisture because of its high spectral (36 bands) resolution, mod-
erate spatial (250–1000 m) resolution, and various products for land surface properties.
All standard MODIS data products are freely available at NASA Land Processes Dis-
tributed Active Archive Center (URL: https://lpdaac.usgs.gov/lpdaac/). MODIS prod-
ucts used in the present study include: MOD09A1 land surface albedo data, MOD11A125

land surface temperature data, and MOD13A1 vegetation data. Details of the products
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we used here are listed in Table 1. We selected MODIS data of ten cloud-free days
approximately evenly distributed in the period from January to December 2004. All the
MODIS data are resampled to 500 m resolution.

Meteorological data required here include air temperature Ta, relative humidity µ,
and wind velocity u, observed approximately at the time (11:00 a.m.) when the satellite5

Terra passes over the WGEW region. The Ta, relative humidity µ, and wind velocity u,
are observed at three sites. We take the average of the observations at three sites for
µ and u. Observations of Ta are pre-processed, which will be discussed in Sect. 4.3.
To evaluate the soil moisture estimation results, soil moisture observations at 16 sites
and precipitation data at 87 sites are used. The locations of the 3 meteorological ob-10

servation sites, 16 soil moisture observation sites and 87 rain gauging sites are plotted
in Fig. 4. Because some gauging sites are located on the edge of the watershed, to
include the observations at these sites for evaluation, our study area is slightly larger
than the WGEW watershed.

In addition, SRTM digital elevation model (DEM) data and land cover data are used.15

All the ground data are obtained from the website of United States Department of
Agriculture (USDA) Southwest Watershed Research Center (URL: http://www.tucson.
ars.ag.gov/dap/).

4 Data pre-processing

4.1 Destriping for MODDIS albedo data (MOD09A1)20

MODIS09A1 product includes albedo data of 7 bands. Surface shortwave albedo is
calculating as a weighted summation of the albedo data of 7 bands, as shown in
Sect. 3.2.2. It was found that the albedo data of the fifth channel has serious prob-
lem of bad strips, which would affect the accuracy of surface albedo calculation.
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The strips in Band 5 data mostly are lines of one pixel in width, which are distinguish-
able from neighbouring pixels. To identify the strips, we firstly define the following two
convolution kernels:

k1 =

0 −1 0
0 1 0
0 0 0

 k2 =

0 0 0
0 1 0
0 −1 0


Then, we calculate KK = convol (D, k1)× convol (D, k2), where convol(•) is the convo-5

lution filtering function in IDL , and D is the data to be processed. A pixel in a strip is
identified if KK >0.001 for this pixel. For bad pixels, linear interpolation is applied to
replace the bad values using the values of upside and downside neighboring pixels.

Besides the strips of one pixel width, there are also some strips with two pixels in
width resulted from the process of projection conversion in Band 5 of MOD09A1 albedo10

product. Considering that the pixels in strips have normally higher values than normal,
we identify pixels with values larger than 0.35 as “bad” pixels. Then we interpolate the
bad pixels with neighbouring “good” pixels with the method of Delaunay triangle (using
the program DEM BAD DATA DOIT in IDL). In the same way, pixels with value of 0 are
also treated.15

With the above two procedures, the quality of Band 5 albedo product was significantly
improved (see Fig. 5).

4.2 Denosing the MOD13A1 vegetation index data

When observing the land surface, MODIS is inevitably impacted by the variation of
satellite orbital position, cloud coverage and other atmospheric effects. Although sev-20

eral methods (such as Maximum Value Composites or Constrained View Maximum
Value Composite) have been applied to reduce the noise impacts the MODIS NDVI/EVI
products, quite amount of noise still exist in the VI dataset, and filtering is still necessary
when using them for constructing Ts ∼VI space.
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Many methods are available to denoise the MODIS NDVI/EVI data. Jennifer (2009)
compared several methods, and found that the asymmetric Gaussian, Double logistic,
and 4253H twice filter perform very well in general. Therefore, one of them, i.e., 4253H
twice filter (Velleman, 1980) was adopted here. The 4253H twice filter applies a series
of running medians of varying window size and a weighted average filter (e.g., Hanning5

filter), with re-roughing, to the EVI time series.
To perform the denoising process, a series of continuous EVI data over one year are

required. Therefore, before we use the MODIS data selected for 10 dates, we used
25 consecutive 16-day composite EVI data (the last 16-day composite data in 2003,
all 23 16-day composite EVI data in 2004, together with the first 16-day composite data10

in 2005) to conduct the denoising procedure. The effects of denoising for two randomly
selected pixels are shown in Fig. 6, from which we see that, both low values and high
values are smoothed.

4.3 Topographic correction of air temperature

With methods of estimating soil moisture using thermal satellite images, often both15

land surface temperature and ground-based air temperature observations are needed.
When applying such methods to mountainous regions, terrain effects have to be taken
into account because terrain would significantly affect both land surface temperature
and air temperature. To avoid the problem of steeply sloping terrain, some authors just
eliminated those pixels in mountainous part (e.g., Carlson et al., 1994), while in some20

other cases, land surface temperature was corrected (e.g., Hassan et al., 2007). In the
present study, we go the opposite way, i.e., instead of correct land surface temperature,
we correct the air temperature.

To make a successful air temperature interpolation, many factors should be taken
into account, such as the difference in elevation between grid points and monitoring sta-25

tions, temperature vertical gradient, geometric characteristics (slope, aspect) of each
grid cell, and vegetation coverage. Moore et al. (1993) proposed a specific algorithm
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to calculate daytime temperature at different altitudes within a valley. Based on that,
Bellasio et al. (2005) proposed a simplified equation in the form of

Ti = Tb − β
(
zp − z0

)
+ C

(
Si − 1/Si

) (
1 − LAIi/LAImax

)
(17)

where Ti is the unknown atmospheric temperature (K) at a zi altitude (m), Tb is the
measured atmospheric temperature (K) at a zb altitude (m), β is the vertical tempera-5

ture gradient (K m−1), C is a constant, LAImax and LAIi are, respectively, maximum leaf
area index (LAI) and its value at zi , and Si is the ratio between direct shortwave radia-
tion on the actual surface (with its slope and aspect) and direct shortwave radiation on
a horizontal free surface.

The above equation did not consider the impacts of wind. But according to the re-10

search of MccuTchan and Fox (1986), for their study area (an isolated, conical moun-
tain with elevation ranging from 2743 to 3324 m), wind speeds greater than 5 ms−1

negate any slope, elevation or aspect differences present at low wind speed. We ap-

proximate this wind effect with a coefficient e−u/3 (u is the wind speed), in sequence,
obtain a modified equation of Eq. (X) as15

Ti = Tb − β (zi − z0) + C−u/3
e

(
Si − 1/Si

) (
1 − LAIi/LAImax

)
(18)

Therefore, when there are air temperature observations at several sites, we can con-
duct air temperature correction in the following three steps:
(1) Correct the observations to a flat plane at a base level
All the temperature data are corrected to a flat plane at a base level (the lowest el-20

evation z0 of the observation sites), considering the effects of not only the elevation
difference, but also the effects of wind, slope, and aspect. This is basically a reverse
correction of Eq. (X), i.e.,

T (i )
a,b = T (i )

a + β (zi − z0) − C−u/3
e

(
Si − 1/Si

) (
1 − LAIi/LAImax

)
(19)
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where T (i )
a,b is the temperature observation corrected to the base level at site i , β is the

temperature lapse rate (◦C/m), zi is the elevation of site i , and z0 is the elevation of the
base level (m).
(2) Interpolate temperature for each pixel p using observations on the flat plane at the
base level5

Use the corrected air temperature observations T (i )
a,b to interpolate the air temperature

for all pixels with a spatial interpolation method (e.g., the inverse distance weighting
interpolation method) to get interpolated air temperature T p

a,I for each pixel p on the flat
plane at the base level.
(3) Topographic correction for each pixel p to its real position using Eq. (18), where Tb10

is replaced by T p
a,I. Here we set LAImax =10, C=2 and β=0.0065.

5 Application of Ts−VI trapezoid method to WGEW

5.1 Construct Ts−VI trapezoids

Reasonable shape of trapezoid is the essence of all the algorithms based on the Ts-VI
relationship for estimating soil moisture. When construct with the algorithm described15

in Sect. 2, two parameters, i.e., SKB and G/Rn, are set by trial and error process. For
the case study area WGEW, we set SKB to be 0.1 for both vegetated points (point 1
and 2) and bare soil points (point 3 and 4), G/Rn to be 0.3 for wet bare soil, 0.4 for dry
bare soil, and 0.05 for full vegetation surface.

To show the effectiveness of the calculation for the values of Ts of four vertices, we20

plot the four vertices of the trapezoids constructed for all the pixels of the WGEW region
in four days in four seasons in Fig. 7. All the estimated Ts at each point are plotted in the
form of box-and-whisker plot. The data points (solid dots) of Ts vs. EVI are also plotted
in the map. From Fig. 7, we see that the constructed trapezoids well characterize the
Ts-EVI space, and basically all the Ts-EVI data points are set in the envelope of the25

trapezoids.
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5.2 Calculation of WDI

Based on the constructed Ts-VI trapezoid for each pixel, using the MODIS Ts and EVI
data, we calculate the WDI for each pixel p,

WDI(p) =
T (p)

S
− T (p)

S, min

T (p)
S, min

− T (p)
S, max

(20)

where Ts is surface temperature obtained from MODIS; the subscripts min, max, and5

r refer to minimum, maximum, and measured values, respectively; and the minimum
and maximum values of Ts are interpolated linearly on the dry edge and wet edge of
the Ts ∼VI trapezoid for the specific VI value of the pixel.

5.3 Comparison with soil moisture observation and precipitation

Using the surface soil moisture observations at 16 sites, we evaluate WDI estimates10

in several ways: (1) compared separate WDI estimates with ground observations of all
10 dates (Fig. 8); (2) compare the average of WDI estimates with the average ground
observations of 10 dates (Fig. 9); (3) compare the WDI estimates with ground obser-
vations of each date separately (Table 2).

From the scatter plot of WDI vs. observation in Fig. 8, we see that from the per-15

spective of a whole year, WDI estimates derived with the Ts−VI trapezoid method has
a negative correlation (correlation coefficient R =−0.7232) with surface soil moisture,
which indicates that WDI estimates can be used to detect the temporal variation in soil
moisture. Especially on the scale of the watershed, the average WDI is strongly nega-
tively related (correlation coefficient R =−0.9) to the average soil moisture observation,20

as shown in Fig. 9. Although this is not a high correlation, considering that soil moisture
in dry environment, such as in semi-arid area, exhibits high spatial variability and po-
tentially rapid rates of temporal change in moisture conditions, the result is reasonably
good.
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The comparison between the WDI estimates with ground observations of each date
(Table 2) shows that, there is basically no correlation between WDI estimates and sur-
face soil moisture observations. This is partly because of the scale effect, i.e., point
soil moisture observations are essentially different from grid averaged soil moisture es-
timates due to sub-grid variability, partly because of the poor capability of using WDI5

to detect the variation in soil moisture with low spatial variability. Similar phenom-
ena have been observed by some other researchers as well. For instance, Pellenq et
al. (2003) noticed that the point-to-point comparison between observations and simu-
lations shows a poor correlation, but a good correlation is obtained when averaging the
simulated and observed soil moisture over a length of 100 m. Comparing the distribu-10

tion of soil moisture observations over the year with that observed instantaneously, we
see that the coefficient of variation (CV) for all soil moisture observations at 16 sites in
10 days over a year is 0.771, much larger than the CV for observed soil in each day
(ranging from 0.336 to 0.702, with a mean value of 0.528). In consequence, we can
use WDI to detect the temporal variation in soil moisture, but it is hard to detect spatial15

variation in each day, especially for a small watershed with low spatial soil moisture
variability.

Despite of the poor performance for characterizing the spatial variability of soil mois-
ture with WDI, by a visual inspection of the WDI maps of the WGEW region of the
10 dates in Fig. 10, we can still see a clear spatial pattern of soil moisture distribution,20

which indicates that, to some extent, soil moisture variability could be depicted by WDI
maps.

We analyzed the impacts of precipitation on soil moisture by calculating the correla-
tion between WDI and antecedent precipitation (AP) of different number of days, and
between soil moisture observation and AP of different number of days. The results are25

illustrated in Fig. 11, which show that WDI and soil moisture observation have similar
levels of correlation with AP (one is positive, another is negative), and the maximum
correlation occurs when approximately 10-day AP is taken into account. The scatter
plot is shown in Fig. 12. The result indicates that, as expected, the temporal variation
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of soil moisture (either reflected by ground observations, or by WDI estimates) is sig-
nificantly dominated by precipitation process.

6 Conclusions

Considerable efforts have been put on using the relationship between soil moisture and
index values derived from surface temperature-vegetation index (Ts ∼VI) space, which5

use optical and thermal RS data as input, to estimate soil moisture. In the present
study, we simplified the trapezoidal relationship between the surface temperature and
air temperature difference (Ts−Ta) vs. the fractional vegetation cover, which is proposed
by Moran et al. (1994), to a Ts ∼VI trapezoid. The trapezoid is constructed separately
for each pixel (grid). An iterative algorithm is proposed to estimate the vertices of10

the Ts ∼VI trapezoid theoretically. Then water deficit index (WDI) which is calculated
based on the Ts ∼VI trapezoid is calculated for each grid using MODIS remotely sensed
measurements of surface temperature and enhanced vegetation index (EVI). In the
process of construct the Ts ∼VI trapezoid, a data pre-processing procedure, including
de-striping bad pixels, eliminating the noise contamination in EVI data, and, especially15

correcting the topographic effects for air temperature data, is conducted.
Using satellite-based MODIS data (land surface temperature data, EVI, etc.),

and ground-based on-site soil moisture data and meteorological data (air tempera-
ture, relative humidity, and wind velocity) for the Walnut Gulch Experimental Water-
shed (WGEW) in Arizona, USA, the capability of using WDI to estimate soil moisture is20

evaluated using (1) a soil moisture observations and (2) antecedent precipitation. The
result shows that, Ts ∼VI trapezoid based WDI can well capture temporal variation in
surface soil moisture, but the capability of detecting spatial variation is poor for such a
semi-arid region as WGEW.
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Table 1. MODIS data used in the present study.

Product ID Contents Spatial Temporal
resolution resolution

MO03 Geolocation Data Set 1 km daily
MOD09A1 Surface Reflectance 500 m 8 days
MOD11A1 Surface Temperature and Emissivity 1 km daily
MCD12Q1 Land Cover and Vegetation Dynamics 500 m Yearly
MOD13A1 Vegetation Indices 250 m 8 days
MOD15A2 Leaf Area Index 1 km 8 days
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Table 2. Correlation coefficients between WDI estimates with surface soil moisture observa-
tions.

DOY 345 290 256 212 168 157 132 75 30 2

R 0.1225 −0.0316 0.0632 0.0775 −0.0447 −0.0775 −0.2049 0.2098 −0.4919 0.0548
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 2

VIT) trapezoid and WDI, for estimating soil moisture estimation using MODIS products. The method, 
referred to as the trapezoid method, will be described in detail in Section 2. Then the method will be 
applied to the Walnut Gulch Experimental Watershed in Arizona, USA, for which, the data used and 
data pre-process will be introduced in Section 3 and 4, and the results will be presented in Section 5. 
Finally, some conclusions will be drawn in Section 6. 

2 Trapezoid Method 

2.1 The concept of (Ts-Ta)~ Vc trapezoid 
Idso et al. (1981) and Jackson et al. (1981) proposed the CWSI (Crop Water Stress Index) for 
detecting plant water stress based on the difference between canopy and air temperature. It is designed 
for full-cover vegetated areas and bare soils at local and regional scales. To overcome the difficulty of 
measuring foliage temperature in partially vegetated fields, Moran et al. (1994) proposed to use the 
shape of trapezoid to depict the relationship between the surface temperature and air temperature 
difference (Ts-Ta) vs. the fractional vegetation cover (Vc, ranging from 0 for bare soil to 1 for full-cover 
vegetation) (Fig.1), so as to combine spectral vegetation indices with composite surface temperature 
measurements to allow application of the CWSI theory to partially vegetated fields without a priori 
knowledge of the percent vegetation cover. Based on the trapezoid assumption and the CWSI theory, 
Moran et al. (1994) introduced the Water Deficit Index (WDI) for evaluating field evapotranspiration 
rates and relative field water deficit for both full-cover and partially vegetated sites. For a given pixel 
with measured surface temperature and air temperature difference, i.e., (Ts-Ta)r, WDI is defined as: 

min r

min max

( ) ( )
( ) ( )

s a s a

s a s a

T T T TWDI
T T T T

− − −
=

− − −
    (1) 

where Ta is air temperature; Ts is surface temperature; the subscripts min, max, and r refer to minimum, 
maximum, and measured values, respectively; and the minimum and maximum values of (Ts-Ta) are 
interpolated linearly on the cold edge and warm edge of the (Ts-Ta)~Vc trapezoid for the specific Vc 
value of the pixel. Graphically, WDI is equal to the ratio of distances AC/AB in Figure 1. 

 
Fig. 1 The hypothetical trapezoidal shape based on the relation between (Ts-Ta) and the fractional 
vegetation cover (Vc).  
 

2.2 Calculation of vertices of the (Ts-Ta)~Vc trapezoid and its simplification: the Ts~VI 
trapezoid 

The theoretical basis of (Ts-Ta)~Vc trapezoid is the energy balance equation, i.e.,  
nR G H Eλ= + +                         (2) 

where, Rn is the net radiant heat flux density (W m-2), G is the soil heat flux density (W m-2), H is the 
sensible heat flux density (W m-2), and λE is the latent heat flux to the air (W m-2) and λ the heat of 

C 

Ts-Ta (k) 

3. saturated bare soil 
1. well-watered vegetation 

2. water-stressed vegetation

4. dry bare soil 

B 

A  

 

Dry/warm edge 

Wet/cold edge 

Vc

Fig. 1. The hypothetical trapezoidal shape based on the relation between (Ts − Ta) and the
fractional vegetation cover (Vc).
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 6

0.2 for wet bare soil to 0.5 for dry bare soil.  

2.3.4 Canopy resistance (rc) 

Canopy resistance (rc), including rcm and rcx that refer to the minimum and maxium canopy 
resistance respectively, should be calculated for Point 1 and Point 2. According to Moran et al. (1994), 
rcm in Eq. (6) is calculated with rsm/LAI (LAI is the leaf area index, rsm is minimum stomatal 
resistance). rcx in Eq. (7) is calculated with rsx/LAI (rsx is maximum stomatal resistance). 

Values of minimum and maximum stomatal resistance (rsm and rsx, respectively) are published for 
many agricultural crops under a variety of atmospheric conditions. Moran et al. (1994) suggested that, 
if values are not available, reasonable values of rsm = 25-100 s/m and rsx = 1000-1500 s/m will not 
result in appreciable error, we set rsm=25 and rsx=1500. Because LAI are mostly less than 8 (Scurlock 
et al. 2001), we set LAI=8. Therefore, we have rcm=3.125 and rcx=187.5. 

2.4 Iterative procedure for calculating Ts 

Values of Ts for the four vertices are obtained by an iterative procedure for each pixel. An initial 
value of ra is estimated by ignoring the two stability corrections, i.e., ψh and ψm. With the initial ra, 
initial values of Ts are obtained with Eq. (6) ~ (9) for the four vertices. Then the iterative procedure is 
proceeded by iteratively changing H, KB-1, ra, and in consequence, Ts, until the value of Ts is table (i.e., 
the change of Ts is less than 0.1 k, and the change of ra is less than 0.1 s/m). Normally, it takes 5 to 10 
iterations. While Ts is derived, Rn, G, H, and ra for each vertex are obtained as well. 

The iterative procedure is conducted distributedly based on pixels, that is, the trapezoid is 
constructed separately for each pixel, and each trapezoid has its own values of Ts. 

 

Fig.2 Iterative procedure for calculating Ts of the four vertices of Ts-VI trapezoid 

Calculate initial ra without considering 
ψh and ψm 

Solve the quartic equations for Ts by replacing 
ra in Eq. (8)~(11)  

Calculate Ts–Ta 

Calculate H with Eq. (5) for each vertex 

Calculate KB-1 with Eq. (14) and L with Eq. 
(15) for each vertex 

Correct the value of ra considering ψh and ψm as 
in Eq. (16) or (17) depending on the value of L 

Output the values of Rn, G, H, ra, and Ts for 
each vertex 

Meteorological data: Ta, u, μ,  
MODIS data: Ts, 

10 iterations 

Fig. 2. Iterative procedure for calculating Ts of the four vertices of Ts-VI trapezoid.
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3 Case study area and data used 

3.1 The Walnut Gulch Experimental Watershed 

Data of the Walnut Gulch Experimental Watershed (WGEW) was used in the present study. The 
WGEW is defined as the upper 148 km2 of the Walnut Gulch drainage basin in an alluvial fan portion 
of the San Pedro catchment in southeastern Arizona (Fig. 3). It was developed as a research facility by 
the United States Department of Agriculture (USDA) in the mid-1950s. This rangeland region 
receives 250–500 mm of precipitation annually, with about two-thirds of it as convective precipitation 
during a summer monsoon season. The potential evapotranspiration is approximately ten times annual 
rainfall. The runoff in the ephemeral streams is of short duration and is typically near critical depth. 
The topography can be described as gently rolling hills incised by steep drainage channels which are 
more pronounced at the eastern end of the catchment near the Dragoon Mountains. Soil types range 
from clays and silts to well-cemented boulder conglomerates, with the surface (0–5 cm) soil textures 
being gravelly and sandy loams containing, on average, 30% rock and little organic matter (Renard et 
al., 1993). The mixed grass-brush rangeland vegetation ranges from 20 to 60% in coverage. Grasses 
primarily cover the eastern half of the catchment, while the western half is bush-dominated. 

High : 1929

Low : 1226
 

Fig. 3 Digital elevation model (DEM) of Walnut Gulch Experimental 
 

3.2 MODIS data and ground observational data used 

The moderate resolution imaging spectroradiometer (MODIS) instrument is very popular for 
monitoring soil moisture because of its high spectral (36 bands) resolution, moderate spatial 
(250–1000 m) resolution, and various products for land surface properties. All standard MODIS data 
products are freely available at NASA Land Processes Distributed Active Archive Center (URL: 
https://lpdaac.usgs.gov/lpdaac/). MODIS products used in the present study include: MOD09A1 land 
surface albedo data, MOD11A1 land surface temperature data, and MOD13A1 vegetation data. 
Details of the products we used here are listed in Table 1. We selected MODIS data of ten cloud-free 
days approximately evenly distributed in the period from January to December in 2004. All the 
MODIS data are resampled to 500 m resolution.  

 
Table 1 MODIS data used in the present study 

Product ID Contents Spatial 
resolution 

Temporal 
resolution 

MO03 Geolocation Data Set 1 km daily 
MOD09A1 Surface Reflectance 500 m 8 days 
MOD11A1 Surface Temperature and Emissivity 1 Km  daily 
MCD12Q1 Land Cover and Vegetation 

Dynamics 500 m Yearly  
MOD13A1 Vegetation Indices 250 m 8 days 
MOD15A2 Leaf Area Index 1 km 8 days 

 

Fig. 3. Digital elevation model (DEM) of Walnut Gulch Experimental.
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 8

Meteorological data required here include air temperature Ta, relative humidity μ, and wind 
velocity u, observed approximately at the time (11 am) when the satellite Terra passes over the 
WGEW region. The Ta, relative humidity μ, and wind velocity u, are observed at three sites. We take 
the average of the observations at three sites for μ and u. Observations of Ta are pre-processed, which 
will be discussed in section 4.3. To evaluate the soil moisture estimation results, soil moisture 
observations at 16 sites and precipitation data at 87 sites are used. The locations of the 3 
meteorological observation sites, 16 soil moisture observation sites and 87 rain gauging sites are 
plotted in Fig. 4. Because some gauging sites are located on the edge of the watershed, to include the 
observations at these sites for evaluation, our study area is slightly larger than the WGEW watershed. 

In addition, SRTM digital elevation model (DEM) data and land cover data are used. 

All the ground data are obtained from the website of United States Department of Agriculture 
(USDA) Southwest Watershed Research Center (URL: http://www.tucson.ars.ag.gov/dap/). 

-
-

-

-

-

-

-

-
-

-

-

-

-

-
-

-

_ _

_

_ Meteorological observation station

- Soil moisture observation site

Rain gage  
Fig.4 Locations of ground-based observation sites in WGEW 

4 Data pre-processing 

4.1 Destriping for MODDIS albedo data (MOD09A1) 

MODIS09A1 product includes albedo data of 7 bands. Surface shortwave albedo is calculating as 
a weighted summation of the albedo data of 7 bands, as shown in Section 3.2.2. It was found that the 
albedo data of the fifth channel has serious problem of bad strips，which would affect the accuracy of 
surface albedo calculation.  

The strips in Band 5 data mostly are lines of one pixel in width, which are distinguishable from 
neighbouring pixels. To identify the strips, we firstly define the following two convolution kernels: 

0 -1 0
k1 0 1 0

0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

           

0 0 0
k 2 0 1 0

0 1 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Then, we calculate KK=convol(D, k1)*convol(D, k2), where convol( ) is the convolution filtering 
function in IDL , and D is the data to be processed. A pixel in a strip is identified if KK > 0.001 for this 
pixel. For bad pixels, linear interpolation is applied to replace the bad values using the values of 
upside and downside neighboring pixels. 

Besides the strips of one pixel width, there are also some strips with two pixels in width resulted 
from the process of projection conversion in Band 5 of MOD09A1 albedo product. Considering that 
the pixels in strips have normally higher values than normal, we identify pixels with values larger than 
0.35 as “bad” pixels. Then we interpolate the bad pixels with neighbouring “good” pixels with the 

Fig. 4. Locations of ground-based observation sites in WGEW.
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 9

method of Delaunay triangle (using the program DEM_BAD_DATA_DOIT in IDL). In the same way, 
pixels with value of 0 are also treated. 

With the above two procedures, the quality of Band 5 albedo product was significantly improved 
(see Fig.5).  

     
Fig. 5 Comparison of Band 5 albedo images before (left) and after destriping 

4.2 Denosing the MOD13A1 Vegetation Index data 

When observing the land surface, MODIS is inevitably impacted by the variation of satellite 
orbital position, cloud coverage and other atmospheric effects. Although several methods (such as 
Maximum Value Composites or Constrained View Maximum Value Composite) have been applied to 
reduce the noise impacts the MODIS NDVI/EVI products, quite amount of noise still exist in the VI 
dataset, and filtering is still necessary when using them for constructing Ts~VI space.  

Many methods are available to denoise the MODIS NDVI/EVI data. Jennifer (2009) compared 
several methods, and found that the asymmetric Gaussian, Double logistic, and 4253H twice filter 
perform very well in general. Therefore, one of them, i.e., 4253H twice filter (Velleman, 1980) was 
adopted here. The 4253H twice filter applies a series of running medians of varying window size and a 
weighted average filter (e.g., Hanning filter), with re-roughing, to the EVI time series.  

To perform the denoising process, a series of continuous EVI data over one year are required. 
Therefore, before we use the MODIS data selected for 10 dates, we used 25 consecutive 16-day 
composite EVI data (the last 16-day composite data in 2003, all 23 16-day composite EVI data in 
2004, together with the first 16-day composite data in 2005) to conduct the denoising procedure. The 
effects of denoising for two randomly selected pixels are shown in Fig.6, from which we see that, both 
low values and high values are smoothed.  
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Fig.6 Effects of EVI denoising preprocessing for two randomly selected pixels 

4.3 Topographic correction of air temperature  

With methods of estimating soil moisture using thermal satellite images, often both land surface 
temperature and ground-based air temperature observations are needed. When applying such methods 
to mountainous regions, terrain effects have to be taken into account because terrain would 
significantly affect both land surface temperature and air temperature. To avoid the problem of steeply 

Fig. 5. Comparison of Band 5 albedo images before (left) and after destriping.
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method of Delaunay triangle (using the program DEM_BAD_DATA_DOIT in IDL). In the same way, 
pixels with value of 0 are also treated. 

With the above two procedures, the quality of Band 5 albedo product was significantly improved 
(see Fig.5).  

     
Fig. 5 Comparison of Band 5 albedo images before (left) and after destriping 

4.2 Denosing the MOD13A1 Vegetation Index data 

When observing the land surface, MODIS is inevitably impacted by the variation of satellite 
orbital position, cloud coverage and other atmospheric effects. Although several methods (such as 
Maximum Value Composites or Constrained View Maximum Value Composite) have been applied to 
reduce the noise impacts the MODIS NDVI/EVI products, quite amount of noise still exist in the VI 
dataset, and filtering is still necessary when using them for constructing Ts~VI space.  

Many methods are available to denoise the MODIS NDVI/EVI data. Jennifer (2009) compared 
several methods, and found that the asymmetric Gaussian, Double logistic, and 4253H twice filter 
perform very well in general. Therefore, one of them, i.e., 4253H twice filter (Velleman, 1980) was 
adopted here. The 4253H twice filter applies a series of running medians of varying window size and a 
weighted average filter (e.g., Hanning filter), with re-roughing, to the EVI time series.  

To perform the denoising process, a series of continuous EVI data over one year are required. 
Therefore, before we use the MODIS data selected for 10 dates, we used 25 consecutive 16-day 
composite EVI data (the last 16-day composite data in 2003, all 23 16-day composite EVI data in 
2004, together with the first 16-day composite data in 2005) to conduct the denoising procedure. The 
effects of denoising for two randomly selected pixels are shown in Fig.6, from which we see that, both 
low values and high values are smoothed.  
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Fig.6 Effects of EVI denoising preprocessing for two randomly selected pixels 

4.3 Topographic correction of air temperature  

With methods of estimating soil moisture using thermal satellite images, often both land surface 
temperature and ground-based air temperature observations are needed. When applying such methods 
to mountainous regions, terrain effects have to be taken into account because terrain would 
significantly affect both land surface temperature and air temperature. To avoid the problem of steeply 

Fig. 6. Effects of EVI denoising preprocessing for two randomly selected pixels.
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To show the effectiveness of the calculation for the values of Ts of four vertices, we plot the 
four vertices of the trapezoids constructed for all the pixels of the WGEW region in four days in 
four seasons in Fig. 7. All the estimated Ts at each point are plotted in the form of box-and-whisker 
plot. The data points (solid dots) of Ts vs. EVI are also plotted in the map. From Fig.7, we see that 
the constructed trapezoids well characterize the Ts-EVI space, and basically all the Ts-EVI data 
points are set in the envelope of the trapezoids. 

 0 1

29
0

30
0

31
0

32
0

0 1

29
0

30
0

31
0

32
0

0 1

28
0

30
0

32
0

0 1

28
0

30
0

32
0

 

 0 1

29
0

30
0

31
0

32
0

33
0

0 1

29
0

30
0

31
0

32
0

33
0

0 1

28
0

28
5

29
0

29
5

30
0

30
5

0 1

28
0

28
5

29
0

29
5

30
0

30
5

 
Fig.7 Constructed Ts-EVI trapezoids in four dates in four different seasons 

 
5.2 Calculation of WDI  

Based on the constructed Ts-VI trapezoid for each pixel, using the MODIS Ts and EVI data, we 
calculate the WDI for each pixel p,  

( ) ( )
( ) ,min

( ) ( )
,min ,max

p p
p S S

p p
S S

T T
WDI

T T
−

=
−

          (20) 

where Ts is surface temperature obtained from MODIS; the subscripts min, max, and r refer to minimum, 
maximum, and measured values, respectively; and the minimum and maximum values of Ts are 
interpolated linearly on the dry edge and wet edge of the Ts~VI trapezoid for the specific VI value of 
the pixel. 
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Fig. 7. Constructed Ts−EVI trapezoids in four dates in four different seasons.
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Fig. 8 WDI estimates vs. ground observations at 16 sites in 10 dates (R is the correlation 

coefficient) 
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Fig.9 The average WDI estimates vs. the average ground observations in 10 dates (R is the 

correlation coefficient) 

 

From the scatter plot of WDI vs. observation in Fig.8, we see that from the perspective of a 
whole year, WDI estimates derived with the Ts-Vi trapezoid method has a negative correlation 
(correlation coefficient R=-0.7232) with surface soil moisture, which indicates that WDI estimates can 
be used to detect the temporal variation in soil moisture. Especially on the scale of the watershed, the 
average WDI is strongly negatively related (correlation coefficient R=-0.9) to the average soil 
moisture observation, as shown in Fig.9. Although this is not a high correlation, considering that soil 
moisture in dry environment, such as in semi-arid area, exhibits high spatial variability and potentially 
rapid rates of temporal change in moisture conditions, the result is reasonably good.  

The comparison between the WDI estimates with ground observations of each date (Table 2) 
shows that, there is basically no correlation between WDI estimates and surface soil moisture 
observations. This is partly because of the scale effect, i.e., point soil moisture observations are 
essentially different from grid averaged soil moisture estimates due to sub-grid variability, partly 
because of the poor capability of using WDI to detect the variation in soil moisture with low spatial 
variability. Similar phenomena have been observed by some other researchers as well. For instance, 
Pellenq et al. (2003) noticed that the point-to-point comparison between observations and simulations 
shows a poor correlation, but a good correlation is obtained when averaging the simulated and 
observed soil moisture over a length of 100 m. Comparing the distribution of soil moisture 
observations over the year with that observed instantaneously, we see that the coefficient of variation 
(CV) for all soil moisture observations at 16 sites in 10 days over a year is 0.771, much larger than the 
CV for observed soil in each day (ranging from 0.336 to 0.702, with a mean value of 0.528). In 
consequence, we can use WDI to detect the temporal variation in soil moisture, but it is hard to detect 
spatial variation in each day, especially for a small watershed with low spatial soil moisture variability. 

Despite of the poor performance for characterizing the spatial variability of soil moisture with 

Fig. 8. WDI estimates vs. ground observations at 16 sites in 10 dates (R is the correlation
coefficient).
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Fig.9 The average WDI estimates vs. the average ground observations in 10 dates (R is the 

correlation coefficient) 

 

From the scatter plot of WDI vs. observation in Fig.8, we see that from the perspective of a 
whole year, WDI estimates derived with the Ts-Vi trapezoid method has a negative correlation 
(correlation coefficient R=-0.7232) with surface soil moisture, which indicates that WDI estimates can 
be used to detect the temporal variation in soil moisture. Especially on the scale of the watershed, the 
average WDI is strongly negatively related (correlation coefficient R=-0.9) to the average soil 
moisture observation, as shown in Fig.9. Although this is not a high correlation, considering that soil 
moisture in dry environment, such as in semi-arid area, exhibits high spatial variability and potentially 
rapid rates of temporal change in moisture conditions, the result is reasonably good.  

The comparison between the WDI estimates with ground observations of each date (Table 2) 
shows that, there is basically no correlation between WDI estimates and surface soil moisture 
observations. This is partly because of the scale effect, i.e., point soil moisture observations are 
essentially different from grid averaged soil moisture estimates due to sub-grid variability, partly 
because of the poor capability of using WDI to detect the variation in soil moisture with low spatial 
variability. Similar phenomena have been observed by some other researchers as well. For instance, 
Pellenq et al. (2003) noticed that the point-to-point comparison between observations and simulations 
shows a poor correlation, but a good correlation is obtained when averaging the simulated and 
observed soil moisture over a length of 100 m. Comparing the distribution of soil moisture 
observations over the year with that observed instantaneously, we see that the coefficient of variation 
(CV) for all soil moisture observations at 16 sites in 10 days over a year is 0.771, much larger than the 
CV for observed soil in each day (ranging from 0.336 to 0.702, with a mean value of 0.528). In 
consequence, we can use WDI to detect the temporal variation in soil moisture, but it is hard to detect 
spatial variation in each day, especially for a small watershed with low spatial soil moisture variability. 

Despite of the poor performance for characterizing the spatial variability of soil moisture with 

Fig. 9. The average WDI estimates vs. the average ground observations in 10 dates (R is the
correlation coefficient).
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Fig.10 WDI maps for 10 DOYs 
 
5.3 Comparison with soil moisture observation and precipitation 
 

Using the surface soil moisture observations at 16 sites, we evaluate WDI estimates in several 
ways: (1) compared separate WDI estimates with ground observations of all 10 dates (Fig.8); (2) 
compare the average of WDI estimates with the average ground observations of 10 dates (Fig.9); (3) 
compare the WDI estimates with ground observations of each date separately (Table 2).  

 

DOY2 DOY30

DOY290 DOY345

DOY212 DOY256

DOY157 DOY168

DOY75 DOY132

Fig. 10. WDI maps for 10 DOYs.
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WDI, by a visual inspection of the WDI maps of the WGEW region of the 10 dates in Fig.10, we can 
still see a clear spatial pattern of soil moisture distribution, which indicates that, to some extent, soil 
moisture variability could be depicted by WDI maps. 

 
Table 2 Correlation coefficients between WDI estimates with surface soil moisture observations 

DOY 345 290 256 212 168 157 132 75 30 2

R 0.1225 -0.0316 0.0632 0.0775 -0.0447 -0.0775 -0.2049 0.2098 -0.4919 0.0548

 
We analyzed the impacts of precipitation on soil moisture by calculating the correlation between 

WDI and antecedent precipitation (AP) of different number of days, and between soil moisture 
observation and AP of different number of days. The results are illustrated in Fig.11, which show that 
WDI and soil moisture observation have similar levels of correlation with AP (one is positive, another 
is negative), and the maximum correlation occurs when approximately 10-day AP is taken into 
account. The scatter plot is shown in Fig.12. The result indicates that, as expected, the temporal 
variation of soil moisture (either reflected by ground observations, or by WDI estimates) is 
significantly dominated by precipitation process. 
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Fig.11 Correlation coefficient (R) between (a) soil moisture observation and AP of different number of 

days, and (b) WDI and AP of different number of days (right panel) 
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Fig.12 Scatter plot of (a) soil moisture observation and (b) WDI vs. 10-day AP (R is the coefficient of 
correlation) 
 

6 Conclusions 

Considerable efforts have been put on using the relationship between soil moisture and index 
values derived from surface temperature-vegetation index (Ts ~VI) space, which use optical and 
thermal RS data as input, to estimate soil moisture. In the present study, we simplified the trapezoidal 
relationship between the surface temperature and air temperature difference (Ts-Ta) vs. the fractional 
vegetation cover, which is proposed by Moran et al. (1994), to a Ts~VI trapezoid. The trapezoid is 

(a) (b) 

(a) (b) 

Fig. 11. Correlation coefficient (R) between (a) soil moisture observation and AP of different
number of days, and (b) WDI and AP of different number of days.
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WDI, by a visual inspection of the WDI maps of the WGEW region of the 10 dates in Fig.10, we can 
still see a clear spatial pattern of soil moisture distribution, which indicates that, to some extent, soil 
moisture variability could be depicted by WDI maps. 
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Fig.12 Scatter plot of (a) soil moisture observation and (b) WDI vs. 10-day AP (R is the coefficient of 
correlation) 
 

6 Conclusions 

Considerable efforts have been put on using the relationship between soil moisture and index 
values derived from surface temperature-vegetation index (Ts ~VI) space, which use optical and 
thermal RS data as input, to estimate soil moisture. In the present study, we simplified the trapezoidal 
relationship between the surface temperature and air temperature difference (Ts-Ta) vs. the fractional 
vegetation cover, which is proposed by Moran et al. (1994), to a Ts~VI trapezoid. The trapezoid is 

(a) (b) 

(a) (b) 

Fig. 12. Scatter plot of (a) soil moisture observation and (b) WDI vs. 10-day AP (R is the
coefficient of correlation).
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