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We thank the anonymous reviewer for the detailed and constructive comments. The
view from a more practical side that the reviewer gives is very helpful to try and make
the paper more appealing to practice and to convey the theoretical message. We have
tried to address the comments as much as possible to make some things more clear,
giving some extra illustrations. We also are working on a practical example to illustrate
the points made in section 4. To improve readability, we included the reviewer’s original
comments as quoted (indented) text.

On illustration with practical examples

The paper is well written and, in general, the authors explain clearly
their point of view, although the ideas the authors want to convey are not
always structured in an easy-to follow way. It is clear that the paper raises
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and discusses points that are doubtlessly very important for the hydrologi-
cal community, and | much appreciated that the authors supply a theoretical
framework for their claims, which are defended in a clear, and sometimes
very passionate, way. However, their arguments are not illustrated by prac-
tical applications, which would enhance the paper and give experimental
support to their claims. For instance, to what extent real situations con-
firm the theoretical arguments of the authors? Experiments may not always
hold the truth, but testing models or illustrating arguments against real data
sets available is a natural step in hydrological sciences. Thus, my main
concern is that much of the paper’s arguments lays at the very theoreti-
cal point of view, while forecasting is, in great part, supported by practical
experience (for instance, forecasting modelers or experts usually acknowl-
edge that much is learned with the practice of real-time forecasting). In my
opinion, this point does not shadow at all the importance of the paper, but it
raises the question whether the paper is not more suitable to appear under
the umbrella of "HESS Opinions" and, consequently, be in a larger (and
maybe longer lasting) discussion forum.

We agree with the anonymous reviewer that examples would help to support our claims
and confirm our arguments. However, indeed the main focus and contribution of this
paper lies in the theoretical discussions and illustration of theory with a paradox. This
argumentation is not necessarily made clearer by adding an (necessarily) elaborate
practical case study, which also distracts attention from the main point, which is of-
fering an information-theoretical perspective. We think, experience from practice and
deduction from theory are two complementary routes to arrive at insights and this pa-
per focuses purely on the first. We think that illustration with an example can have two
objectives:

1. To test the correctness of the theoretical results
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2. To demonstrate the practical significance of the results

The first objective is difficult to achieve in this case due to random effects and would
require an elaborate statistical analysis and a careful experimental setup with controlled
experiments using artificially generated data sets. To the extent that our results rely on
established theory and logical reasoning (both open to scrutiny), we think that such an
analysis is not necessary in this paper. To do that correctly, a whole new experimental
design is necessary that would best be treated in a separate paper. We added a
section with some ideas for future work on this.

The second objective could be achieved by adding examples, but it would require many
case-studies to see in which cases the effects described in section 4 are most signif-
icant, i.e. which utility functions filter the information in the most destructive way. To
perform and describe these experiments in a meaningful way, we think it is best to de-
vote a separate paper to it, after some careful thought has been devoted to design good
experiments. We made the theoretical focus of this paper more clear in the introduction
and added some ideas for future practical tests in a “future work” section.

With regard to what might be demonstrated with examples, we have the following ideas.
In Weijs et al. (2010), a practical example of using the decomposition is already pre-
sented. A new application of the divergence score on hydrological ensemble forecasts
would be interesting, but would not serve as support for our arguments in section 3
and 4, which are the key message of this paper. The paradox and two possible resolu-
tions treated in section 3 are mainly about interpretation of deterministic forecasts and
appealing to logic. Following the suggestions of the reviewers, we elaborated some of
the illustration examples a bit to make them clearer.

The theoretical results regarding inference of explicitly probabilistic models based on
information measures, as given in section 4, could probably be shown in an experiment.
However, this would require a detailed and elaborate study involving different models,
artificial and real data sets, truly independent calibration and validation periods and a

C2833



detailed analysis of the results. In general the comparison of skill scores, inference
methods and uncertainty estimation methods is difficult and plagued randomness and
unexpected features in the data, which makes it difficult to draw general conclusions
from experiment. In some cases the difference may be more significant than in others,
but given the theoretical and philosophical considerations, there is no reason to not
prefer a theoretically more justified method, given that it is not more difficult to apply
than existing methods. This is the case even if in some situations the results may not
significantly differ from the alternative methods or other effects disturb the results. The
present paper tries to bring an information-theoretical view on a number of points by
logical reasoning on the basis of some recent results Weijs et al. (2010); Benedetti
(2010) and some well-established older results (data processing inequality, likelihood
principle Cover and Thomas (2006); Bernardo (1979); Berger and Wolpert (1988)).
Practical examples would indeed be very valuable to support the reasoning and clarify
the practical implications of the point made here, but we think it would be complicated
and too much to treat in one paper. We certainly plan to devote some future research
on this and to find a relevant real world case where it can be tested and give some
ideas for this in the last section. We also will try to include one example of inference
based on a binary utility function as an illustration to this paper.

On the connection to the previous paper

In this context, some specific comments are listed below. They mainly
point out some suggestions to improve the structure of presentation of
ideas, by focusing more directly on the presentation of the authors’ argu-
ments and of the links to real situations encountered in operational fore-
casting.

In the abstract, the authors state that "We propose a Kullback-Leibler
divergence as the appropriate measure for forecast quality”. It seems how-
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ever that their previously published published paper (Weijs et al., 2010;
Mon. Weather Rev.) already presents this score and its decomposition
in details. By the way, Table 1 reproduces Fig. 2, 3 and 4 of this previ-
ous paper, and Figure 1 is very similar to Fig. 1 of the already published
paper. The novel (and central) aspect of the paper proposed at HESSD
seems thus to be the interpretation made under the shed of the divergence
score (concerning deterministic forecasts) and the implications to the cali-
bration process in hydrological forecasting. This should be emphasized in
the abstract and linked to what is stated in the outline (page 4662, lines
18-21). The objective of the paper should, in this sense, be more clearly
stated. | also suggest that some terminology should be clearly defined
in the beginning and kept all over the paper to help the reader in better
following the reasoning behind the ideas conveyed (for instance, in the ab-
stract, it is nicely stated that "In this paper we distinguish two scales for
evaluation: information-uncertainty and utilityrisk.", but the words "scales
for evaluation" and "utility-risk", for instance, are not used anymore in the
next sections).

Indeed the review correctly points out that the main points of the paper are the interpre-
tations in sections 3 and 4, which build on the decomposition presented in a previous
paper, of which the relevant material is summarized in section 2. Another new point is
placing forecast verification in the context of the requirement for testable predictions,
mentioned in the introduction.

Following the suggestion by the reviewer, we removed some parts from section 2,
which were not essential to understand sections 3 and 4. We also emphasized the
objective of the paper more, mentioning explicitly the theoretical character of the paper
and the relation to the previous paper. Also, we clarified the link between the utility-risk
scale and value on the one hand and the information-uncertainty scale and quality on
the other.
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The introduction could be enriched by mentioning the main initiatives in
the hydrological community to develop probabilistic or ensemble flood fore-
casting (eg. HEPEX, EFAS, MAP-DPHASE) and by commenting on some
published papers on the evaluation of hydrological forecasts. This would
allow the authors to link their analyses/arguments to the main challenges
and/or questions raised by these initiatives and scientific papers,and, con-
sequently, provide more solid basis for some of the authors’ statements,
like the ones in Section 1.2 and the one in the beginning of the Conclusions
section (Page 4678, lines 1-2): "The difficulties and debate about the evalu-
ation of forecasts can be significantly clarified using results from information
theory." Since the authors are not presenting a practical example (with real
data set of hydrological forecasts), how can it effectively be true?

We will also put the paper somewhat more in the context of ensemble flood forecasting
initiatives. For example, the present paper relates quite directly to the questions stated
in HEPEX (Thielen et al., 2008):

» How can hydrological ensembles be generated that reflect all known uncertain-
ties?

» How can automatic calibration aid in characterizing uncertainty?

* How can systematic over- and under-prediction of rainfall forecasts from both
deterministic systems and EPS be detected and corrected for better flood fore-
casting.

The statement on page 4678, lines 1-2 was not clearly formulated. A better phrasing

would perhaps be: "The difficulties and debate about the evaluation of forecasts can

be significantly clarified using an information-theoretical viewpoint." This avoids the

confusion between results as referring to outcomes of practical experiments and results
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in the sense of mathematical theorems of information theory that were proven from
some axioms, which we referred to. The word “difficulties” in this statement refers to
e.g. trying to evaluate forecasts that are not completely specified or to discussions on
users and utility in contexts were quality is the dimension of evaluation (cf. sensitivity
to distance).

On quality and value

In Section 1.2, can you give an example in the literature that illustrates
the statement in lines 10-12? Also, the sentence in lines 12-15 needs clari-
fication. In fact, | think that several recent studies in hydrological forecasting
do consider the separation into quality and value. It is maybe true that they
usually focus more often on the evaluation of forecast quality (maybe be-
cause quantifying value in flood forecasting is not straightforward, especially
when the aim of a forecasting system is basically the protection of human
lives). Besides, | think that the purposes of an evaluation framework can
be quality and value, even if these should be expressed by different mea-
sures or scores. A forecasting system and its forecasts can be pictured by
something more than just a number given by a chosen statistical measure.

The statement that the distinction between quality and value is not always explicitly
made should be seen in the light of the points made in the conclusions of Weijs et al.
(2010), stating that quality can be equated with information, and any other measure
somehow reflects a utility, i.e. value. For example, the Brier score is often presented
as a measure of quality, but at the same time defended on the basis of reflecting value
for users with an uniform cost-loss ratio distribution. Another example is the RPS score,
which is used as a score for quality, but required to be sensitive to distance. This dis-
tance only makes sense in the context of a decision problem (e.g. the disutility of a
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forecast being 10 m?/s off). However, if it really would be a pure measure of qual-
ity (correspondence between forecasts and observations), then why could the score
change depending on how forecast probability is spread over things that might never
be observed? This relates to the discussion about locality. As the reviewer points
out, the distinction between value and quality is made in literature, but the we argue
that most measures that are used to measure quality can only be meaningfully inter-
preted when they are seen as measures of value in some special cases (see also the
conclusions section in Weijs et al. (2010)).

Indeed, forecasts may be pictured in more ways than just one number, but we claim that
quality in the sense defined by Murphy should be expressed in terms of information. As
argued in section 4, information is the evaluation measure that should be used when
making decisions about the model and the parameters (i.e. learning), while value might
be a useful evaluation measure if a decision about allocating funds to different flood-
forecasting initiatives must be made (i.e. cost-benefit analysis on investing money in
flood warning). While value can be defined in many ways, depending on the specific
utility functions of the users, quality can only be defined in terms of information, or we
must give up either locality or propriety. We will elaborate the text in sect 2. line 10-15
to make it clearer.

Handling of extreme events

In the interpretation of the divergence score (links to the Brier score and
decomposition; Sections 2.3 and 2.4), can you add a paragraph on how
the score can handle extreme (very rare) events (when probability tends to
zero), regarding the terms of the divergence score that are not bounded?
(As these are those events that most interest operational hydrologists in
flood forecasting).
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When events have a very low probability, the forecasting becomes most challenging,
first of all because we have little experience and data for them, making modeling dif-
ficult, and secondly because these are the events we are not used to cope with and
therefore can have severe consequences. The divergence score is unbounded in case
the forecast assigns a zero probability to some event which then turns out to occur.
This can be avoided by never assigning zero probabilities to anything the is not truly
impossible. For example a probability of 0.001 might be assigned to the category
between the highest observed flood and infinity. This is of course very crude, but any
better idea for representing the tails leads to a higher expected divergence score and is
thus encouraged. The unbounded scores are thus not so much a problem of the score,
but related to the general difficulty of estimating probabilities of extreme events using
little data. Unfortunately the divergence score’s sensitivity shows that apart from being
difficult, this task is also very important. We will add a paragraph on this somewhere in
the paper. Maybe also in another section, because we are contemplating whether or
not to keep the link to the Brier score in the paper, as it might not be essential for what
follows.

On the user’s guesswork

In Section 3.1, | think that the role of human expertise in the forecasting
chain is unclear and sometimes underestimated. Maybe this is because
some definitions are missing. For instance, a "forecast" is here under-
stood as a raw model output or as an output that was submitted to human
expertise/post-processing? Is the "user", as considered in the paper, a hy-
drologist that receives a forecast from the model, a stakeholder/engineer
with (or without) technical knowledge, the public, etc.?

In this paper, a forecast is a testable prediction about the future. This can come directly
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from a model or be the result of a combination of algorithms and human expertise. The
user is supposed to be less informed than the forecaster, and in principle willing to
literally copy the forecast as best estimate. In case this is not true and the user actually
has relevant extra information, then it would be helpful if the user shared this with the
forecaster, so the forecast be improved (i.e. “participatory forecasting”). We added a
section on definitions later in this reply and will make sure that the definitions are clear
in the revised paper.

In practice, forecasts are usually issued with something more than just a
number (the case of deterministic forecasts) displayed, and sometimes with
an interval associated with some quantitative (or qualitative) probabilistic
information. Thus, | think that the representation of a user having to guess
what the forecaster wanted to say (Page 4669, lines 26-27) is probably a bit
exaggerated (although surely not completely unrealistic).

In the context of the literal interpretation of forecast information that is intended to show
the paradox, there is no exaggeration in our statement: "However, it is not the task of a
user to guess what the forecaster wanted to say." The statement is valid in the context of
all forecasts that do not completely specify a probability distribution, as later elaborated
using the principle of maximimum entropy. We argue that if a user has to interpret i.e.
mentally recalibrate a forecast, he is actually adding probabilistic information that the
forecaster failed to add, i.e. guessing (a vital part of) what the forecaster wanted to say.
Indeed, in practice there are two soothing circumstances, which are two resolutions of
the paradox mentioned later in sections 3.1 and 3.2, but the point of raising the paradox
is to show that these solutions are implicit and undesirable.
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On infinitely surprised reservoir operators

Also, | do not think that reservoir operators will be "infinitely surprised",
as stated on page 4672, line 18, if they have to face 210 m3/s when it was
forecast 200 m3/s. They can be angry because they took it as at "face-
value", if they do, but not surprised, especially if this is huge amount of
flow to their catchment (i.e., a rare event). However, they will be really
"infinitely surprised" if for the same situation the forecast indicated clear
sky and not a single amount of rain! In my opinion, this (and some other
statements; see below) need to be moderated in a revised version by some
more realistic considerations of the practice of hydrological forecasting at
operational conditions. Or, otherwise, at least, they should be illustrated by
concrete examples of past events (case-studies) that support the strength
of such statements. Also, the fact that the same sentence pointed out above
is a bit rewritten by the authors later on in the text (page 4673, lines 1-4)
shows that some re-structuring of the text could benefit the better reading
and understanding of the authors’ arguments.

Within the literal interpretation of the forecast information used to raise the paradox,
we do think the forecaster will be "infinitely surprised". In practice this is indeed never
the case because of other information available to the user next to the forecast (e.g.
the user’s own observations of the catchment and the sky and his life experience of
not believing anything people of computers tell him), but this should not influence how
we evaluate the forecasts, because they should be optimal in their own right. In other
words, the evaluation is meant to evaluate the forecasts and not the combination of
the forecasts and the user’s experience. The only reason why a forecaster would not
be infinitely surprised is because he adds information to the forecast by not taking it at
face value (either based on his own observations or prior information available to him).

For the case of interval forecasts with an associated probability of e.g. 90%, the lit-
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eral maximum entropy interpretation is piecewise uniform, with 90% of the probability
assigned between the two interval bounds, and the remaining 10% spread out over
the two outside intervals, bounded by —oc and oo. This results in an infinitesimal den-
sity and the resulting score for an observation outside the interval will still get infinite
penalty.

About the the two formulations for the infinite penalty:

1. "Even though a reservoir operator might be infinitely surprised if he has taken a
deterministic inflow forecast of 200m3/s at face-value and he finds out the inflow
was 210m?/s, his loss is not infinite."

2. “In contrast, for decision problems like reservoir operation, optimally preparing for
200m?3 /s automatically implies also preparing for 210m3/s to some extent. This
makes the loss function non-local (locality is discussed in Sect. 4.1).”

The first formulation is intended to show the contrast between 3.2, which is about loss
and utility, and the previous paragraph, which is about information and surprise. The
second formulation is in the context of utility, loss and decisions. The statement is
intended to show that a decision is often not linked to only one outcome, but is near-
optimal for several outcomes, in that way defining a sort of closeness between different
outcomes. This in contrast to the horse race, where the utility of the decision betting
on one horse on depends only on the winning of that horse. We clarified this by putting
emphasis on the words surprised and loss in statement 1. We also rephrased the text
around the second statement to make its meaning clearer.

The role of persistence and real-time discharge assimilation

In the same context, the role of persistence and real-time discharge as-
similation in streamflow forecasting models is also, in my opinion, not clearly
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assigned. A user (or a forecaster) usually uses this information to forecast
or make a decision. In my opinion, the statement on page 4670, lines 23-26,
is another example of a statement that needs to be moderated. In the fore-
casting process of a forecasting system there is not only one actor behind
the steps that leads to the production and issue (communication) of a fore-
cast or an alert. So, information is added gradually. But | agree that which
part of information/uncertainty should be considered by what (the model,
the input data) or by whom (the forecaster, the user — but which user?), etc.
is probably not yet clear in several operational forecasting centres.

Persistence in discharge offers the possibility to use the current the previous discharge
as one of the predictors in the forecasting system. This leads to better forecasts with
lower entropy probability distributions and lower divergence scores if they are well-
calibrated. If the verification score is applied to the final forecasts, the complete fore-
casting system is evaluated, including data assimilation. Indeed this may not say much
about the quality of e.g. a rainfall-runoff model used in the forecasting chain and it could
very well be that most of the skill comes from persistence. This, however, can easily
be checked by comparing the divergence scores of the whole forecasting system, with
a simple timeseries forecasting model that only uses past discharge. The difference
between the two scores is the number of bits of information per timestep that the rest
of the system adds to the probabilistic persistence forecast.

The statement on 4670:23-26- "This brings back the question who ought to specify
these constraints, which in fact constitute information. The fact that the user can reduce
the maximum entropy by adding this common sense constraint actually means that the
forecaster failed to add this information." - is intended in the light of the preceding part
of section 3.1. There is no good reason why the forecaster would not communicate
an exponential distribution with its parameters instead of giving a mean value and then
hoping that the user interprets this limited information by adding his own information
and applying the principle of maximum entropy. The point is that the forecaster is the
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one who is best equipped to make probability estimates, and once this has been done,
these should be summarized in a way that fully captures all his available information
and the remaining uncertainty, i.e. be consistent with the forecasters internal beliefs.

Definitions used

Also in general terms, the term of "calibration" needs to be more clearly
defined. This is a very interesting and important part of the authors’ argu-
ments and needs some revising. In hydrological simulation, calibration is
clearly understood (parameter calibration of a model using a given objec-
tive function). In forecasting, however, sometimes calibration refers to "cali-
brated forecasts" (in opposition to "raw forecasts" directly taken from model
output), meaning usually that some post-processing was performed to ad-
just forecast probabilities. This is usually done from the help of archives of
forecast data and the corresponding observed time series (the availability
of such an archive is another matter, largely debated within the community,
eg., HEPEX). Besides this postprocessing, hydrologists also have to han-
dle the calibration of the hydrological model, which is a component of the
forecasting system.

The following are the definitions as we use them in the paper. We will make sure

forecaster: The person or institution that issues information about some uncertain fu-
ture event to a user or group of users, either in a public forum or in a specialized
communication.

user: The person or institution that receives the information sent by the forecaster. The
user may use the information from the forecaster to support a decision, hopefully
increasing his expected utility of that decisions.
C2844

model: an algorithmic set of equations and procedures which processes information
from observations to make predictions. This includes possible post-processing
schemes or other standardized procedures.

calibration: The use of past model predictions and corresponding observations to ad-
just some parameters of the model, aiming for an improvement of the model’'s
future predictions according to some objective function. In the case of post-
processing, the parameters describe the transformation of the predictive distri-
bution from the model to the final forecast.

When the post-processing procedure is seen as a part of the total model, which we
think it should, the above definition captures both hydrological model calibration and the
statistical post processing. The corrections to the forecast distribution can be described
by an algorithm with tunable parameters, exactly like the hydrological model.

A forecasting model is, in several forecasting systems, different from a
simulation model, as it uses updating procedures (changes in parameters,
states or outputs according to the last observed discharges) to better pre-
dict future states. The aim is not reproducing the "average behaviour" or
"low and high flows" in a continuous long-term modeling framework any-
more (as it usually is in the simulation exercise), but to issue the best
streamflow prediction to the next hours or days. How does it affect the
calibration issues raised by the authors?

The difference between forecasting and simulation lies in what is used as input data
and is not really fundamental. Where the simulation model for example uses only
observed rainfall and potential evaporation as inputs, a forecasting model may have
additional inputs, like the observed previous discharge. In both cases, calibration is the
adjustment of the algorithm that the model represents (i.e. mathematical relations, pa-
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rameters) based on past pairs of observed inputs and outputs to improve the extraction
of information for those inputs in the future.

We think calibration of stochastic models based on information would be valid for both
the forecast and the simulation cases and probably even help to overcome some of
the difficulties, or at least to understand them better. For example, a forecasting sys-
tem using past discharge does very well in recession curves of moderate discharge
peaks. This recession behaviour is the result of hydrological processes and should
be captured by the hydrological model. In an operational forecasting setting, much of
the skill could originate statistically assimilating the past discharge. Using RMSE as
calibration objective implies a Gaussian homoschedastic forecast distribution, making
the hydrological model relatively insensitive to small errors in the recession. In a prob-
abilistic real time setting, however, forecasts of the recession curve would be sharper,
making the model more sensitive to those errors. In other words, an error of 10m?/s in
the recession curve would cause more surprise than a 10m?/s error just after a rainfall
event. The latter thus contains more information for the model.

Somehow, this information should be fed back into the hydrological model. The chal-
lenge is to channel the information to the right part of the model. This channeling is
entirely determined by the a priori parameters estimates, the a priori model structure
and the a priori stochastic part of the model, which is equivalent to the training mea-
sure used in a deterministic model calibration. In other words, the observation data is
the only source of information that is not put into the model a priori.

The fact that utility changes from situation to situation is exactly the reason why we
want to train models based on information in the observations. In that way the model
learn as much from the information as possible. By filtering the information through
a utility we have less to learn from. Because this also means less information to fit,
the fit will be easier to achieve but have less predictive power. The problem is only
exacerbated if we train on different utilities for floods and droughts. We learn from one
part of the information in one case and from another part in another case, and switch
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from one to the other. This introduces a unnatural discontinuity in the model, which is
then composed of two submodels and a switching mechanism. Moreover, if the sig-
nal that determines in what situation we are is determined by discharge, rainfall or a
combination of both, that information was available in the training signal anyway, and
nothing new is to be learned. A possible solution where the switch is gradual removes
the discontinuity, but the same could be achieved by a heteroscedastic probability dis-
tribution, that changes with the circumstances. This would be a more natural reflection
of the fact that in some conditions, we can be more certain than in others.

Would it be recommended to perform calibration in a "forecasting
mode"? What is the impact of real-time data assimilation in this case?

This is a complex question. we think the answer should be “yes”, but this would also
mean that given enough real time data, the hydrological model becomes quite unim-
portant and we are in fact training a completely data based model. If we then attach
physical meaning to the hydrological model and parameters and want to use it to see
the effect of e.g. future land use changes or add some topological information, we
might get wrong predictions. Calibrating in forecasting mode requires careful consid-
eration of available data versus model complexity and not using the same information
twice. This is definitely an issue that requires further study.

Do you think the framework for calibration proposed is compatible with
operational constraints (what if the system is multi-purposes or the "utility"
changes according to the situation that is being forecasted — e.g., the same
system is used for floods and low flows forecasting, or flood security and
reservoir inflow, etc.?)

In principle, a model that is trained to use all information and give a best probability es-
timate based on that will also lead to good decisions for various utility functions. Given
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that both high and low flows are generated by the same natural system, one single
model seems most appropriate. If the models structure is correct and uncertainties
are explicitly acknowledged, in theory we can never do worse by combining the impor-
tant processes for floods and droughts in one model. Only in case the processes for
drought and floods are so disconnected from each other that observations from dry
situations cannot help flood prediction and vice versa, we could consider two separate
models (or two separate training objectives, which is the same as two separate models
in our interpretation).

on non-locality as a violation of scientific logic

In the statement "It is therefore a violation of scientific logic if the score
that is intended to evaluate the quality of forecasts depends on what is
stated about things that are not observed" (Page 4675, lines 11-13), what
about the fact that forecast evaluation is also interested in the part of false
alarms, i.e., forecast, but "non-observed" events. In this sense, "proba-
bilities assigned to non-observed events" are also important. How do we
handle this?

Note that for the binary case, false alarms are already captured by scoring on the prob-
ability attached to the event that actually occurred. Any forecast probability given to a
non-observed event cannot be given to the observed event, and will therefore lower the
score. For the binary case (flood - no flood) this is trivial, but for the multi-category case,
one might think it matters how probability is spread between non-observed events. For
utilities, i.e. the context of decision making, it does indeed matter. This can make the
number of false alarms an interesting quantity for decisions whether to invest in such a
system (and might also be interesting to study the psychology of users losing trust in
the system etc.).
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However, for information, i.e. the context of learning from data and science, the way
probability is spread over non-observed events should not matter, because that would
imply learning from what could have been observed, but was not (see also the paper
of Benedetti). We don’t think there could be any scientific knowledge that doesn’t
ultimately stem from observations. Note that we use Murphy’s distinction between
value and quality, so a measure of quality cannot have anything to do with utilities and
thus belongs to the information/learning/science realm.

Also note that by using something in our evaluation that is not information (i.e. likeli-
hood), then it must some kind of prior knowledge (e.g. a weighting of information or
a preference for certain shapes of forecast distributions). Since this information is not
part of the likelihood it is prior information and could and should have been included in
the forecast prior to confronting it with data in the evaluation.

explanation of figures 2 and 3

Figures 2 and 3 should be explained in more details in the text. In Fig.
3, for instance, it is said that it shows "three routes" of information, but they
are not explained in an organized way. Figure caption is very confusing
and, in the text of the paper, only the "third route of information" appears
clearly (page 4676, line 23). | think that this figure deserves more attention
and links to the text.

We will put some more elaborate explanations of the figures in the text.
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other points

Page 4676, lines 10: "hydrological models that are trained on this kind of
utility functions: : :" Please, make it more clear or give references/examples.

Indeed this was not clear, it was meant to refer to the binary decision kind of utility
functions. Fundamentally, it is true for all objective functions that are not information,
but the effect of filtering information is strongest for the case of a utility function linked
to a binary decision problem.

Page 4676, lines 17-18: what do you mean by "Training for optimal clas-
sification of flood events"? Please, explain.

Optimal classification of flood events was meant as a forecast whose only objective
is to forecast whether or not a certain flood threshold will be exceeded, e.g. a binary
output instead of a real number in m?3/s. A model that is trained for such a task thus
gets feedback only in terms of “hit”, “false positive” and “false negative” instead of some
real number error measure or likelihood value.

how does ensemble size affect the divergence score?

Finally, a lot of probabilistic scores for forecast evaluation are used in
ensemble forecasting. How does the size of the ensemble system (number
of ensemble members) affect the divergence score?

In principle, the divergence score evaluates the final probability estimate of the ob-
served event. The score is therefore not directly affected by the ensemble size. It s,
however, affected by the definition of the categories in the final forecast that is derived
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from it. If the forecasting system tries to forecast an event subdivided in many clima-
tologically equally likely categories, the climatic uncertainty will be higher than when
there are less categories. Also the divergence score will be higher (worse), simply
because the correct forecasting in which category the event lies becomes increasingly
difficult with more categories. A recent paper by Peirolo (2010) also gives some inter-
esting intuitive discussion on this.

Another issue is the sensitivity for overly certain wrong forecasts. Therefore, an en-
semble forecast should not assign a zero probability to events outside the range of
scenarios. The perfectly reasonable reaction of the divergence score would be to give
an infinite penalty if such an event occurs. Assigning a 1/(n + 1) probability to the two
categories outside the extreme scenarios could be a solution, but due to the sensitivity,
some gain could be possible by defining a few more categories outside the extreme
scenarios to give a realistic representation of a tail.

A a discussion of information-theoretical scores in the practical context of ensemble
forecasting is indeed interesting and important for the forecasting community. However,
there is so much to say about this that we think it requires some extra research and
that it would also make the most important messages of this paper less clear. The
focus of this paper is indeed quite theoretical. We think application to a more practical
setting would be a good next step, but is outside the scope of the current paper. We
welcome some forecasting data to do these tests and are happy to supply the code for
calculating the scores and decomposition to anyone interested in doing practical tests
with it.

Technical corrections

We followed all suggestions, except for the last one, because when the disutility is
defined as MSE, then the series of forecasts that minimizes MSE per definition has the
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highest utility.

The word “wife” was taken from the example in Kelly (1956), but | replaced it by the
gender-neutral “spouse”, since we’re not in the fifties anymore. The rest of the para-
graph was also rewritten in gender-neutral terms.

Final remarks

We hope that these answers have clarified some points in the paper. We will try to
reflect the main points of this interesting discussion in the final revised paper and refer
to this discussion for background. Furthermore, a clear need for further research on
several topics came to light. We will include a section in the conclusions on future
challenges and possible practical experiments.
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