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The authors would like to appreciate the referee’s insightful comments on this work and for 

generously providing useful references to help understand the deficiency of this paper. In the 

following, the authors would like to respond to the issues raised in the comments following the titles 

in the referee’s supplementary detailed comments. 

1. Discrete scale ratios cascades versus continuous in scale cascades: 

The long-term goal of this work, which was not clearly stated in the paper, is to develop a 

downscaling method which will be further used to generate high-resolution rainfall information as 

inputs in nearly real-time (NRT) flood modelling over urban areas. This means that, in addition to 

accuracy, efficiency is another factor needed to be considered when downscaling techniques are 

developed. Continuous in scale Universal multifractals (Tessier et al. 1993) provide a promising 

framework to generate more realistic and visually smooth rainfall distributions. To generate realistic 

rainfall distribution, fractional integration is however required to simulate the rainfall structures at 

all intermediate scales via numerical calculation. This suggests that, although the efficiency of the 

calculation has been improved (Lovejoy and Schertzer 2010a; b), the total simulation time may be 

somewhat too long for the current NRT flood modelling. Nevertheless, we agree that the 

involvement of the continuous in scale Universal multifractal cascades would certainly improve the 

accuracy and reliability of the state-of-the-art flood modelling. 

Moreover, although the ability of the continuous in scale Universal multifractal cascades to 

satisfactorily reproduce the (multi-) scaling features of the observed rainfall has been validated, the 

ability to reproduce other (statistical) features is seldom explored (Bellone 2004). The latter ability 

however is very crucial for the uses of the corresponding hydrological modelling (e. g., ground runoff 

and sewer network simulation), and has been demonstrated in a number of previous works that the 

discrete-based cascade models are feasible techniques with this ability (Molnar and Burlando 2005; 

Onof and Arnbjerg-Nielsen 2009; Pathirana et al. 2003). Furthermore, discrete-based cascade 

models have already been applied to realistic rainfall prediction and modelling (Bowler et al. 2006). 

In view of the reasons mentioned above, this work therefore employs the discrete-based 

cascade models and focuses mainly on the performance in reproducing certain statistics of observed 

rainfall data. The proposed method is a very simplified prototype model based upon merely the 

formation of an exact self-similar cascade. As the referee points out, it is to an extent an unrealistic 

(or “toy”) model with respect to the objective of satisfactorily illustrating the real rainfall distribution 

due to its oversimplified assumption. However, in view of previous researchers’ results with 

discrete-based cascade models and their associated applications, the authors believe that it is a 

rough yet practically acceptable model and could be used to generate rainfall efficiently within the 

forecasting framework of interest. 

 



2. Weights versus fragmentation ratios: 

Due to the assumption made in this work that rainfall time series could be simulated using an 

exact self-similar cascade with a finite number (λ0 = b ≥ 2) of  deterministic fragmentation ratios, one 

of the key tasks is to derive these fragmentation ratios from observed rainfall data. Before 

continuing, the authors would like to clarify some statements that may confuse the readers in the 

paper because of the insufficient explanation, and the associated clarifications will be updated in the 

final version of this work. In the paper, the authors use the “multinomial cascades” term because the 

discrete-based cascade model is employed. Although the empirical analyses shows a continuum of 

weights, merely a finite number (herein, λ0 = b = 4) of values are optimally derived, which are further 

applied to generating the backbone pattern of rainfall sequences. According to this, the confusion 

between the fragmentation ratios and the weights may be clarified here insofar as the 

fragmentation ratios are in fact equivalent to those optimally-selected weights. Moreover, the 

misleading notation “p”, which is conventionally used for “probabilities” rather than “weights,” will 

be properly replaced by the standard “w” in the final proof.   

The cascade model used in this work is shown in Fig. 1 and 2 in the paper. The process starts 

from a unit volume with unit scale and measure, and, for each subdivision among parent component 

and the associated child components between two successive levels, the sum of the fragmentation 

ratios is unity, due to the microcanonical assumption (the detailed description for the whole process 

is in section 4.1). In this work, the empirical method for estimating weights and the associated 

probability distribution from real rainfall data refers to previous work (Olsson 1998), where the 

weights are obtained from individually dividing the volumes of child components by those of the 

parent component. Instead of integrating rain rates (or fluxes) over scales (Lovejoy and Schertzer 

2010a), the authors use the rainfall depth as the volume of a component. Eq. (1) in the detailed 

comments thus can be restated as: 
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where the scale ratio (i.e., 1/2) in the original Eq. (1) is not necessarily being applied. Therefore, Eq. 

(5) in the paper follows when the exact self-similar (microcanonical) cascade model is employed. As 

mentioned above, this is an oversimplified model to simulate real rainfall data, and thus the validity 

of the original Eq. 5 is somewhat controversial, particularly in real world applications; however, the 

statistical results in this work and in the previous work (Olsson 1998) suggest that this type of 

method, to some extent, has an acceptable ability to reproduce real rainfall sequences.    

3. The Log-Poisson model: 

The reason that the authors employed the log-Poisson based model as benchmark is due to the 

availability of a reliable computer programme—Cascade programme. This programme has been 

used to generate high-resolution rainfall time series in several previous works (Onof and Arnbjerg-

Nielsen 2009; Onof et al. 2005) and the associated theory has been well established (Deidda et al. 

1999), which to some degree depicts its reliability. However, as mentioned by the referee, the major 

drawback of log-Poisson based models lies on the incapability of generating events of singularity 

stronger than a critical value, which suggests that they are not sufficient as benchmark, even though 

their overall performance has been shown to be very good. The suggestion from the referee that 



another model, e.g., the Log-Levy model be used, as well as the idea of further analysing sampling 

variability are very useful.  However, although we plan to explore these issues in further work, due 

to the limited time, this is not possible before the deadline of the final version of the work. 

4. Zeros and low rain rates: 

As mentioned in the previous section, the fragmentation ratios are optimally derived from a 

continuum of weights, and the authors use them to produce the backbone pattern of rainfall 

sequences (including zero rain rates) by allowing some ratios to be zero-values. This is inspired by 

the construction of the Cantor set. To some extent, partially allowing zero-valued fragmentation 

ratios can be seen as a deterministic (yet rough) approach based upon scaling features of real rainfall 

data; however, one of the drawbacks of being deterministic is that the number of generated  zero 

values is fixed once the fragmentation ratios are derived.  

As the reviewer points out, there is, moreover, uncertainty as to what is a true zero rainfall. 

Some of the derived ratios (shown in Table 3) are found to be very small (nearly zero) values, so that 

the distinction zero/close to zero is a fuzzy one The introduction of zero fragmentation ratio is 

therefore not aimed at reproducing exactly the proportion of observed zeroes. , The authors 

therefore use thresholding (according to artefacts of the instruments) to carry out minor 

adjustments to the simulated rainfall. The method is therefore pragmatic, rather than based upon a 

claim that zero rainfall exhibits scaling. 
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