Dr. Andreas Langousis

Sc.D. in Civil and Environmental Engineering
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, M.I.T.

MSc in Civil and Environmental Engineering
Department of Civil and Environmental Engineering Massachusetts Institute of Technology, M.I.T.

Diploma in Civil Engineering
National Technical University of Athens, N.T.U.A.

65 Thessalonikis st. Piraeus, 18545, Greece
울 +30 (210) 4619520 +30 (693) 6898793

员 andlag@alum.mit.edu http://alum.mit.edu/www/andlag

A multiple threshold method for fitting the generalized Pareto distribution and a simple representation of the rainfall process

Author: R. Deidda

Comments to Author

Paper summary

Define I_{d} to be the average rainfall intensity inside duration d and denote by $I_{d, u}=\left(I_{d}-u \mid I_{d}>\right.$ u) the excesses of I_{d} above a certain threshold u. Since rainfall is an intermittent phenomenon, the cumulative distribution function (CDF) of $I_{d}, F_{I_{d}}(i)$, can be modeled as

$$
F_{I_{d}}(i)= \begin{cases}0 & , i<0 \tag{1}\\ P_{0} & , i=0 \\ P_{0}+\left(1-P_{0}\right) F_{I_{d} I_{d}>0}(i) & , i>0\end{cases}
$$

where P_{0} is the probability of zero rainfall and $F_{I_{d} \mid I_{d}>0}$ is a theoretical CDF that adequately fits the non-zero rainfall intensities in the empirical record.

Commonly used distribution models for ($I_{d} \mid I_{d}>0$) include the Gamma (Pearson III), log-Gamma (log-Pearson III), skewed normal (i.e. a normal distribution fitted to the Box-Cox transformed data), and lognormal; see e.g. Swift and Schreuder (1981) Kedem et al, (1990a,b; 1997), Shimizu (1993), Katz (1999), Cheng and Qi (2002), Cho et al. (2004), Shoji and Kitaura (2006), Langousis and Veneziano (2007), Langousis et al. (2007), Suhaila and Jemain, (2007).

For rainfall excesses $I_{d, u}=\left(I_{d}-u \mid I_{d}>u\right)$ above a properly selected threshold u, commonly used distribution models include the exponential, Gamma, lognormal, Weibull and generalized Pareto; see e.g. Rosbjerg et al. (1992), Onof and Wheater (1994), Cameron et al. (1999, 2000), Madsen et al. (1997a,b; 2002), Deidda and Puliga (2006, 2009).

The reviewed manuscript presents an approach to model the distribution of I_{d} assuming that $\left(I_{d} \mid I_{d}>0\right)$ has generalized Pareto (GP) distribution with location parameter $e=u=0$. The scale, \bar{a}_{0}, and shape, $\bar{\xi}_{0}$, parameters of the GP distribution and the probability of zero rainfall, \bar{P}_{0}, are obtained by following the procedure below.

1) Use different thresholds u_{j} to fit a GP distribution model to the rainfall excesses $I_{d, u_{j}}$
2) for each threshold u_{j}, estimate the probability $P_{u_{j}}=P\left[I_{d} \leq u_{i}\right]$ and the scale, $a_{u_{j}}$, and shape, $\xi_{u j}$, parameters of the GP distribution,
3) for each j, use theoretical relationships based on properties of the GP distribution to calculate the parameters ($P_{0, j}, a_{0, j}, \xi_{0, j}$) from the parameters ($P_{u_{j}}, a_{u_{j}}, \xi_{u_{j}}$) obtained in step 2,
4) obtain $\bar{a}_{0}, \bar{\xi}_{0}$ and \bar{P}_{0} as the median values of the estimates calculated in step 3. The suggested methodology to model the distribution of I_{d} was applied to 217 time series of daily rainfalls, each with more than 40 years of complete recordings, collected by the Sardinian Hydrological Survey (Italy). The method showed good performance in reproducing the empirical distributions of daily rainfalls at different locations, even in the case of heavily quantized (i.e. rounded off) data. This is an attractive feature of the suggested approach, since currently used methods to fit theoretical distribution models to rainfall excesses require specification of an optimum threshold that is difficult to determine when the data are heavily quantized.

Contribution and audience

The reviewed manuscript presents a methodology to model the average rainfall intensity inside duration d, I_{d}, using results obtained by fitting a theoretical distribution model to rainfall excesses $I_{d, u}=\left(I_{d}-u \mid I_{d}>u\right)$ above a wide range of thresholds u. The subject is of interest to a wide audience of hydrologists and, definitely, within the scope of the Journal.

Technical soundness, organization and style

The manuscript is technically sound and well written. In addition, all Figures and Tables are necessary.

Prior publication

To my knowledge, neither the same nor very similar work has been published elsewhere.

Recommendation

For the reasons mentioned above, it is recommended that the paper is published in HESS after minor revisions. A list of comments and suggestions is presented below.

General comment 1:

The reviewed manuscript presents an approach to model the marginal distribution of the average rainfall intensity, I_{d}, inside duration d. Note that by modeling the marginal distribution of rainfall intensities, one cannot resemble several statistics of the rainfall process, including its autocorrelation function, the alteration of wet and dry intervals and, more in general, any joint distribution function of rainy and/or non rainy intervals in the record. That said, I suggest the author changes the title of the manuscript to: "A multiple threshold method for fitting the generalized Pareto distribution to rainfall data".

General comment 2:

As stated in the Paper summary, in my opinion, the most attractive feature of the presented approach is that it gives good fits to the empirical distribution of I_{d} even for heavily quantized data. I suggest the author highlights this feature of the method in both the Abstract and Introduction.

General comment 3:

In a recent study, Veneziano et al. (2009) showed that, for multiplicative processes such as rainfall, the excesses, $I_{d, u}$, of I_{d} above any finite threshold u have not yet converged to a GP distribution. That said, even if a GP distribution provides good fits to the rainfall excesses over different thresholds u, the estimated shape parameter is larger than that calculated asymptotically as $u \rightarrow \infty$. I suggest the author mentions the findings of Veneziano et al. (2009) in the introduction, since they strengthen his arguments in fitting a GP distribution over a wide range of moderate thresholds, rather than selecting a single high threshold.

General comment 4:

Change: exceedances of thresholds
To: exceedances over thresholds
This comment applies to the whole manuscript.

General comment 5:

The font size used in all figures is small. I suggest the author increases the font size to assure readability of the figures in the final version of the manuscript.

Specific comment 1 (page: 4958; lines: 9-10):
In the suggested approach, the probability of zero rainfall P_{0} is estimated theoretically based on the corresponding parameters of a GP distribution fitted over a wide range of thresholds $u>0$. That said, P_{0} can be seen only as a distribution parameter and it is not expected to adequately model the probability of zero rainfall in the empirical record. For this reason, I suggest the author rephrases his statement "... which is able to describe zero and non-zero values of rainfall time series by assuring a perfect overlapping with the GPD..." to something more conservative such as "...which assures a perfect overlapping with the GPD..."

Specific comment 2 (page: 4958; line: 13):
Change: will only
To: is expected to
Specific comment 3 (page: 4958; line: 16):
Change: on the exceedances of a
To: using exceedances over a
Specific comment 4 (page: 4958; lines: 24-26):
Add references for different theoretical distribution models used to describe the marginal distribution of rainfall intensities. A list of references can be found in the Paper summary above.

Specific comment 5 (page: 4959; lines: 10-13):
Add references on weather generators based on Markov chains.
Specific comment 6 (page: 4959; lines: 14-16):
Change: Nevertheless, despite the simple form of Eq. (1) would suggest to fit $F_{0}(x)$ on all strictly positive rainy observations, a particular care should be taken in this (seemingly very simple) approach.

To: The simple form of Eq. (1) suggests to fit $F_{0}(x)$ on all strictly positive rainy observations, but a particular care should be taken in this (seemingly very simple) approach.

Specific comment 7 (page: 4959; lines: 23-24):
Change: are empirical evidences
To: is empirical evidence
Specific comment 8 (page: 4959; line: 26):
Change: should be
To: is needed

Specific comment 9 (page: 4959; line: 28):
Change: same and unique distribution
To: same distribution
Specific comment 10 (page: 4960; lines: 12-13):
Change: the shape parameter is expected to be the same, while the other parameters are linked by theoretical relations

To: the shape parameter is expected to be the same asymptotically as the threshold $u \rightarrow \infty$, while the other parameters are linked through theoretical relations

Specific comment 11 (page: 4961; lines: 8-9):
Change: optimum one
To: optimum
Specific comment 12 (page: 4964; line: 7):
Change: $1-\frac{1-F(x)}{1-F(u)}$.
To: $1-\frac{1-F(x)}{1-F(u)}$ for $x>u$.
Specific comment 13 (equation 5):
Add: for $x>u$
Specific comment 14 (page: 4965; lines: 18-19):
Add references to methods.
Specific comment 15 (page: 4966; lines: 9-10):
Change: on the exceedances of this threshold
To: using exceedances over this threshold
Specific comment 16 (page: 4966; line: 12):
Change: In doing it
To: In doing so
Specific comment 17 (page: 4967; lines: 8-12):
Please rephrase this paragraph. Equation (10) is obtained by substituting equation (6) into equation (1), while the parameters a_{0} and ζ_{0} are calculated from equations (8) and (9).

Specific comment 18 (page: 4968; line: 11):
Change: expect invariance
To: expect threshold invariance
Specific comment 19 (page: 4968; line: 21):
Change: correctly recorded
To: recorded
Please do so, also, in other parts of the manuscript where reference is made to rainfall data recorded at 0.2 mm resolution.

Specific comment 20 (page: 4969; lines: 8-9):
Change: calculate the corresponding reparametrizations
To: calculate the parameters
Specific comment 21 (page: 4970; line: 16):
In the light of General Comment 3,
Change: not yet in the domain of attraction of the GPD
To: not fitted by a GPD
Specific comment 22 (page: 4971; lines: 15-17):
I do not understand. Please rephrase or eliminate.
Specific comment 23 (page: 4971; lines: 15-23 and Figure 3):
I suggest the author includes in Figure 3 a plot of a GP distribution fitted using a traditional method. This would illustrate the performance of the new MTM method relative to other, more traditional, methods for fitting a GP distribution to data.

Specific comment 24 (page: 4972; line: 19):
Change: be now
To: now be
Specific comment 25 (page: 4972; line: 28):
Eliminate the exclamation mark.
Specific comment 26 (page: 4973; line: 4):
Change: our
To: the empirical

Specific comment 27 (page: 4973; line: 5):
Change: results very
To: is
Specific comment 28 (page: 4973; line: 6):
Change: for
To: when
Specific comment 29 (page: 4973; lines: 25-26):
Change: Although not deeply checked, the largest ML estimates can be due
To: We investigated the issue to some detail and the larger ML estimates should be due
Specific comment 30 (page: 4975; line: 23):
Change: a comparisons between the empirical survival functions
To: a comparison between the empirical survival function
Specific comment 31 (page: 4976; line: 25):
Change: parameters
To: parameter
Specific comment 32 (page: 4978; line: 25):
Change: not
To: non

References

Cameron, D., K. Beven, and J. Tawn (2000), An Evaluation of three stochastic rainfall models, J. Hydrol., 228, 130-149.
Cameron, D., K. Beven, J. Tawn, S. Blazkova, and P. Naden (1999), Flood frequency estimation for a gauged upland catchment (with uncertainty), J. Hydrol., 219, 169-187.
Cheng, M. and Y. Qi (2002) Frontal Rainfall-Rate Distribution and Some Conclusions on the Threshold Method, J. Appl. Meteor., 41, 1128-1139.
Cho, H.K., K.P. Bowman and G.R. North (2004) A Comparison of Gamma and Lognormal Distributions for Characterizing Satellite Rain Rates from the Tropical Rainfall Measuring Mission, J. Appl. Meteor., 43, 1586-1597.
Deidda, R. and M. Puliga (2006), Sensitivity of goodness-of-fit statistics to rainfall data rounding off, Physics and Chemistry of the Earth, 31, 1240-1251.
Deidda, R. and M. Puliga (2009) Performances of some parameter estimators of the generalized Pareto distribution over rounded-off samples, Phys. Chem. Earth, 34, 626634, doi:10.1016/j.pce.2008.12.002.

Katz, R.W. (1999) Extreme Value Theory for Precipitation: Sensitivity analysis for climate change, Adv. Wat. Resour., 23, 133-139.

Kedem, B., L.S. Chiu and Z. Karni (1990a) An Analysis of the Threshold Method for Measuring Area-Average Rainfall, J. Appl. Meteor., 29, 3-20.
Kedem, B., L.S. Chiu, and G.R. North (1990b) Estimation of Mean Rain Rate: Application to Satellite Observations, J. Geophys. Res., 95(D2), 1965-1972.
Kedem, B., R. Pfeiffer and D.A. Short (1997) Variability of Space-Time Mean Rain Rate, J. Appl. Meteor., 36, 443-451.
Langousis A, D. Veneziano, P. Furcolo, and C. Lepore (2007) Multifractal Rainfall Extremes: Theoretical Analysis and Practical Estimation, Chaos Solitons and Fractals, doi:10.1016/j.chaos.2007.06.004.

Langousis, A. and D. Veneziano (2007), Intensity-Duration-Frequency Curves from Scaling Representations of Rainfall, Wat. Resour. Res., 43, doi: 10.1029/2006WR005245.

Madsen, H., P. S. Mikkelsen, D. Rosbjerg, and P. Harremoes (2002), Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics, Water Resources Research, 38(11), 1239, doi:10.1029/2001wr001125.

Madsen, H., P.F. Rasmussen, and D. Rosbjerg (1997a), Comparison of Annual Maximum Series and Partial Duration Series Methods for Modeling Extreme Hydrologic Events 1. At-site Modeling, Wat. Resour. Res., 33(4), 747-757.
Madsen, H., P.F. Rasmussen, and D. Rosbjerg (1997b), Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 2. Regional modeling, Wat. Resour. Res., 33(4), 759-769.
Onof, C. and H.S. Wheater (1994), Improvements to the modeling of British rainfall using a random parameter Barlett-Lewis rectangular pulse model, J. Hydrol., 157, 177-195.

Rosbjerg, D., H. Madsen, and P.F. Rasmussen (1992), Prediction in Partial Duration Series with Generalized Pareto-Distribute Exceedances, Wat. Resour. Res., 28, 3001-3010.

Shimizu, K. (1993) A Bivariate Mixed Lognormal Distribution with an Analysis of Rainfall Data, J. Appl. Meteor., 32, 161-171.

Shoji, T. and H. Kitaura (2006) Statistical and Geostatistical Analysis of Rainfall in Central Japan, Computers \& Geosciences, 32, 1007-1024.

Suhaila, J. and A.A. Jemain (2007) Fitting Daily Rainfall Amount in Malaysia Using the Normal Transform Distribution, J. Appl. Sci., 7(14), 1880-1886.

Swift, L.W. and H.T. Schreuder (1981) Fitting Daily Precipitation Amounts Using the S_{B} Distribution, Mon. Wea. Rev., 109, 2535-2540.

Veneziano, D., A. Langousis and C. Lepore (2009) New Asymptotic and Pre-Asymptotic Results on Rainfall Maxima from Multifractal Theory, Wat. Resour. Res., 45, W11421, doi:10.1029/2009WR008257.

