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Abstract

We explore the reliability of large-scale climate variables, namely precipitation and tem-
perature, as inputs for a basin-lake hydrological model in central Argentina. We used
data from two regions in NCEP/NCAR reanalyses and three regions from LMDZ model
simulations forced with observed sea surface temperature (HadISST) for the last 50
years. Reanalyses data cover part of the geographical area of the Sali-Dulce Basin
(region A) and a zone at lower latitudes (region B). The LMDZ selected regions repre-
sent the geographical area of the Sali-Dulce Basin (box A), and two areas outside of
the basin at lower latitudes (boxes B and C). A statistical downscaling method is used
to connect the large-scale climate variables inferred from LMDZ and the reanalyses,
with the hydrological Soil Water Assessment Tool (SWAT) model in order to simulate
the Rio Sali-Dulce discharge during 1950—2005. The SWAT simulations are then used
to force the water balance of Laguna Mar Chiquita, which experienced an abrupt level
rise in the 1970’s attributed to the increase in Rio Sali-Dulce discharge. Despite that
the lowstand in the 1970’s is not well reproduced in either simulation, the key hydro-
logical cycles in the lake level are accurately captured. Even though satisfying results
are obtained with the SWAT simulations using downscaled reanalyses, the lake level
are more realistically simulated with the SWAT simulations using downscaled LMDZ
data in boxes B and C, showing a strong climate influence from the tropics on lake
level fluctuations. Our results highlight the ability of downscaled climatic data to repro-
duce regional climate features. Laguna Mar Chiquita can therefore be considered as
an integrator of large-scale climate changes since the forcing scenarios giving best re-
sults are those relying on global climate simulations forced with observed sea surface
temperature. This climate-basin-lake model is a promising approach for understanding
and simulating long-term lake level variations.
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1 Introduction

Improving the understanding of climate change has become a major challenge in
southeastern South America (SESA) region, where environmental impacts are ex-
pected to produce important and immediate costs on local economy and society. While
the first three quarters of the 20th century were affected by prolonged drought time pe-
riod, this region has experienced an unprecedented humid phase since the early 1970’s
(Garcia and Vargas, 1998; Garcia and Mechoso, 2005; Pasquini et al., 2006). This still
ongoing wet period results from an increase in precipitation and a higher frequency
and severity of extreme hydrologic events in both the Parana-Plata Basin and central
Argentina (Genta et al., 1998; Camilloni and Barros, 2003; Berbery and Barros, 2003;
Planchon and Rosier, 2005).

Laguna Mar Chiquita (30°54’ S—62°51' W), the terminal saline lake of a 127 000 km?
catchment area in central Argentina, west of the Parana-Plata Basin, has clearly expe-
rienced the 20th century hydroclimatic changes through an abrupt water level rise in
the early 1970’s. Such abrupt and persistent lake level rise is without precedent over
the last millennium according to paleolimnological reconstruction based on lacustrine
archives (Piovano et al., 2002; Sylvestre et al., 2010). A recent study was conducted
to assess and simulate the lake level response to regional climate and runoff variability
(Troin et al., 2010). The results pointed out to the dominant contribution of the northern
Rio Sali-Dulce Basin in the early 1970’s lake level rise, suggesting a tropical climatic in-
fluence. An integrated basin-lake hydrological approach combining the watershed Soil
Water Assessment Tool (SWAT) model with the lake water balance was then developed
(Troin et al., 2010). This latter has demonstrated the performance of this coupled hy-
drological model to simulate the lake level fluctuations during the 1970’s hydroclimatic
transition. In this paper, we want to go a step further. The major objective is to provide
an efficient integrated large-scale climate-basin-lake model in order to understand and
simulate its long-term past and future behaviours in relation with global climate. The
large-scale outputs of general circulation models (GCMs) can be extremely useful for
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projecting and understanding future global climatic changes and their impacts on hy-
drological systems. Although results vary between studies, hydrological models driven
directly by raw outputs of GCMs performed poorly and the predicted runoff is often over-
simplified (Wilby et al., 1999; Xu, 1999). The spatial resolution of the present GCMs is
too coarse to resolve local-scale processes, precluding their direct use in hydrological
models (Wilks and Wilby, 1999; Prudhomme et al., 2002). In particular, the reproduc-
tion of observed spatial patterns of precipitation (Salathé, 2003) and daily precipitation
variability (Burger and Chen, 2005) is not sufficient. Thus, considerable efforts have
been made in the climate community in order to develop downscaling methods, to over-
come the gap between large- and local-scale climate data required for hydrological
models (Wilby et al., 1999; Hay et al., 2002; Hay and Clark, 2003; Chiew et al., 2010).
The most widely used are classified into dynamical and statistical approaches. The
first approach refers to the regional climate models (RCMs). Resolving the physical
equations of the atmospheric regional dynamics, RCMs are meteorologically and hy-
drologically consistent but also computationally expensive in the production of regional
simulations (Tisseuil et al., 2010). Wood et al. (2004) have found that RCMs do not
lead to large improvement in hydrological simulations relative to using GCMs outputs
alone. In the statistical approach, statistical downscaling methods (SDMs) are used to
generate local-scale climate variables from large-scale climate variables derived from
GCMs outputs or reanalyses. In the usual SDMs, such as regression models (e.g.,
Wilby et al., 2002; Vrac et al., 2007a, Huth et al., 2008), weather typing schemes (e.g.,
Mamassis and Koutsoyiannis, 1996; Vrac et al., 2007b), and stochastic weather gener-
ators (e.g., Wilks and Wilby, 1999; Vrac and Naveau, 2007), the fundamental concept
is to relate one or several large-scale climate variables (the predictors) from GCMs or
reanalyses to local-scale climate variables (the predictands). While most of the SDMs
usually consider direct relationships in order to provide local-scale climate values, the
probabilistic downscaling methods (PDMs) model large-scale climate statistics in view
of generating local-scale climate statistics (Michelangeli et al., 2009). Thanks to ad-
vances in availability of concerted experiments among the climate community, there is
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some interest in the use of PDMs such as computational efficiency and stronger rela-
tions to the local-scale climate, which seem to offer a more robust way for assessing
climate impacts on hydrological systems (Fowler et al., 2007).

In this context, our study aims at assessing the applicability of the integrated basin-
lake hydrological model forced by statistically downscaled large-scale climate vari-
ables. To do so, we use a PDM approach for simulating the lake level variations
of Laguna Mar Chiquita during the 1970’s hydroclimatic transition. The large-scale
times series are data fields derived from the National Center for Environmental Pre-
diction (NCEP)/National Center for Atmospheric Research (NCAR) reanalyses and the
LMDZ GCM. The LMDZ GCM corresponds to the atmospheric component of the IPSL-
CM4 coupled model of the Institut Pierre Simon Laplace developed at Laboratoire de
Météorologie Dynamique (Marti et al., 2005; Dufresne et al., 2005).

Doing so, we will address the following questions: (1) Is it relevant to force a rainfall-
runoff model by downscaled NCEP/NCAR reanalyses and LMDZ GCM outputs? Are
the GCMs projections reliable at a local-scale?; (2) Did the large-scale simulated pre-
cipitations forced by observed sea surface temperature (HadSST1) for that period rep-
resent the climatic control of the lake level fluctuations? If so, can Laguna Mar Chiquita
be considered as an integrator of global climate variability in the SESA?

After a brief description of the area of study (Sect. 2), the five large-scale times se-
ries derived from the reanalyses regions and LMDZ boxes are presented (Sect. 3). In
Sect. 4, the methodology used to generate rainfall-runoff simulations is described as
well as lake-level simulations. In Sect. 5, the downscaling method performance is anal-
ysed during the calibration and validation periods, and the simulations are evaluated.
Then, in Sect. 6, we discuss the ability of our approach to reproduce regional climate
features and the Laguna Mar Chiquita fluctuations over the 1950-2005 time period.
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2 General description of the study area
2.1 The lake watershed

Laguna Mar Chiquita (30°54' S—62°51' W) is a hydrologically closed terminal lake oc-
cupying a tectonic depression that formed during the middle Pleistocene (Krohling and
Iriondo, 1999). The lake catchment is estimated to 127 000 km? from 26°S to 32°S
and from 62° W to 66° W (Fig. 1), with a relatively low relief except for its mountainous
borders on the northwest and southwest, called Sierras de Aconquija and Pampeanas
ranges, respectively. The lake catchment is part of the Chaco-Pampean Plain, a larger
lowland area where grasslands and shrublands have been modified for agricultural ac-
tivities during the last century (Gavier and Bucher, 2004).

2.2 Hydrology of Laguna Mar Chiquita

Laguna Mar Chiquita is fed by three rivers (Fig. 1) and likely receives substantial
groundwater inputs. The main surface water inflow is from the Rio Sali-Dulce Basin
which controls 92% of lake level variations (Troin et al., 2010). The Rio Sali-Dulce
Basin, covering roughly 23810 km? from 26°S to 28° S and 64° W to 66° W, drains the
northern part of the lake basin. It is the collector of many rivers that come from the
Sierra de Aconquija until joining the Rio Hondo reservoir, created in 1967 to control
and regulate the water distribution and also to produce hydroelectric power (Fig. 1).
The hydrographic network of the Sali-Dulce Basin provides ressources necessary to
the regional socio-economic development. Other minor inflows to the lake, draining
the southwestern part of the lake basin and coming from the Sierras Pampeanas area,
are the Rios Xanaes and Suquia (Troin et al., 2010). The lake system has no surface
outlet and the only significant water loss is evaporation, which is favored by the pan-like
shape of the lake.
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2.3 Regional climate

Characterized by a wet season (with high precipitation and temperature) from Decem-
ber to March and a dry season between June and August, the studied area is sub-
jected to a latitude climate gradient. In the south, around Laguna Mar Chiquita, the
climate is warm-temperate (mean annual temperature of 18° C) with mean annual pre-
cipitation of 806 mm. Northward, the Sali-Dulce Basin is rather characterized by a
subtropical climate (mean annual temperature of 20 °C) with mean annual precipitation
of 1300mm. In the northern part of the Sali-Dulce Basin, orographic precipitations
exceeding 1500 mm per year are observed.

The major atmospheric features driving seasonal climatic variability in the SESA
is the South American Monsoon System (SAMS). In the austral summer, the SAMS
extends southward from the tropical continental region connecting the tropical Atlantic
Inter Tropical Convergence Zone (ITCZ) with the South Atlantic Convergence Zone
(SACZ) through a large-scale atmospheric circulation containing a low-level jet (Zhou
and Lau, 1998). The South American low-level jet originating in the northern part of
South America at the foot of the Andes is driven by the Chaco Low to provide moisture
for the SESA, bringing vapor from the tropics to the subtropical latitudes (Labraga et
al., 2000; Barros et al., 2002). In contrast, the SACZ displays a weak convective
activity during the austral winter and rainfall regime deceases excepted at the East
in SESA where the South East trade wind circulation brings moisture associated with
local rainfall (Barros et al., 2002).

3 Data

3.1 Local-scale meteorological and hydrological data

Meteorological data in the lake basin for the 1950-2005 time period were obtained
from the Direccion Provincial de Agua y Saneamiento (DIPAS) in Argentina’s Cordoba
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Province, the Instituto Nacional de Tecnologia Agropecuaria (INTA), the National Cli-
matic Data Center (NCDC), and CLARIS LPB project database (http://www.claris-eu.
org/). It consists of daily minimum and maximum temperatures and precipitation for
two stations during the 1950—2005 time period and four stations for 1973-2005 in the
Sali-Dulce Basin (Fig. 1 and Table 1).

Monthly river discharge was obtained from Argentina’s Subsecretaria de Recursos
Hidricos and the Laboratorio de Hidraulica at the Universidad Nacional de Cordoba (Ta-
ble 2). The Rio Sali-Dulce is gauged after the reservoir at the Hondo station (Fig. 1),
and a time series was obtained by combining two neighbouring gauging stations,
which were well correlated during the 1967—-1982 common time period (r“ = 0.99). The
Hondo gauging station covers the drainage area to the reservoir, e.g. 98% of the total
Sali-Dulce Basin area (Fig. 1 and Table 2).

3.2 Large-scale meteorological data
3.2.1 Reanalysis data

NCEP/NCAR reanalysis data are atmospheric model outputs derived from the assim-
ilation of surface observation stations, upper-air stations and satellite-observing plat-
forms with long records starting in 1948 and continuing to present day. These data are
typically viewed as observed large-scale data on a regular grid with a spatial resolu-
tion of 2.5 by 2.5 degrees in longitude and latitude directions. In this work, mean daily
minimum and maximum temperatures and precipitation from two regions during the
1950-2005 time period were used, referred as region A (from 27° S to 28° S and 65° W
to 66° W) and region B (from 20° S to 25° S and 55° W to 65° W), covering, respectively,
part of the geographical area of the Sali-Dulce Basin and a zone at lower latitudes.
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3.2.2 General circulation model simulations

The GCM used is the LMDZ version 4, the atmospheric component of the IPSL-CM4
coupled model of the Institut Pierre Simon Laplace (Marti et al., 2005), developed at
Laboratoire de Météorologie Dynamique, and used to produce climate change simu-
lations for the 2007 IPCC report (Dufresne et al., 2005). The model is formulated in
the finite-difference grid with a horizontal resolution of 3.75 by 2.5 degrees in longi-
tude and latitude directions and 19 hydrid vertical layers (Hourdin et al., 2006). Using
this model, we performed an ensemble of ten simulations forced by the observed sea
surface temperature from 1951 to 2005, using the monthly HadSST1 global dataset
(Rayner et al., 2003). Each simulation member only differs from the sea ice and sea
surface temperature used as initial conditions.

Daily minimum and maximum temperatures and precipitation averaged over the 10
members ensemble were then extracted for three regions from the model outputs, re-
ferred as box A (from 25°S to 35°S and 55°W to 67° W), box B (from 15°S to 25° S
and 55° W to 65° W), and box C (from 20° S to 25° S and 55° W to 65° W). Box A covers
the geographical area of lake basin, while the two others are located slightly north to
the Sali-Dulce Basin, in order to put more emphasis on the possible tropical influence
over the basin-lake hydrological evolution.

4 Methodology

The compiled data sets were used to develop five climate scenarios to investigate the
potential reliability of downscaled data for generating discharge scenarios in the Rio
Sali-Dulce Basin for the 1950-2005 time period. The description of the methodologies
involved will follow the routes shown in the Fig. 2. Daily precipitation and temperature
time series produced from probabilistically downscaled NCEP/NCAR reanalyses and
LMDZ outputs were distributed spatially over the Sali-Dulce Basin in order to fit with the
location of observed meteorological stations. These spatially distributed meteorological
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data were then used as input to the watershed hydrological SWAT model (Arnold et
al., 1998; Neitsch et al., 2002) in order to simulate the main surface runoff that feed
the lake for the 1950-2005 time period. At last, the level fluctuations of Laguna Mar
Chiquita were simulated during the studied period by a lake water balance model (Troin
et al., 2010) forced by the outputs of SWAT. The following sections provide details of
the methodology involved at each stage of the analysis.

4.1 Probabilistic downscaling method

Probabilistic downscaling methods (PDMs) involve modelling relationships between
statistical characteristics of the predictors and those of the predictands. Predictor vari-
ables provide information concerning the daily large-scale state of the atmosphere,
while predictands represent the local-scale variables to be modelled such as temper-
ature and precipitation that are observed at meteorological stations. In this work, the
predictor variables included daily precipitation and maximum and minimum tempera-
tures. The statistical relationships between predictors and predictands were modeled
using the “cumulative distribution function-transform” (CDF-t) method (Michelangeli et
al., 2009). The cumulative distribution function F (CDF) of a random variable X cor-
responds to the probability that a random realization of X is equal to or lower than a
given value x: F(x) = Proba (X < x). The CDF-t method can be seen as an extension
of the quantiles-matching method (Déqué, 2007) that uses non-parametric correspon-
dences between predictors and predictands quantiles. The CDF-t approach is based
on the assumption that a mathematical transformation ¢ allows to translate the CDF
of the predictor (e.g. temperature and precipitation from reanalyses or LMDZ) into the
CDF representing the predictand (e.g. temperature and precipitation at a meteorologi-
cal station). CDF-t has the advantage to take into account the change in the large-scale
CDF from the observed period to the future one, that is required in a changing climate
context (Michelangeli et al., 2009).

For the precipitation downscaling procedure, we first determined the daily precipita-
tion occurrences before applying CDF-t to the strictly positive rainfall intensities. The
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binomial distribution of the large-scale daily rainfall occurrences is often biased (in re-
analyses or GCM outputs) in comparison to local observations. Hence, a threshold
was defined to work on corrected large-scale occurrences distributions similar to the
observed ones. In the following, we will consider that a daily local observation of rain
corresponds to a wet day only if the observed intensity is Tmm or higher. Otherwise, it
is considered as a dry day. Then, for each given station S, a large-scale threshold {g is
determined such that we have as many large-scale dry days —i.e., with large-scale rain
intensities lower than tg — as the number of observed dry days at station S. In other
words, if Fg is the CDF of the rain intensity (including values lower than 1 mm day'1) at
station S, and F_ the equivalent for the large scale data, then tg is determined such that
F_(ts) = F5(1). Hence, based on this threshold, a large-scale sequence of rain occur-
rences can be obtained. Then, the large-scale values of the days where occurrences
were determined (i.e., with rainfall > 5 mm) are downscaled using CDF-t.

Because the temperatures are continuous without real bounds in this study, the daily
distributions of the large-scale minimum and maximum temperatures derived from re-
analyses and LMDZ were directly downscaled using CDF-t.

The precipitation and temperature downscaling procedures were applied in consid-
ering either all season grouped together or a seasons differentiation. Those two ap-
proaches are referred in the following as CDF-t-year and CDF-t-season, respectively.
In the latter, the seasons were determined based on the observed seasonality, i.e., wet
(November to April) and dry (May to October) seasons.

4.2 SWAT model description

The hydrological Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998;

Neitsch et al., 2002) was used in this study. SWAT is a continuous-time, spatially semi-

distributed hydrological watershed-scale model that operates on a daily time step. The

model is physically based and is computationally efficient for large watersheds (Arnold

and Allen, 1996). Spatial variability of land use, soil, and management practices are

accounted for by dividing the watershed into sub-basins based on topography and the
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river network. Each sub-basin is divided in multiple Hydrologic Response Units (HRUs)
that represent a unique combination of land cover, soil, and slope. The minimum cli-
matic variables required for SWAT are precipitation, maximum and minimum temper-
atures. For a given time step, the contribution to discharge at each sub-basin outlet
is controlled by the HRU water balance calculation. The second phase is the routing
phase which determines the movement of water through the river network towards the
basin outlet (Neitsch et al., 2002). The HRU water balance is expressed as follows:

t
W, =Ws + Z (P = Qisurt —ET; - Wiseep — Qigw) (1)
i=1

where W, is the soil moisture content at the time ¢ (in mm of water); W, is the initial
soil moisture content (mm of water); P, is the amount of precipitation on day / (mm of
water); Qi is the amount of surface runoff on day / (mm of water); ET; is the amount
of evapotranspiration on day / (mm of water); Wigq, is the amount of percolated water
through the soil profile (mm of water); and Qg is the amount of groundwater flow on
day / (mm of water).

Surface runoff was estimated using the Soil Conservation Service (SCS) curve num-
ber procedure (SCS, 1972) and the potential evapotranspiration (PET) was determined
by the Hargreaves method (Hargreaves and Samini, 1985). More details can be found
in the SWAT User’s Manual (Neitsch et al., 2002).

A detailed analysis of SWAT application to the Sali-Dulce Basin is provided in Troin
et al. (2010). The SWAT peformance for simulating the surface runoff is evaluated at
the monthly level based on available data, using the Nash-Sutcliffe effiency (NSE), that
is a normalized statistic determining the relative magnitude of the residual variance
compared to the observed data variance (Nash and Sutcliffe, 1970) from month / to n,
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through:
Z (Oo _5o>2 - Z (Os - 00)2

i=/

NSE = 2)

n —\2
Z/ <Oo - Qo)
where Q, is the observed runoff (m®s™); @, is the simulated runoff (m>s™"); and Q; is
the mean observed runoff (m3 3‘1).

4.3 Lake water balance model

A modeling study of lake level fluctuations in Laguna Mar Chiquita was recently per-
formed (Troin et al., 2010). This study presented a water balance model able to sim-
ulate the lake level variations in response to local climate and observed monthly river
discharge in its upper catchment (see location of gauging stations in Fig. 1). A de-
tailed analysis of the lake model calibration and implementation is provided in Troin et
al. (2010). The dynamic lake water balance of Laguna Mar Chiquita is simulated as
follows:

oV .

57 =AWVIP-E)+ Qi -y with Qi =Qpy +CQry+Crg 3)
where, for the monthly time step Af, AV is the lake volume variation (m3); A is the
lake area (m?), as a function of the lake volume V; P is the on-lake precipitation (m)
estimated from the six rainfall stations surrounding the lake (Fig. 1); E is the evapora-
tion from the lake’s surface (m) calculated using the Complementary Relationship Lake
Evaporation (CRLE) Model (Morton, 1983; DosReis and Dias, 1998); Q,, is the water
inflow from the catchment (m®); Qg and QR, the two southern river discharges; and
Q3 the Rio Sali-Dulce discharge, representing 90% of Q;, (Fig. 1). The correspond-
ing lake level was estimated as a function of the lake volume, h=7f(V), following the
morphometric relationship established using the lake bathymetry (Hillman, 2003).
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5 Results
5.1 Evaluation of the downscaling method

When calibrated during the 1973—-1989 time period using the six observed data sets
for both NCEP/NCAR reanalyses regions, CDF-t-year and CDF-t-season generally ex-
plained between 37 and 75% and between 48 and 74%, respectively, of the percentage
of explained variance (E%) in daily maximum and minimum temperatures (Table 3).
Slightly lower values were obtained from the three LMDZ boxes with a E% statis-
tic between 37 and 61% and between 40 and 59%, respectively, for CDF-t-year and
CDF-t-season (Table 4). Minimum temperatures were downscaled with more efficiency
than maximum temperatures for both CDF-t-year and CDF-t-season and whatever the
downscaled large-scale data (i.e. NCEP/NCAR reanalyses regions or LMDZ boxes)
(Tables 3 and 4). Minimum and maximum temperatures were better reproduced during
austral spring (SON) and automn (MAM) than austral winter (JJA) and summer (DJF).

From the Tables 3 and 4, it was evident that, on average, the PDM overestimated
the yearly and seasonal occurrences of dry day while wet day occurences were un-
derestimated, whatever the downscaled large-scale data (i.e. NCEP/NCAR reanalyses
regions and LMDZ boxes) and the downscaling method (i.e. CDF-t-year and CDF-t-
season). The proportions of dry and wet days occurrences were better reproduced
during austral summer (DJF) except for region B (CDF-t-year and CDF-t-season), and
boxes B (CDF-t-year) and C (CDF-t-season), where the precipitation occurrences were
better represented, during austral spring (SON) and winter (JJA), respectively for the
two boxes. Additionaly, simulated precipitation consistently reproduced the probability
of observed wet and dry spells, even for small values of probabilities, corresponding
to long periods (Figs. 3 and 4). Again, a tendency to underestimate the wet spell
probabilities and overestimate the dry spell probabilities was observed.

PDM validation was peformed during the 1990-2005 time period using the lengthy
series of the six meteorological stations. Before the year 1972, the performance of
the yearly and seasonal CDF-t's was evaluated based on two available meteorological
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stations (Table 1). Even though the percentage of wet days remained underestimated
for the NCEP/NCAR reanalysis regions and the LMDZ boxes during both the PDM
validation periods, the annual precipitation totals were quite similar to the observed
one, especially for the boxes B and C (Tables 5 and 6). The downscaled maximum and
minimum temperatures were under- and over-estimated, respectively, from both the
reanalysis regions and LMDZ boxes (Tables 5 and 6). It is noteworthy that a season
differentiation did not allow a clear improvement of the downscaled local climate.

5.2 Comparison of rainfall-runoff simulations

In this section, we compared the SWAT performance to simulate the Rio Sali-Dulce
discharge forced by the downscaled daily precipitation and temperature derived from
reanalysis regions and LMDZ boxes over the PDM calibration (1973—-1989) and valida-
tion periods (1950-1972; 1990-2005). Additional figures presenting the scatter plots
of measured versus simulated monthly runoff over the PDM calibration and validation
periods can be found in Appendixes Ato F.

Accordingly, Table 7 showed the corresponding Nash-Suicliffe coefficient of effi-
ciency (NSE) statistics for both downscaled reanalyses regions and LMDZ boxes used
as input data to SWAT over the PDM calibration and validation periods.

For SWAT simulations obtained using the downscaled reanalysis regions during the
PDM 1973-1989 calibration time period, the best results were found for region A with
the CDF-t-season method (Table 7). However, more satisfying results were observed
using the downscaled LMDZ boxes B and C with a better SWAT skill using the CDF-
t-year (Table 7). Additionally, the resulting NSE shows more satisfactory results for
baseflow than for peak flow due to the better PDM skill in reproducing the dry climate,
whatever the rainfall-runoff simulation and the downscaling method (i.e. CDF-t-year or
CDF-t-season).

During the PDM validation periods, a slight decrease in the model performance was
observed except for region B and box A during the 1990-2005 and 1950-1972 time
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periods, respectively (Table 7). However, SWAT simulations using the boxes B and C
with CDF-t-year still provided the most satisfying results (Table 7).

For each SWAT simulation over the 1950-2005 time period, the model generally
reproduced seasonal and annual variations in runoff of the Sali-Dulce Basin (Fig. 5).
Whereas the monthly baseflow simulations driven by the downscaled reanalysis re-
gions and LMDZ boxes were generally accurately reproduced, peak flows remained
clearly overestimated. In particular, similar findings for consecutive years (1981-1982
and 1998-1999) were noticeable for SWAT simulations using the downscaled large-
scale data, especially for the region B, and the boxes A and C (Fig. 5).

5.3 Comparison of lake level simulations

Since, the Rio Sali-Dulce discharge was shown to be the main driver of the abrupt level
rise observed in the 1970’s in Laguna Mar Chiquita (Troin et al., 2010), we used the
ten simulations of Rio Sali-Dulce discharges to replace the measured Qs time series
(Eq. 3). All the others components of the lake water balance model were derived from
observations except for the lake evaporation which was estimated by the CRLE model
(Troin et al., 2010).

Generally, the trends of the lake level fluctuations derived from the SWAT simulations
using both reanalyses regions and LMDZ boxes were quite similar to the simulated
reference curve except the lowstand in the early 1970’s which is not well reproduced
(Fig. 6). It is noteworthy that this lowstand was also not fairly captured by the SWAT
simulation using the two available observed meteorological data before 1972 (Table 1
and Fig. 6; Simulated curve-SWAT/observed data), which was attributed to the poor
spatial representation of observed precipitation (Troin et al., 2010).

For the lake level simulations using SWAT forced by reanalyses in region A and
LMDZ box A, a clear opposite trend was identified for the last highstand in the early
2000’s (Fig. 6a and c). Additionnaly, a shift for the 1980’s highstand in the lake level
simulations was observed using reanalyses region B and LMDZ boxes B and C (Fig. 6b,
d, and e). The lake level increase at the beginning of the 2000’s is however well
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reproduced using reanalyses region B, due to the high overestimation of the simulated
peak flow during this period (Fig. 5b). Overall, the lake level trends obtained with the
LMDZ boxes B and C for both CDF-t approaches were the most synchronous with the
simulated reference curve (Troin et al., 2010) with one moderate highstand centered
at approximately 1960 followed by three major highstands centered at approximately
1985, 1994, and 2000.

6 Discussion and conclusions
6.1 Relevance of downscaled climate variables for hydrological impact studies

The reliability of downscaled climate variables from large-scale data-sets
(NCEP/NCAR reanalyses and LMDZ GCM) over SESA key regions as input to
an integrated basin-lake model was illustrated in this study.

One important feature is the similarity of the simulated extreme hydrological events
with the SWAT simulations using both downscaled reanalyses and LMDZ data (Fig. 5).
The high peak flows observed in 1981 and 1982, 1998 and 2000 are indeed common
to each simulation and are explained by high annual downscaled precipitation total
(AP =+64% to +120%) compared to 1950—-2005 average value. Can we attribute
these peak flows to the SWAT model emphasizing abnormally wet years related to
climate phenomena such as ENSO, which also coincided with observed and simulated
lake level rises in Laguna Mar Chiquita (Fig. 6)? The fact that these higher peak flows
are simulated using LMDZ forced with observed SSTs, suggest indeed such remote
ENSO influence on the lake level fluctuation. However, even though many studies
have shown a link between the increased regional precipitation and ENSO (Grimm et
al., 2000; Pezzi and Cavalcanti, 2001; Paegle and Mo, 2002; Grimm, 2003), further
investigations are needed to corroborate the potential teleconnection with the Laguna
Mar Chiquita Basin.
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6.2 Climate understanding: insights of an integrated basin-lake model

An interesting feature is that the lake level trends are better simulated using down-
scaled LMDZ outputs compared to reanalyses, with the best results using LMDZ boxes
B (15°-25°S; 55°-65° W) and C (20°-25°S; 55°—65° W). Compared to NCEP/NCAR
reanalyses the simulated variations of LMDZ precipitation driven by observed global
SST only, is remarkably able to drive interdecadal lake level variations consistent with
observations (Fig. 6). The best results obtained with data from regions at lower lati-
tudes (15°-25° S) than the actual lake catchment, suggest that Laguna Mar Chiquita is
mainly under tropical climate influences in agreement with a previous study based on
observations (Troin et al., 2010).

It is indeed worth noting that SWAT simulations obtained with downscaled LMDZ vari-
ables allow reproducing accurately the key hydrological decadal cycles in the lake level
as seen in observations, i.e., the 1956—-1962, 1973—-1990, 1991-1996, and 1997-2005
cycles, and the lake level highstands in the 1980’s, 1990’s, and 2000’s. These features
would suggest that the lake level decadal variability is in connection with global ocean-
atmosphere variations, with the lake level highstands probably linked to extremes cli-
matic events. More investigations are needed to evaluate the respective role of extreme
events (i.e. intensity, amplitude, and frequency) and of low frequency climate variability
(i.e. multi-decadal cycles) on the evolution and highstand persistence of the Laguna
Mar Chiquita level (Sylvestre et al., 2010).

Questions still remain as for the lowstand in the early 1970’s, which is not well repro-
duced in either simulation. It is important to point out that the overestimation of lake
level lowstand is probably due to the poor spatial distribution of observed precipitation
used to validate SWAT for the 1950-1972 time period (only two stations: Tucuman
and Santiago del Estero stations; Table 1). In particular, extreme precipitation events
recorded at the Tucuman station (1966—-1971: AP = +16%), and specificaly a wetter
year in 1968 (AP = +72%), probably biased our results (Fig. 6) with a stronger local
climatic influence as previously explained by (Troin et al., 2010). This might also be
true for the lake level overestimation in 1970’s in SWAT simulations derived from the
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reanalyses or LMDZ outputs. Since the Tucuman station data were used for the down-
scaling, the relation between regional and global climatic variability could have been
overshadowed by local climate extreme events. This discrepancy underlines the limi-
tation of our modeling approach when the spatial distribution of field observation is too
poor. Even though more work is required to explore the hypothesis explaining such
discrepancy, our results suggest that Laguna Mar Chiquita can be considered as an
integrator of large-scale climate variability in this region of South America from interan-
nual to decadal time scale.

To our knowledge, this study is one of the first to provide an integrated basin-lake
model forced by downscaled large-scale climate variables. This modeling approach
may be used as a valuable tool for simulating future hydrological responses and for
reconstructing past climate conditions, which will improve our understanding of climate
variability in this region of South America.
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Table 1. The name, location, and main characteristics of the six meteorological stations.

1950-1972 time period
(no missing data)

1973-2005 time period

Station Elevation Latitude Longitude Annual Average Average Annual  Proportion Average Average Proportion

(m) (S) (W) rainfall minimum maximum rainfall of daily minimum  maximum of daily

(mm) temperature temperature (mm) missing temperature temperature missing data

(0) (0) data (%) (0) (0) (%)

1 Lules 950 -26.21 -65.21 - - - 1596 8 14.3 26.8 25

2 Tucuman 455 -26.85 —65.09 997 13.8 26.1 980 25 14.2 26.5 26

3 Las Canas 1300 -27.24 —65.59 - - - 1084 3 13.9 27.7 20

4 Las Termas 281 -27.45 —64.89 - - - 406 4 13.8 28.1 1

5 Santiago 20 -27.67 —64.60 484 13.6 28.0 660 3 13.9 28.3 2

del Estero

6 Catamarca 464 -28.35 -65.77 - - - 513 6 14.3 28.3 0.5
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Table 2. The name, location, and main characteristics of the river discharge station during the
1950-2005 time period.

River discharge Latitude Longitude Catchment Average Specific Proportion of

station (S) (W) area (km2) value discharge  monthly missing
(m3/s) (mm/year) data (%)
R3b (Rio Sali-Dulce) Hondo 27°30' 64°52' 23810 126 167 0
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Table 3. Downscaling method calibration fit expressed in terms of the percentage of explained
variance (E%) in daily maximum and minimum temperatures and the proportion of dry and wet
days occurrences in daily precipitation for the two NCEP/NCAR reanalyses regions for 1973—
1989 (Bracket values referred to the proportion of dry and wet days occurrences in observed

daily precipitation).

Data source PDM Period Proportion of Maximum Minimum
approach precipitation occurence temperature temperature
Dry day Wet day
year 83 (66) 17 (34) 52 75
DJF 54 (45) 46 (55) 38 40
Region A CDF-t-year MAM 86 (61) 14 (39) 47 62
JJA 100 (85) 0(15) 41 26
SON 92 (71) 8 (29) 47 63
year 78 (66) 22 (34) 64 74
DJF 53 (45) 47 (55) 39 40
Region A CDF-t-season MAM 83 (61) 17 (39) 51 61
JUA 95 (85) 5(15) 48 26
SON 80 (71) 20 (29) 51 62
year 82 (66) 18 (34) 37 59
DJF 67 (45) 33 (55) 10 12
Region B CDF-t-year MAM 82 (61) 18 (39) 37 55
JJA 97 (85) 3(15) 21 33
SON 82 (71) 18 (29) 27 36
year 78 (66) 22 (34) 48 65
DJF 62 (45) 38 (55) 10 11
Region B CDF-t-season MAM 78 (61) 22 (39) 40 58
JJA 95 (85) 5(15) 25 37
SON 78 (71) 22 (29) 27 39
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Table 4. Downscaling method calibration fit expressed in terms of the percentage of ex-
plained variance (E%) in daily maximum and minimum temperatures and the proportion of
dry and wet days occurrences in daily precipitation for the three LMDZ grid-boxes for 1973—
1989 (Bracket values referred to the proportion of dry and wet days occurrences in observed

daily precipitation).

Data PDM Period Proportion of Maximum Minimum
source approach Precipitation occurence temperature temperature
Dry day Wet day
year 81 (66) 19 (34) 47 61
DJF 52 (45) 48 (55) 10 20
Box A CDF-t-year MAM 82 (61) 18 (39) 30 40
JJA 97 (85) 3(15) 15 21
SON 92 (71) 8 (29) 17 35
year 76 (66) 24 (34) 45 57
DJF 52 (45) 48 (55) 10 20
Box A CDF-t-season MAM 77 (61) 23 (39) 26 27
JUA 92 (85) 8 (15) 14 21
SON 84 (71) 16 (29) 17 29
year 76 (66) 24 (34) 37 59
DJF 25 (45) 75 (55) 10 20
Box B  CDF-t-year MAM 85 (61) 15 (39) 25 37
JUA 98 (85) 2(15) 13 15
SON 97 (71) 3(29) 14 28
year 77 (66) 23 (34) 40 55
DJF 42 (45) 58 (55) 12 10
BoxB CDF-t-season MAM 81 (61) 19 (39) 22 29
JUA 96 (85) 4 (15) 13 15
SON 89 (71) 11 (29) 19 27
year 77 (66) 23 (34) 39 58
DJF 33 (45) 67 (55) 10 18
Box C  CDF-t-year MAM 83 (61) 17 (39) 25 36
JUA 98 (85) 2(15) 12 14
SON 95 (71) 5 (29) 18 29
year 77 (66) 23 (34) 40 59
DJF 45 (45) 55 (55) 12 19
BoxC  CDF-t-season MAM 81 (61) 19 (39) 21 28
JUA 93 (85) 7 (15) 14 14
SON 87 (71) 13 (29) 19 28
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Table 5. Comparison of downscaling PDM approaches outputs and observed (six meteorologi-
cal stations) precipitation, maximum and minimum temperatures for the validation (1990—-2005).

Data source PDM approach Precipitation (mm) Maximum Minimum
temperature ("C) temperature (°C)
Mean SD % Wet Total Mean SD Mean SD
) CDF-t-year 09 68 8 343 26.9 7.1 14.0 6.1
Region A CDF-t-season 15 86 16 563 27 7.2 14.1 6.5
) CDF-t-year 24 104 19 872 26.6 6.7 14.3 6.7
RegionB  GpF.t-season 30 117 24 1092 26.5 6.5 14.2 6.6
CDF-t-year 23 10.1 20 856 27 6.6 145 6.5
Box A CDF-t-season 24 1041 21 859 27 6.6 145 6.5
CDF-t-year 22 96 21 797 27.1 7.1 14.6 6.6
Box B CDF-t-season 21 97 19 774 27.3 6.9 14.7 6.5
CDF-t-year 22 98 19 791 27.1 6.9 14.6 6.5
Box C CDF-t-season 22 99 20 817 27.2 6.7 14.6 6.5
Observed 22 57 30 792 27.6 6.3 14 6.2
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Table 6. Comparison of downscaling PDM approaches outputs and observed precipitation,
maximum and minimum temperatures for the validation (1950—1972) at the two and six (bracket
values) meteorological stations.

Data source PDM approach

Precipitation (mm)

Maximum
temperature (°C)

Minimum
temperature ("C)

Mean SD % Wet Total Mean SD Mean SD
) CDF-t-year 09(1.3) 82(81) 5(13) 337(488)  26.2(26.3) 6.4(6.5) 14.2 (14.3) 5.9 (5.9)
Region A CDF-t-season 1.7 (2.2) 10.1(9.9) 12(21) 636 (794) 26.1 (26.3) 6.5 (6.6) 14.1 (14.2) 5.9 (5.9)
) CDF-t-year 15(1.8) 10.8(9.6) 8(15) 550(666)  26.6 (26.7) 6.3 (6.4) 14.3 (145) 6.2 (6.3)
Region B CDF-t-season 1.6(2.2) 10.9(10.5) 9(20) 595 (795) 26.4 (26.5) 6.3 (6.4) 141 (14.2) 6.1 (6.1)
CDF-t-year 13(17) 9.3(82) 9(17) 465(615)  26.6(26.6) 6.5(6.5) 14.0 (14.1) 6.3 (6.4)
Box A CDF-tseason 1.5(22)  95(9.3) 11(20) 559 (800)  26.6 (26.6) 6.5(6.5) 13.9 (14.0) 6.3(6.3)
CDF-t-year 18(26) 11.5(11.2) 10(22) 665(948)  26.6(26.7) 6.9 (6.9) 14.0 (14.1) 6.4 (6.5)
Box B CDF-t-season 1.7 (25) 11.1(11.1) 8(20) 638(911)  26.7(26.8) 6.7 (6.7) 14.0 (14.2) 6.4 (6.4)
CDF-t-year 16(24) 107(104) 9(20) 592(881)  26.6(26.6) 6.7 (6.7) 14.0 (14.1) 6.3 (6.3)
Box C CDF-t-season 1.9(2.6) 11.6(11.2) 11(20) 681(933)  26.6(26.7) 6.6 (6.6) 14.0 (14.2) 6.3(6.3)
Observed 2 5.9 24 740 27.1 6.5 13.7 6.4
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Table 7. SWAT model performance during PDM calibration and validation periods for each
rainfall-runoff simulations.

HESSD
7, 9523-9565, 2010

PDM calibration period (1973-1989) NSE NSE peak flow NSE baseflow

Jaded uoissnasig

Region A CDF-t-year 0.17 0.10 0.37

Region A CDF-t-season 0.26 0.12 0.53 Coupling statistically
Region B CDF-t-year 0.10 0.03 0.1

Region B CDF-t-season 0.08 0.05 0.10 T downscaled_ GCM
Box A CDF-t-year 0.17 0.06 0.10 o outputs with a
Box A CDF-t-season 0.14 0.05 0.09 & basin_lake model
Box B CDF-t-year 0.42 0.25 0.27 =

Box B CDF-t-season 0.34 0.19 0.21 % M. Troin et al.
Box C CDF-t-year 0.45 0.24 0.29 g

Box C CDF-t-season 0.38 0.19 0.21 <

PDM validation period (1990-2005) NSE NSE peak flow NSE baseflow %

Region A CDF-t-year 0.08 0.04 0.06 g

Region A CDF-t-season 0.09 0.05 0.07

Region B CDF-t-year 0.15 0.10 0.35 o

Region B CDF-season 0.18 0.09 0.44 o

Box A CDF-t-year 0.09 0.05 0.06 73

Box A CDF-t-season 0.08 0.01 0.10 2

Box B CDF-t-year 0.33 0.24 0.36 %

Box B CDF-t-season 0.30 0.19 0.43 g

Box C CDF-t-year 0.23 0.18 0.29 U

Box C CDF-t-season 0.21 0.17 0.45 %

PDM validation period (1950-1972) NSE NSE peak flow NSE baseflow w

Region A CDF-t-year 0.12 0.05 0.12 o

Region A CDF-t-season 0.10 0.04 0.08

Region B CDF-t-year 0.05 0.03 0.05 @)

Region B CDF-t-season 0.04 0.03 0.05 g

Box A CDF-t-year 0.26 0.10 0.23 %

Box A CDF-t-season 0.26 0.10 0.19 %3

Box B CDF-t-year 0.38 0.26 0.28 g

Box B CDF-t-season 0.37 0.26 0.29 )

Box C CDF-t-year 0.38 0.21 0.22 3

Box C CDF-t-season 0.38 0.25 0.27 @
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" ors)

100 km

Fig. 1. Location of Laguna Mar Chiquita basin at the west of the Parana-Plata Basin. The
enlarged view shows the Sali-Dulce Basin in the northern part of the lake basin. Data used
for the rainfall-runoff model come from meteorological stations 1 to 6 and gauging stations
R3 at the Rio Hondo reservoir outlet. Data used for the lake water balance model (Troin et al.,
2010) come from 6 meteorological stations around the lake (black stars) and 3 gauging stations

(R1, R2, R3).
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Observed meteorological NECP/NCAR data LMDZ grid-box output
data (P, Tmin,Tmax) region (P, Tmin, Tmax) (P, Tmin, Tmax)
Predictands Predictors Predictors

l l

Probabilistic downscaling method

CDF-t-year and CDF-t-season

N B

Spatial redistribution in the lake basin

I

Watershed hydrological model (SWAT)

I

Surface runoff in the Sali-Dulce Basin: main surface input to the lake

I

Lake water balance model

I

Level fluctuations of Laguna Mar Chiquita

Fig. 2. Methods for generating lake level simulations for Laguna Mar Chiquita.
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@

year, and (D) downscaled NCEP/NCAR region B by CDF-t-season.
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Fig. 4. Probabilities of duration of wet (first column) and dry (second column) spells for pre-
cipitation pattern-based simulated (black) and observed (grey) precipitation during the PDM
1973-1989 calibration period for (A) downscaled LMDZ box A by CDF-t-year, (B) downscaled
LMDZ box A by CDF-t-season, (C) downscaled LMDZ box B by CDF-t-year, (D) downscaled
LMDZ box B by CDF-t-season, (E) downscaled LMDZ box C by CDF-t-year, and (F) down-
scaled LMDZ box C by CDF-t-season.
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(simulated reference curve; black line), simulated Rio Sali-Dulce discharge using observed
meteorological data (SWAT/observed data; blue line), CDF-t-year (orange line) and CDF-t-
season (purple line) over 1950-2005 for (A) NCEP/NCAR region A, (B) NCEP/NCAR region B,
(C) LMDZ box A, (D) LMDZ box B, and (E) LMDZ box C.
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