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Abstract

Many river basins have a weak in-situ hydrometeorological monitoring infrastructure.
However, water resources practitioners depend on reliable hydrological models for
management purposes. Remote sensing (RS) data have been recognized as an al-
ternative to in-situ hydrometeorological data in remote and poorly monitored areas and5

are increasingly used to force, calibrate, and update hydrological models.
In this study, we evaluate the potential of informing a river basin model with real-

time radar altimetry measurements over reservoirs. We present a lumped, conceptual,
river basin water balance modelling approach based entirely on RS and reanalysis
data: precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM)10

Multisatellite Precipitation Analysis (TMPA), temperature from the European Centre for
Medium-Range Weather Forecast’s (ECMWF) Operational Surface Analysis dataset
and reference evapotranspiration was derived from temperature data. The Ensemble
Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat) measure-
ments of reservoir water levels. The modelling approach was applied to the Syr Darya15

River Basin, a snowmelt-dominated basin with large topographical variability, several
large reservoirs and scarce hydrometeorological data that is shared between 4 coun-
tries with conflicting water management interests.

The modelling approach was tested over a historical period for which in-situ reservoir
water levels were available. Assimilation of radar altimetry data significantly improved20

the performance of the hydrological model. Without assimilation of radar altimetry data,
model performance was limited, probably because of the size and complexity of the
model domain, simplifications inherent in model design, and the uncertainty of RS and
reanalysis data. Altimetry data assimilation reduced the mean error of the simulated
reservoir water levels from 4.7 to 1.9 m, and overall model RMSE from 10.3 m to 6.7 m.25

Because of its easy accessibility and immediate availability, radar altimetry lends
itself to being used in real-time hydrological applications. As an impartial source of in-
formation about the hydrological system that can be updated in real time, the modelling
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approach described here can provide useful medium-term hydrological forecasts to be
used in water resources management.

1 Introduction

Hydrological models are constructed for two main purposes: to improve hydrological
process understanding and to support practical decision making in water resources5

management. River basin management models typically operate at large scales and,
given the complexity of most river basins, use semi-empirical lumped parameteriza-
tions of hydrological processes. Because the uncertainties inherent in such models
are large, calibration and data assimilation techniques are essential to achieve satis-
factory model performance. However, in-situ data availability is limited, particularly in10

the developing world, where many river basins are poorly gauged. Satellite-based data
with high temporal resolution have the potential to fill critical information gaps in such
ungauged or poorly gauged basins (e.g. Grayson et al., 2002; Lakshmi, 2004).

Remote sensing data can be used in hydrological models in two ways (Brunner et al.,
2007): as input parameters (or forcing data) and as calibration data. The most popular15

remote sensing data sources for hydrological applications are multispectral imagery for
the determination of actual evapotranspiration (e.g. Bastiaanssen et al., 1998; Jiang
et al., 2001; Stisen et al., 2008b), active microwave sensors for mapping of soil mois-
ture distribution (e.g. Parajka et al., 2006), total water storage change estimates from
GRACE (e.g. Hinderer et al., 2006; Winsemius et al., 2006), and river and lake level20

variations from radar altimetry (e.g. Birkett, 2000; Alsdorf et al., 2001; Bjerklie et al.,
2003; Calmant et al., 2008; Getirana et al., 2009) and interferometric SAR (e.g. Alsdorf
et al., 2001; Wdowinski et al., 2004; Gondwe et al., 2010). Several previous studies
have used remote sensing data in the context of river basin water balance modeling
(e.g. Campo et al., 2006). Andersen et al. (2002) built a distributed hydrological model25

of the Senegal River Basin using precipitation derived from METEOSAT data and leaf
area index (LAI) estimated from the normalized difference vegetation index (NDVI) from
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NOAA AVHRR data. Stisen et al. (2008a) developed a distributed hydrological model
of the same catchment using potential evapotranspiration (PET) estimated from global
radiation, precipitation from satellite-derived cold cloud duration, and LAI calculated
from NDVI. Boegh et al. (2004) used RS-data to derive PET and LAI as input to a
distributed agro-hydrological model. Francois et al. (2003) used Synthetic Aperture5

Radar (SAR) estimates of soil moisture in a lumped rainfall-runoff model.
More recently, the potential of using remote sensing data in real time or near real

time to update hydrological model state variables has been recognized. Data assim-
ilation (DA) methods were first used in the fields of oceanography and meteorology,
but have been used in hydrology since the 1990s (McLaughlin, 1995; Evensen, 2003).10

Several DA techniques are available, including the Particle Filter (Arulampalam et al.,
2002) and the Reduced Rank Square Root Filter (Verlaan et al., 1997); The Ensem-
ble Kalman Filter (Evensen, 2003) is used here because it has a simple conceptual
formulation, it is easy to implement and is computationally efficient. Previous stud-
ies using data assimilation techniques on hydrological modeling included land surface15

models (e.g. Reichle et al., 2002), surface water models (e.g. Madsen et al., 2005) and
groundwater models (e.g. Franssen et al., 2008). The value of DA for models used in
water resources management is based on its ability to improve operational forecasts.

This study presents a semi-distributed river basin model of the Syr Darya River basin
in Central Asia and analyses how operational model performance in real-time fore-20

casting can be improved if the model is informed with real-time reservoir water levels
based on radar altimetry. In situ data availability in the Syr Darya is extremely limited
and model forcing variables are therefore exclusively based on remote sensing and
reanalysis data. Precipitation is obtained from the Tropical Rainfall Measuring Mis-
sion (TRMM) Multisatellite Precipitation Analysis (TMPA; Huffman et al., 2007); daily25

temperature is obtained from the European Centre for Medium-Range Weather Fore-
cast (ECMWF) Operational Surface Analysis dataset (Molteni et al., 1996); and refer-
ence evapotranspiration is derived from daily temperature using Hargreaves equation
(Allen et al., 1998). The water level in a cascade of four reservoirs is simulated in the
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model, and satellite radar altimetry data (Berry et al., 2005) are used to update the
water level in the reservoirs using the Ensemble Kalman filter.

2 Study area

The Syr Darya River is located in the Central Asian republics of Kyrgyzstan, Uzbek-
istan, Tajikistan, and Kazakhstan and, along with the Amu Darya River, is one of two5

principal tributaries to the Aral Sea (Fig. 1). About 22 million people in the region de-
pend on irrigated agriculture for their livelihoods, and 20% to 40% of GDP in the riparian
countries is derived from agriculture, most of which is irrigated (Bucknall et al., 2003).
Much of the region has an arid climate, with strongly seasonal precipitation and tem-
perature patterns. The extensive development of irrigation in the basin is associated10

with a number of environmental problems including desiccation of the Aral Sea, which
has lost up to 90% of its pre-1960 volume and has received international attention as
an environmental disaster area (Micklin, 2007).

The Syr Darya River originates in the Tien Shan Mountains of Kyrgyzstan and is
formed by the confluence of the Naryn and Karadarya rivers near the border of Kyr-15

gyzstan and Uzbekistan. The population of the basin is approximately 20 million, with
an area of about 400 000 km2. Annual precipitation averages about 320 mm and ranges
from 500–1500 mm in the mountain zones to 100–200 mm in desert regions near the
Aral Sea (Schiemann et al., 2008). The bulk of runoff comes from melting snow and
glaciers in the mountains of Kyrgyzstan. Because of the combined effects of snowmelt20

and glacial runoff, about 80% of runoff in the basin occurs between March and Septem-
ber. The onset of the snowmelt period shifts from early spring to early summer with
increasing elevation, distributing snowmelt runoff over a period of several months. In
the summer months, glacial ablation peaks and prolongs the period of peak runoff. An-
nual runoff averages about 39 km3/year (approx. 96 mm/year), and approximately 90%25

of the river’s mean annual flow is regulated by reservoirs (Savoskul et al., 2003).
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The Syr Darya River was extensively developed for irrigation and hydropower during
Soviet times, particularly after 1960, with the primary goal of producing cotton. To-
tal irrigated area in the Aral Sea basin increased from 5 million hectares in 1965 to
7.9 million hectares in 2000 (Micklin, 2007). About 1.7 million hectares are currently ir-
rigated directly from the Syr Darya River (Siegfried et al., 2007). Cotton is an important5

source of foreign exchange in Uzbekistan, and continued production through irrigated
agriculture is a priority for the government (World Bank, 2004).

A significant change to the natural hydrological pattern of the basin occurred with
the construction of the Toktogul Reservoir in 1974. Because the timing of the March–
September natural runoff peak coincides with the irrigation season, substantial reser-10

voir storage is not required to regulate seasonal runoff. However, the aggressive ex-
pansion of irrigation during Soviet times created a need for multi-year storage to store
excess flows in wet years to supplement dry year flows. Toktogul Reservoir was con-
structed on the Naryn River (the principal tributary to the Syr Darya) to serve this
purpose. The reservoir is the largest storage facility in the Aral Sea basin and has a to-15

tal capacity of 19.5 km3 (14 km3 active storage). The construction of the reservoir was
accompanied by the building of four smaller downstream reservoirs and power plants
to maximize electricity generation from reservoir releases. The five facilities, commonly
called the Naryn Cascade, have a combined generation capacity of 2870 MW (World
Bank, 2004).20

Toktogul Reservoir and the Naryn Cascade are at the heart of a dispute over man-
agement of the Syr Darya River that has existed since the downfall of the Soviet Union
in 1991. In the Soviet system, the reservoir was operated to benefit irrigated agricul-
ture and power was produced incidentally as flows were released to meet downstream
demands. In 1992, the Central Asian riparian states agreed to continue Soviet water25

allocation policies and established the Interstate Commission for Water Coordination
(ICWC) to oversee the allocation process. However, the new system immediately came
under strain as the competing interests of the newly independent states emerged. Tok-
togul Reservoir came under the control of Kyrgyzstan, which is less dependent on
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irrigated agriculture and lacks fossil fuel resources for energy generation. Kyrgyzstan
had been supplied with fossil fuels under the Soviet system but found itself in the po-
sition of having to purchase energy supplies on world markets after 1991. Kyrgyzstan
turned to hydropower for its own energy needs, which peak in winter because of heat-
ing demands, placing the country’s operational objectives in direct opposition to those5

of its downstream neighbors; Kyrgyzstan would prefer to store summer peak flows for
winter power generation, while the downstream countries would like winter releases
minimized to conserve water for the summer season (Biddison, 2002; World Bank,
2004; Siegfried et al., 2007). Increased winter releases also cause flooding, as many
of the downstream irrigation works are not built to handle high flows and ice in the river10

bed reduces winter conveyance capacity (Biddison, 2002).
In these circumstances of mutual distrust between the up- and downstream coun-

tries, global datasets and assimilation of radar altimetry hold great promise for increas-
ing transparency, reducing forecast uncertainty, and increasing the speed at which
forecasts can be developed and updated. Because remotely-sensed data products are15

available to all, their increased use in the region has the potential to reduce distrust by
providing a common base of information. The increasing availability of these products
in real-time also has the potential to accelerate the forecasting process so that water
allocation plans can be agreed upon earlier in the irrigation season.

3 Methods and data20

3.1 River basin water balance modeling

The river basin water balance model was implemented as a combination of a rainfall-
runoff model (NAM; Refsgaard et al., 1996; DHI, 2000) and a river network mass bal-
ance model (Mike Basin; DHI, 2009). Runoff in the subcatchments is simulated using
NAM and is subsequently routed through the river network in Mike Basin. Irrigation25

agriculture districts are simulated as water users that abstract water from the Mike
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Basin river network. The simulation is run in daily time steps from 1 January 2000 to
31 December 2007. A modeling flow chart is presented in Fig. 2.

The NAM model (Nedbør-Afstrømningsmodel, Danish for rainfall-runoff model) is a
lumped conceptual modeling system consisting of mass balance equations that ac-
count for the water content in four different storages representing processes occurring5

in the land phase of the hydrological cycle: snow storage, surface storage, lower soil
zone storage and groundwater storage (DHI, 2000). The minimum data requirements
of the modeling system are precipitation, reference evapotranspiration and observed
discharge. Daily mean temperature is also required if snowmelt contributes to runoff.
A comparison of data requirements and performance of NAM with other lumped hydro-10

logical models is provided by Refsgaard et al. (1996). The four storages are typically
modeled using a set of 17 parameters, about 10 of which are commonly used for model
calibration.

Due to the limited amount of observed in-situ river discharge data, it was impos-
sible to achieve a unique and stable calibration based on 10 free model parameters.15

Moreover, we observed that overland flow does not significantly contribute to the hy-
drological regime in the Syr Darya river basin. A more robust version of NAM was
developed using only five free calibration parameters: two parameters describing sur-
face and soil moisture storage and the others describing groundwater response times.
The structure of this simplified version of NAM is shown in Fig. 3. Table 1 lists the20

parameters chosen to enforce this model structure. Because of its simplicity, the mod-
eling approach is robust and appropriate given the general scarcity of observation data
in the SDRB.

Precipitation falls as snow if the temperature is below 0 ◦C and as liquid precipita-
tion (PL) otherwise. Each single catchment is divided into 10 separate elevation zones25

of equal area and the precipitation discrimination is done for each individual elevation
zone separately, using temperature lapse rates based on Tsarev et al. (1994). Snow
melt (SM) is modeled using a simple degree-day approach:

8354

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 8347–8385, 2010

Real-time remote
sensing driven river

basin modeling

S. J. Pereira-Cardenal et
al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

SMpot =
{
M × T, T > 0
0, else

SM = min
(
SS, SMpot · ∆t

) (1)

where ∆t is the time step (days), SMpot is the potential snowmelt (mm day−1), T is the
temperature in degrees Celsius, SS is the snow storage (mm), and M is a seasonally
variable degree day factor (mm day−1 deg−1) based on a parameterization proposed
by Shenzis (1985) for the Central Asian Mountains. Snowmelt parameters used in the5

model are listed in Table 2. Snow melt is calculated for each elevation zone separately.
Snow melt and liquid precipitation enter the surface storage (U in mm). The surface
storage is depleted by evapotranspiration (ET). The ET rate is assumed to be equal to
the reference ET rate. The surface storage has a maximum capacity (Umax, in mm),
which is a calibration parameter. If the surface storage is filled to maximum capacity,10

additional snow melt or liquid precipitation spills to the soil storage (L, in mm). A
balance equation is solved for the soil storage:

dL
dt

= SP − AET − PER (2)

The symbol SP indicates spills from the surface storage to the soil storage. Water in
the soil storage is depleted by actual soil ET (AET) and percolation (PER). Actual soil15

ET and percolation are calculated as functions of soil water storage:

AET = (ETref − ETU) · L
Lmax

(3)

PER = SP · L
Lmax

(4)

where ETref is the reference ET (mm day−1), ETU is the ET drawn from the surface
storage and Lmax is the maximum soil storage (mm). Lmax is a calibration parameter.20
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Percolation flows to two parallel groundwater reservoirs which are conceptualized as
shallow and deep aquifers, respectively (GS, DG, in mm). A balance equation is solved
for each of the two groundwater reservoirs:

dGS
dt = Cqlow · PER − BFshallow

dDG
dt = (1 − Cqlow) · PER − BFdeep

(5)

Baseflow from the groundwater reservoirs to the river is calculated using a linear reser-5

voir approach:

BFshallow = 1
CKBF · GSshallow

BFdeep = 1
CKlow · GSdeep

(6)

where CKBF and CKlow are the response times of the two linear reservoirs (days).
The response times as well as the factor Cqlow, which governs the partition of percola-
tion between the shallow and deep aquifers, are calibration parameters. Rainfall-runoff10

processes are thus simulated using a very simple approach with five calibration param-
eters only: Umax, Lmax, CKBF, CKlow and Cqlow.

An automatic calibration module is available for NAM (Madsen, 2000). The module
is based on the Shuffled Complex Evolution (SCE) algorithm, and it allows for the op-
timization of multiple objectives: (1) overall water balance; (2) overall RMSE, (3) peak15

flow RMSE and (4) low flow RMSE. The catchments were classified into calibration,
validation, prediction and inactive catchments, based on the discharge data provided
by the Operational Hydrological Forecasting Department (UzHydromet) in Tashkent,
Uzbekistan. Catchments with continuous discharge records of 8 years or more were
used for calibration, while those with 3–7 years of discontinuous data were used for20

validation. Prediction catchments are defined as those where no discharge data are
available, but topography and land cover suggest considerable runoff. Areas where
insignificant runoff is expected based on mean annual rainfall, slope and geology, were
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made inactive. In total there were 9 calibration catchments, 9 validation catchments,
14 prediction catchments and 60 inactive catchments. Semi-automatic calibration was
carried out for the calibration catchments.

The Mike Basin river network consists of nodes and reaches. The catchments de-
water into the river network at catchment nodes. The water transfer from one node to5

the next is instantaneous, i.e. at every node a simple water balance equation is solved.
The only nodes that can store water temporally are the reservoir nodes. Irrigation sites
are introduced into the model as water demand nodes. Figure 1 shows the Mike Basin
river network layout.

Information on the reservoirs was obtained from the Scientific Information Council of10

the Interstate Commission for Water Coordination in Central Asia (ICWC, 2009). The
reservoirs in the Syr Darya River Basin are implemented as rule curve reservoirs. The
reservoir water balance is calculated from inflow, outflow and losses. The level-area-
volume curve is used to convert volume to water level. This information was provided by
UzHydromet. Once the water level reaches the flood control level, all additional water15

is instantaneously routed downstream. Historical observed release time series are
available from the ICWC (2009). The observed releases were prescribed as minimum
downstream release time series for the various reservoirs over the historical simulation
period. In real-time application mode of the model, these releases are replaced by
planned/projected releases.20

The irrigation areas in the Syr Darya River Basin are lumped into 6 major demand
sites, following (Raskin et al., 1992). These are High Naryn, Fergana, Mid Syr, Chakir,
Artur and Low Syr. Irrigation areas and crop distributions were taken from Raskin et
al. (1992). Irrigation water demand was calculated using the FAO-56 methodology
(Allen, 2000). Growing season time periods were estimated based on FAO-56. Dur-25

ing the growing season, the soil water balance is calculated on a daily time step from
precipitation, crop evapotranspiration and irrigation for each demand site. Precipitation
is taken from the TMPA product (see below) and crop evapotranspiration is calculated
using the FAO dual crop coefficient approach and reference ET. Irrigation abstractions
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are calculated using the standard FAO-56 irrigation model. This model assumes that
irrigation is triggered if the soil water content decreases below 50% of the readily avail-
able water. Soil water contents at field capacity and wilting point were uniformly set
to 0.15 and 0.05 respectively. A total loss fraction of 0.3 was generally assumed for all
demand sites.5

3.2 Data assimilation

The Ensemble Kalman Filter (EnKF) has become a popular data assimilation tech-
nique in many environmental modeling applications because of its ease of implemen-
tation and its computational efficiency (Evensen, 2003). In the EnKF approach, the
covariance matrix used in a traditional Kalman Filter is computed from an ensemble of10

model states. The mean of the ensemble is assumed to be the “truth” and the model
error (or covariance) is represented by the covariance of the ensemble members. The
ensemble members are then updated according to model and observation errors, as in
a traditional Kalman Filter. Let xf be the ns ×1 vector of forecasted model states. The
model error covariance Pf is15

Pf =
(
xf − x̄f

)(
xf − x̄f

)T
(7)

where the overbar denotes an average over the ensemble. The model states of every
member are then updated with the Kalman update equation

xa
i = xf

i + K
(
yi − Hxf

i

)
, (8)

where x
a
i is the vector of updated model states for the i -th ensemble member, H is20

an no ×ns operator (no is the number of observations) that transforms the states into
observation space and y is a no ×1 vector that contains the observations for every
state variable. The Kalman gain K is defined by

K = PHT
(

HPHT + R
)−1

(9)
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where R is the no ×no error covariance matrix of the observations. A normally dis-
tributed, uncorrelated distribution is assumed for the observation errors.

We use the assimilation algorithm described in Verlaan (2003). The algorithm was
adapted to run a set of coupled NAM – Mike Basin models automatically and to assimi-
late water level measurements for several reservoirs. The model state variables used in5

data assimilation are the water levels in the various reservoirs. In our implementation,
we consider three sources of uncertainty, which dominate overall model uncertainty:

1. Uncertainty of the precipitation product used to force the rainfall-runoff model.
The study area is large and has a complex topography. Comparisons between
different precipitation products and the few available ground stations have shown10

significant deviations. Each ensemble member is therefore forced with a different
precipitation input. The precipitation time series are generated using the relative
error specified for our precipitation product (TRMM-3B42, see below).

2. The calibration parameters of the subcatchment rainfall-runoff models are highly
uncertain. The ensemble members were run with individual random realizations15

of the 5 calibration parameters. All 5 parameters were assumed to be log-normally
distributed around the calibration result and the sampling standard deviation was
set to 0.6 log10 units for Umax and Lmax, 0.2 log10 units for CKBF and CKlow and
0.1 log10 units for Cqlow, where Cqlow is expressed in percent.

3. The irrigated areas and crop distributions at the 6 major demand sites are uncer-20

tain because the information from Raskin et al. (1992) is fairly old and probably
does not match the present configuration of the irrigation districts. The ensemble
members were therefore run with irrigation areas which were randomly perturbed
by 20%.
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3.3 Input and forcing datasets

All input and forcing datasets were obtained from remote sensing and reanalysis
datasets. Table 3 provides an overview of the various data sources used in this study.

The digital elevation model (DEM) of the area was obtained from the Shuttle Radar
Topography Mission (SRTM). The mission is described by Rabus et al. (2003), and5

an assessment of its results is provided by Rodriguez et al. (2006). The data with a
3 arc s (90 m) spatial resolution was resampled to 1 km spatial resolution. The 1 km
DEM was used to delineate the river network and the subcatchments using automatic
GIS routines.

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis10

(TMPA; Huffman et al., 2007) was used as the data source for precipitation in the Syr
Darya basin. The 3B42 research product was found suitable because of its tempo-
ral and spatial resolution (3 h and 0.25◦, respectively) and the incorporation of surface
observation data. The TMPA rainfall estimates have been validated in diverse regions,
e.g. USA (Villarini et al., 2007), Argentina (Su et al., 2008) and Brazil (Collischonn et al.,15

2008). The 3B42 product comes as a 3-hourly product and includes pixel-based uncer-
tainty estimates. The 3B42 product showed significantly lower precipitation amounts
than observed at the available ground precipitation stations (Fig. 4a). Moreover, water
balance calculations resulted in time-accumulated runoff coefficients as high as 0.9 for
some subcatchments, which are clearly unrealistic. For the application of the model in20

real-time mode, the 3B42 product was compared to the TMPA real time product, 3B42-
RT. For the period of comparison (Ocober 2008 to December 2009), precipitation over
the subcatchments of the Syr Darya river basin from 3B42-RT was 2.4 times higher
than the precipitation calculated from 3B42 (Fig. 4b). In view of the water balance
problems discussed above, we decided to adopt the overall precipitation amount from25

3B42-RT and scaled the 3B42 product with a factor of 2.4.
Ten-day ground temperature observations were available from UzHydromet at five

stations but could not be used to force the model because of the low temporal and
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spatial resolution. ECMWF’s operational surface analysis dataset, which includes 2-
m temperature, was used instead (ECMWF, 2009). The data is available in near real
time and can thus be used in both historical and real-time mode. It has a temporal
resolution of 6 h (00:00, 06:00, 12:00 and 18:00 UTC) and a spatial resolution of 0.5◦ up
to 2006, and 0.25◦ thereafter. The temperature fields were averaged over daily periods,5

with a local time correction to the median longitude of the Syr Darya basin (70◦ E),
i.e. UTC + 06:00. The pixel-wise daily mean temperature was then area-averaged over
the catchments. The mean catchment elevation was used as the reference elevation
when extrapolating the temperature to the different elevation zones in the catchment.

Input data for reference ET calculation based on the Penman-Monteith equation were10

not available. Reference ET was therefore computed from temperature using Harg-
reaves equation (Allen et al., 1998):

ETref = 0.0023 (Tmean + 17.8) (Tmax − Tmin)0.5 · Ra (10)

where Tmean is defined as the daily average of Tmax and Tmin (not the average of all avail-
able temperature measurements) and Ra is the extraterrestrial radiation (converted to15

mm day−1 using the latent heat of vaporization) for the corresponding Julian day and
latitude. Hargreaves et al. (2003) present a comprehensive evaluation of the perfor-
mance of Eq. (10). A temperature averaging period above 5 days is recommended;
although some water resource studies (e.g. the IWMI World Climate Atlas) use 10-day
temperature averages (Hargreaves et al., 2003). The ETref fields were calculated daily,20

then averaged over 10-day periods, and the resulting values area-averaged over the
different catchments. Figure 5 presents a summary comparison between the various
remote sensing forcing products and different in-situ control points.

3.4 Radar altimetry

Satellite radar altimetry was initially used in order to study the marine geoid and25

ocean dynamics (Rapley, 1990). However, over the past two decades different re-
search groups have derived inland water heights from space-based radar altimetry
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(e.g. Cazenave et al., 1997; Berry et al., 2005; Cretaux et al., 2006). In this study,
altimetry data re-tracked by the Earth and Planetary Remote Sensing Laboratory
(EAPRS) over four large reservoirs was assimilated into the Mike Basin model in order
to update the water levels of the reservoirs. The data used is derived from the ERS-2
and ENVISAT satellites, which cover 82◦ N to 82◦ S and have repeat cycles of 35 days.5

The altimetry data re-tracked by the EAPRS lab provide water level time series over a
large number of inland water bodies in the Syr Darya River basin. In total, 39 usable
ERS-2 targets and 37 usable ENVISAT targets were identified over rivers and lakes in
the basin, but only those over the Toktogul, Chardara, Kayrakkum and Charvak Reser-
voirs (Fig. 1) were assimilated into the model. Frappart et al. (2006) report an accuracy10

of 0.25–0.53 m for the Radar Altimeter 2 (on board of ENVISAT) over lake targets in the
Amazon basin. We found slightly lower precisions for the reservoirs in the Syr Darya,
when comparing historical in-situ water levels and radar altimetry (Table 4). However,
compared to the typical seasonal variation of the water levels in the reservoirs (be-
tween 7 and 50 m, see Table 4), the standard errors of the altimetry time series are15

small.

4 Results

Our rainfall-runoff modeling approach captures the dominant snowmelt process in the
hydrological regime of the subcatchments: precipitation is accumulated during the win-
ter and released throughout the melting season (Fig. 6). However, the calibration-20

validation process shows that model performance is very variable and that the models
tend to underestimate runoff (Table 5). This is not surprising considering the size and
complexity of the model domain, the uncertainties associated with remotely-sensed
forcing data, and the simplicity of the modeling approach. If the model is run in “no-
assimilation” mode and is not informed via assimilation of radar altimetry, its utility for25

water resources management applications is limited. However, model uncertainty can
be significantly reduced through the assimilation of radar altimetry measurements of
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reservoir water levels. Figure 7 compares the reservoir levels predicted by the assim-
ilation scheme and by the corresponding no-assimilation model run for the historical
simulation period. When altimetry measurements were available, their assimilation im-
proved the results of the model considerably (Table 6), except at Kayrakkum Reservoir,
which has a short residence time (Table 4) and discontinued altimetry measurements.5

The accuracy of the EnKF estimates is expected to improve proportionally to the square
root of the ensemble size ne (Evensen, 2007), although in practical applications this is
limited by the number of ensemble members that are computationally feasible to run.
Initially, an ensemble size of 50 was chosen. Subsequent trials with larger ensembles
resulted in insignificant improvements of the model performance. Figure 8 shows how,10

on average, model residuals increase over time following the assimilation of a radar
altimetry datum for the four reservoirs. Generally, we observe an approximately linear
increase of the model error as a function of time after assimilation. For Charvak reser-
voir, a period of moderate increase up to about day 40 after assimilation is followed by
more pronounced increases after day 40. The orbit repeat cycle of Envisat is 35 days15

and assimilation of radar altimetry can thus keep the model error at a moderate level.

5 Discussion and conclusions

A modeling approach using only remotely-sensed and reanalysis data has been de-
veloped and applied to the Syr Darya River Basin. The ability of the river basin model
to predict reservoir water levels in “no-assimilation” mode was limited. The generally20

low model performance can be due to inaccuracies in the RS input data, to the simplifi-
cations inherent in model structure (e.g. monthly snowmelt coefficient, lack of a glacial
accumulation/ablation model), or to un-modeled dynamics in the hydrology of the basin
(e.g. variation of irrigation water demand). Limited availability of in-situ discharge data
for model calibration required that high resolution RS data be aggregated over very25

large areas (sometimes as large as 37 000 km2). If more discharge stations were avail-
able, smaller subcatchments could be used and the high spatial resolution of the data
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products would have been better exploited. While these limitations are severe, they are
fairly typical for the situation in many large, complex and poorly gauged river basins on
the planet.

In such basins, we expect significant increases of model performance when assim-
ilating real-time information based on remote sensing. We showed that assimilation5

of satellite altimetry measurements of reservoir water levels can reduce deviations be-
tween predicted and observed water levels. Even though the mean accuracy of the
altimetry data was 0.86 m, it was sufficient to improve the performance of the model.
Without such data, reservoir levels would diverge over time from the “true” state of the
system. The ensemble Kalman filter implementation used in this study has reasonable10

computational requirements, with an ensemble size of 50 resulting in a good trade-off
between model performance and computation time.

The modeling approach can be exploited to its full potential, if the modeling system
is run in real time. A real time (RT) version of the model has been implemented and re-
sults are made available on the internet (http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/15

info/river modelling). The RT model uses the real time precipitation product (3B42-RT)
instead of the research product (3B42). The 3B42-RT product does not incorporate
gauge data, but becomes available ca. 6 h after observation (see Huffman et al., 2007;
Huffman, 2008, 2009). The temperature data are available 7 h after observation. Up-
dated reservoir levels are computed by the model with a total real-time delay of 2 days.20

It is important to recognize that the assimilation of reservoir water levels violates the
water balance in the system. In the state updating procedure (Eq. 8) water is simply
added or abstracted from the reservoirs. Thus, the model is not suitable for long-term
water resources scenario calculations, where mass balance has to be maintained. The
application scenario for the tool is medium-term forecasting. The model is able to25

provide “best estimates” of reservoir levels (and thus water availability) with lead times
of a few months. These best estimates are based on a hydrological model and the most
recent available water levels. The model can also assimilate real-time water level data
from in-situ stations. However, in-situ data typically become available at later times.
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Moreover, remotely sensed water levels have the advantage of being accessible to all
interested stakeholders and countries and can thus be considered as entirely impartial
information.

The data assimilation approach described here could benefit the annual water allo-
cation process in the Syr Darya basin by providing an efficient and transparent tech-5

nology for updating hydrological forecasts in real time. The real-time capability could
be used together with hydro-economic models of the basin (Cai et al., 2002) in real-
time, adaptive water resources management. In the current management setup, the
riparian states are supposed to agree on an allocation plan at the beginning of April;
however, agreement is often delayed until well into the growing season, creating signif-10

icant uncertainties for irrigation planning and increasing tensions between the riparian
states. An obstacle to co-operation is the deteriorated state of the hydro-meteorological
monitoring network that existed in Soviet times (Schar et al., 2004). In addition, na-
tional hydro-meteorological agencies now responsible for data collection are reluctant
to share data and the annual process of data collection and forecasting can be delayed15

by poor communications infrastructure (Biddison, 2002). Because of all these issues,
the real-time forecasting tool developed in this study has the potential to contribute to
more efficient water resources management in the region.

In summary, radar altimetry data over inland water bodies is an innovative data
source for hydrological applications. It can be used to update hydrological models20

in real time and can significantly enhance science-based decision support to water
resources managers, particularly in poorly gauged river basins.
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Table 1. NAM parameters chosen to enforce the rainfall-runoff model structure shown in Fig. 3.

Parametera Description Units Value

CQOF Overland flow runoff coefficient – 0
CKIF Time constant for interflow hours 1e6
CK1,2 Time constants for routing overland flow hours 10
TOF Rootzone threshold value for overland flow – 0.999
TIF Rootzone threshold value for inter flow – 0.999
TG Rootzone threshold value for groundwater recharge – 0

a For a detailed description of these parameters and their interaction the reader is referred to DHI (2000).
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Table 2. Snowmelt parameters used in the rainfall-runoff model (NAM).

Lapse rate Degree day coefficient (M)
[deg 100 m−1] [mm deg−1 day−1]

wet dry J F M A M J J A S O N D

−0.7 −0.5 1.0 1.0 2.2 3.7 5.0 6.0 6.0 6.0 1.0 1.0 1.0 1.0
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Table 3. Source and spatio-temporal resolution of the various datasets used in the model.

Data Type Data Source Resolution

Space Time

Remotely sensed and reanalysis
Precipitation TMPA 3B42-RT 0.25◦ 3 h
Temperature ECMWF 0.5◦–0.25◦ 6 h
PET Func. of Temp 0.5◦–0.25◦ 6 h
Lake altimetry ERS/ENVISAT 76 targets 35 days
DEM SRTM 1000×1000 m –

Observations
Discharge UzHydromet 18 stations daily
Reservoir release ICWC 5 reservoirs monthly

Comparison data
Precipitation UzHydromet 16 stations 10 days
Temperature UzHydromet 5 stations 10 days
Reservoir levels UzHydromet 4 reservoirs daily
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Table 4. Altimetry targets over each reservoir. The altimetry error is reported here as the
RMSE between the timeseries after the mean of each has been removed.

Reservoir Satellite RMSE Level rangea Volume rangeb Residence time
[m] [m] [106 m3] [days]

Chardara ERS 0.63, 0.85 11.5 4700 91
ENVISAT 0.37, 0.48

Toktogul ERS 0.68 57.5 14 000 377.95
ENVISAT 0.89

Charvak ERS 1.81 55.4 1580 83.7
ENVISAT 1.42

Kayrakkum ERS 0.61 7.7 2600 46.1

a Observed during the period 2000–2008; b ICWC (2009).
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Table 5. Results of the rainfall-runoff model calibration.

Catchment Station Umax Lmax CKBF CKlow Cqlow R2 WBEa

ID [mm] [mm] [h] [h] [%] [%]

Calibration 2 16 055 10 100 480 8760 20 0.52 9
47 16 169 40 400 960 8760 30 0.62 3
55 16 176 40 400 720 8760 20 0.67 2
61 16 193 40 400 480 8760 10 0.69 97

145 16 198 10 100 960 8760 20 0.28 −25
62 16 202 40 400 480 8760 10 0.59 61
64 16 230 40 400 480 8760 10 0.74 34

148 16 279 10 100 960 8760 30 0.80 −13
147 16 290 10 100 960 8760 30 0.79 −12

Validation 8 16 059 10 100 720 8760 20 0.45 27
12 16 121 10 100 720 8760 20 0.57 5
14 16 127 10 100 720 8760 20 0.51 −43
15 16 134 10 100 720 8760 20 0.43 −3
16 16 135 10 100 720 8760 20 0.42 −37
18 16 136 10 100 720 8760 20 0.66 −28

9 16 146 10 100 720 8760 20 0.58 −36
75 16 205 10 100 720 8760 20 0.44 55
49 16 510 10 100 720 8760 20 0 9

a Water balance error.
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Table 6. Reservoir water level residuals with and without assimilation of radar altimetry data.

Toktogul Chardara Kayrakkum Charvak Meana

DA mean(res) −3.07 −0.46 3.08 −0.87 1.87
std(res) 5.33 1.15 5.26 15.11 6.71

No mean(res) −9.57 −3.18 3.62 −2.35 4.68
DA std(res) 8.49 3.38 5.85 23.59 10.33

a Mean of absolute residuals across all reservoirs.
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Fig. 1. Base map of the Syr Darya River Basin (SDRB).

8378

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 8347–8385, 2010

Real-time remote
sensing driven river

basin modeling

S. J. Pereira-Cardenal et
al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 30

 1 

 2 
Figure 2: Block diagram of the modelling and assimilation approach, showing input data (left 3 

side), processing (center) and output data (right side). The input data in dark shading has been 4 

perturbed to create the ensembles. The processes on slanted shading only occur when there is 5 

altimetry data available.  6 

7 

Fig. 2. Block diagram of the modelling and assimilation approach, showing input data (left
side), processing (center) and output data (right side). The input data in dark shading has been
perturbed to create the ensembles. The processes on slanted shading only occur when there
is altimetry data available.
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 1 

Figure 3: Structure of the rainfall-runoff model. Items on light shading are input data, those 2 

on dark shading relate to the calibration parameters.  3 
4 

Fig. 3. Structure of the rainfall-runoff model. Items on light shading are input data, those on
dark shading relate to the calibration parameters.
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 1 

Figure 4: Comparison of precipitation datasets. A) Mean observed annual precipitation at 16 2 

stations and corresponding pixel from 3B42 research product. B) Mean catchment 3 

precipitation from real time and research 3B42 products.  4 

 5 

6 

Fig. 4. Comparison of precipitation datasets. (A) Mean observed annual precipitation at 16 sta-
tions and corresponding pixel from 3B42 research product. (B) Mean catchment precipitation
from real time and research 3B42 products.
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 1 
Figure 5: 3B42 average monthly precipitation and ECMWF 10-day average temperatures 2 

against observed (UzHydromet) data at three locations (see Fig. 1 for locations). 3 

4 

Fig. 5. 3B42 average monthly precipitation and ECMWF 10-day average temperatures against
observed (UzHydromet) data at three locations (see Fig. 1 for locations).
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 1 
Figure 6: Rainfall-runoff modelling results in catchment 69.  2 

3 

Fig. 6. Rainfall-runoff modelling results in catchment 69.

8383

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/8347/2010/hessd-7-8347-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 8347–8385, 2010

Real-time remote
sensing driven river

basin modeling

S. J. Pereira-Cardenal et
al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 35

 1 
Figure 7: Reservoir level simulation for the historical period (in mamsl): with assimilation of 2 

radar altimetry (black), without assimilation of radar altimetry (red), and observed in-situ 3 

water levels (blue) for an ensemble size of 50. The shaded area indicates the 2.5 and 97.5% 4 

quantile range of the ensemble, and the crosses are altimetry measurements. For interpretation 5 

of the color reference in this figure, the reader is referred to the electronic version of this 6 

article. 7 

8 

Fig. 7. Reservoir level simulation for the historical period (in mamsl): with assimilation of radar
altimetry (black), without assimilation of radar altimetry (red), and observed in-situ water levels
(blue) for an ensemble size of 50. The shaded area indicates the 2.5 and 97.5% quantile range
of the ensemble, and the crosses are altimetry measurements. For interpretation of the color
reference in this figure, the reader is referred to the electronic version of this article.
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 1 
Figure 8: Average absolute residuals of reservoir level after assimilation of altimetry data.  2 Fig. 8. Average absolute residuals of reservoir level after assimilation of altimetry data.
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