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Abstract

Modelling spatial covariance is an essential part of all geostatistical methods. Tradition-
ally, parametric semivariogram models are fit from available data. More recently, it has
been suggested to use nonparametric correlograms obtained from spatially complete
data fields. Here, both estimation techniques are compared. Nonparametric correlo-5

grams are shown to have a substantial negative bias. Nonetheless, when combined
with the sample variance of the spatial field under consideration, they yield an estimate
of the semivariogram that is unbiased for small lag distances. This justifies the use of
this estimation technique in geostatistical applications.

Various formulations of geostatistical combination (Kriging) methods are used here10

for the construction of hourly precipitation grids for Switzerland based on data from a
sparse realtime network of raingauges and from a spatially complete radar composite.
Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge obser-
vations. In both OK variants, the radar data are only used to determine the semivar-
iogram model. One variant relies on a traditional parametric semivariogram estimate,15

whereas the other variant uses the nonparametric correlogram. The variants are tested
for three cases and the impact of the semivariogram model on the Kriging prediction
is illustrated. For the three test cases, the method using nonparametric correlograms
performs equally well or better than the traditional method, and at the same time offers
great practical advantages.20

Furthermore, two variants of Kriging with external drift (KED) are tested, both of
which use the radar data to estimate nonparametric correlograms, and as the external
drift variable. The first KED variant has been used previously for geostatistical radar-
raingauge merging in Catalonia (Spain). The second variant is newly proposed here
and is an extension of the first. Both variants are evaluated for the three test cases25

as well as an extended evaluation period. It is found that both methods yield merged
fields of better quality than the original radar field or fields obtained by OK of gauge
data. The newly suggested KED formulation is shown to be beneficial, in particular in
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mountainous regions where the quality of the Swiss radar composite is comparatively
low.

An analysis of the Kriging variances shows that none of the methods tested here
provides a satisfactory uncertainty estimate. A suitable variable transformation is ex-
pected to improve this.5

1 Introduction

Raingauges yield comparatively accurate measurements of precipitation at a given lo-
cation, but even dense networks of gauges cannot fully capture the spatial variability
of precipitation fields on subdaily timescales. In contrast, weather radars can provide
dense measurements over an entire region and at high temporal resolution. Locally,10

however, radar measurements tend to be associated with very large uncertainties, in
particular in mountainous terrain. Methods that formally combine radar and raingauge
measurements aim at improved spatial precipitation estimates exploiting the strengths
and compensating for the weaknesses of the two measurement platforms. A number
of such methods exist and have been categorized by Erdin (2009) into (i) simple ad-15

justment techniques often used in postprocessing radar measurements (e.g., Gjertsen
et al., 2004; Germann et al., 2006), (ii) the disaggregation of gauge fields by radar in-
formation (e.g., DeGaetano and Wilks, 2009; Wüest et al., 2009), and (iii) geostatistical
combination methods (Seo et al., 1990; Seo, 1998; Todini, 2001; Sinclair and Pegram,
2005; Haberlandt, 2007; Erdin, 2009; Velasco-Forero et al., 2009). Geostatistical meth-20

ods enjoy particular popularity and appear to outperform simpler merging techniques
(e.g., Goudenhoofdt and Delobbe, 2009).

Even within the area of geostatistical methods, a wide range of choices have to be
made when planning for a particular application. These choices regard, for example,
the actual combination method (e.g., Kriging with external drift, Co-Kriging), the Krig-25

ing neighbourhood (global vs. local), the technique used to estimate the parameters
of the geostatistical model (e.g. least-squares, maximum-likelihood estimation), and
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the transformation of the precipitation variable. In addition to these issues, there are
several options for modelling spatial dependencies in the precipitation data. Correlo-
grams (or semivariograms) used for Kriging are customarily one-dimensional, but two-
or higher-dimensional correlation maps are also used and are one way of taking spatial
anisotropy into account. Furthermore, correlogram models can be parametric or non-5

parametric, they can be obtained from the radar or the raingauge data, and they can
be estimated flexibly on a case-by-case basis or with data from a longer period of time.

Recently, nonparametric correlograms based on spatially complete radar rainfall
fields have been used in combining radar and raingauge data (Cassiraga et al., 2004;
Velasco-Forero et al., 2009). The estimation of nonparametric correlograms is fast10

and robust (in particular, no parametric model has to be fit) and anisotropy is naturally
taken into account. The objective of this study is to compare the estimation of non-
parametric correlograms with the traditional estimation of semivariograms, and to test
their application in the geostatistical combination of hourly raingauge and radar data in
Switzerland. This paper describes one of several current activities in the MeteoSwiss15

project CombiPrecip, which aims at the operational provision of spatial precipitation
estimates for Switzerland on the subdaily timescale based on the combination of radar
and raingauge measurements.

The structure of this paper is as follows: Sect. 2 introduces the study domain and
data, compares the modeling of spatial dependence with the nonparametric correlo-20

gram and traditional parametric semivariograms, presents the geostatistical combina-
tion (Kriging) techniques tested here, and how the quality of both the estimated pre-
cipitation fields and the estimated uncertainty in these fields is evaluated. Thereafter,
Sect. 3 presents several examples and a systematic evaluation of the combination
methods. Section 4 concludes this study.25
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2 Methods and data

2.1 Study area and data

The study area is Switzerland. We combine raingauge and radar data on the hourly
timescale. On this timescale, data from 75 automatic raingauges of the SwissMetNet
(SMN) are available. These gauges provide measurements at 10-minute intervals in5

real time. They are fairly homogeneously distributed throughout the country, but remote
areas and high elevations are somewhat underrepresented. The gauge locations are
indicated in several figures of Sect. 3. Radar data are taken from a composite of
three MeteoSwiss radars (see Germann et al., 2006, Fig. 1, for the radar locations).
The composite is available at 5-minute intervals as a gridded field of 1 km resolution10

covering Switzerland and adjacent areas. For discussions of the characteristics of
the two measurement platforms and uncertanties see, e.g., Sevruk (1985); Frei et al.
(2006); Germann et al. (2006); MeteoSwiss (2006).

Apart from measured data, we use synthetic data to illustrate the behaviour of
semivariogram and correlogram estimators in Sect. 2.2. These data follow a one-15

dimensional Gaussian random process with unit variance and correlation function

ρ(u) = exp
(
− u
φ

)
, where u is the lag distance and φ a constant that determines the

decorrelation length. The distance u? for which ρ(u?)= 0.05 is referred to as the prac-
tical range of the process and u? ≈ 3φ. Samples from this process are generated by
means of Cholesky decomposition (see Wood and Chan, 1994; Ribeiro Jr. and Diggle,20

2001; Diggle and Ribeiro Jr., 2007, for details).

2.2 Modelling spatial dependence

2.2.1 Estimation of parametric semivariograms

The semivariogram is the traditional tool for modelling spatial dependence in geostatis-
tical applications. The semivariogram of a spatial process Z is defined as (for greater25

detail see Schabenberger and Gotway, 2005, whose notation we largely follow):
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γ(si ,sj )=
1
2

Var
(
Z(si )−Z(sj )

)
, (1)

where Z(si ), Z(sj ) denote values of the process at locations si , sj . For a second-order
stationary process Z , this is equivalent to

γ(si −sj )=
1
2

E
((
Z(si )−Z(sj )

)2)
; (2)

and furthermore5

γ(si −sj )=σ
2(1−ρ(si −sj )

)
, (3)

where σ2 =C(0)=Var(Z) and ρ(si−sj ) are the variance and the correlation function of
the process Z , and E(·) denotes the expected value.

The widely-used Matheron-estimator for the semivariance reads (we denote estima-
tors with a hat to distinguish them from theoretical quantities):10

γ̂(si −sj )=
1

2|N(si −sj )|
∑

N(si−sj )

(
Z(si )−Z(sj )

)2 , (4)

where N(si −sj ) denotes the set of all pairs of observations at a given lag distance
and |N(si −sj )| is the number of such pairs. For complete radar grids of dimensions
N1 ×N2 × ... this number is equal to (N1 −k)× (N2 − l )× ..., where k, l , ... are the
components of the lag distance vector in units of the grid spacing.15

The customary procedure for estimating a semivariogram model is illustrated by
means of synthetic data in Fig. 1a–c. Figure 1a shows a single realization of a one-
dimensional Gaussian process with variance 1 and exponential correlation function
(the practical range equals 0.6 for this process). The sample semivariogram (or the
so-called semivariogram cloud) is shown in Fig. 1b. It shows semivariogram ordinates20

for all pairs of observations. Since these values scatter substantially, the sample semi-
variogram is usually smoothed by calculating the estimate (4) after pooling the semi-
variogram ordinates into a number of lag-distance classes. This yields the so-called
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empirical semivariogram shown in Fig. 1c (open circles). Finally, a parametric model
is fit to the empirical semivariogram. Here, a curve-fitting technique (n-weighted least
squares, see Diggle and Ribeiro Jr., 2007, Sect. 5) has been used to estimate an ex-
ponential semivariogram model (dashed line in Fig. 1c). Eq. (3) yields the parametric
correlogram corresponding to the fitted semivariogram model (Fig. 1d, dashed line).5

The theoretical correlation function is shown by the solid black line in Fig. 1d. The
difference between the estimated and the theoretical correlation is due to sampling
variability and a bias of the estimator and will be discussed later. There are a num-
ber of reasons for using a parametric model. First, the parametric models are chosen
such that they fulfill the property of positive definiteness. Correlation functions with this10

property can be used in geostatistical prediction (Kriging; see relevant texts such as
Schabenberger and Gotway, 2005, for details). Additionally, the parametrization fur-
ther smoothes the empirical semivariogram and allows to estimate the correlation at
unobserved lag distances.

2.2.2 Estimation of nonparametric correlograms15

The nonparametric estimate of the correlation function is given by

ρ̂(si −sj )=
1
N

∑
N(si−sj )

Z(si )− Z̄√
Ĉ(0)


Z(sj )− Z̄√

Ĉ(0)

 where, (5)

Z̄ =
1
N

N∑
i=1

Z(si ) and Ĉ(0)=
1
N

N∑
i=1

(
Z(si )− Z̄

)2
are the sample (also called plug-in) mean and variance, and N is the number of ob-
servations (e.g., radar grid points). This estimator can be conveniently computed in20

terms of the discrete Fourier transform (DFT). In fact, the Wiener-Khinchin theorem
affirms that the magnitude of the DFT of the standardized observations is the spectral
representation of the correlation estimate computed in Eq. (5). Thus, Eq. (5) can be

6932

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/6925/2010/hessd-7-6925-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/6925/2010/hessd-7-6925-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 6925–6979, 2010

Radar-raingauge
combination with

nonparametric
correlograms

R. Schiemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

evaluated rather simply by computing the DFT, multiplying with the complex conjugate
and computing the inverse DFT of the product. This has two main advantages. First,
the fast Fourier transform (FFT) allows computing the estimate (5) much more rapidly
than by means of explicit summation. Therefore, the complete radar grid can be taken
into account. In contrast, the complete semivariogram estimator (4) cannot be conve-5

niently computed for sizeable two-dimensional radar grids, and is practically obtained
from “thinned-out” subsamples of the entire field (see Appendix A, Fig. 15, for an ex-
ample). Second, the estimated correlation function has, by construction, a real and
positive spectral density. According to Bochner’s theorem, it is therefore a positive def-
inite function (termed “licit” in Yao and Journel, 1998). No further fitting of a parametric10

covariance model or manipulation of the spectral density is necessary.
In practice, the mechanics of the FFT requires that the data be padded with zeros,

and to switch to the so-called wrap-around order of spectral densities/lag distances
and back. This is illustrated in Fig. 2 by means of a one-dimensional data sample;
the details are explained in Press et al. (1992, Chapt. 13). The data sample of length15

N = 140 is shown in (Fig. 2a). The mean is subtracted and zeros are padded such as
to give a padded data vector (Fig. 2b) whose length is equal to the smallest power of
2 larger than or equal to 2N; here equal to 512. Application of the FFT, multiplication
with the complex conjugate, and normalization of the power spectral densities yields
the result shown in Fig. 2c. The power spectral densities are obtained in the typical20

wrap-around order, i.e. the left part of the spectrum corresponds to the zero frequency
and positive frequencies, and the right part of the spectrum to negative frequencies
(in reverse order). The spectrum is real, positive, and symmetric with respect to the
zero frequency. Finally, the inverse FFT yields the estimate of the correlation function
(Fig. 2d).25

The nonparametric estimate (5) of the correlation function for the synthetic one-
dimensional data sample of Fig. 1a is shown in Fig. 1d (dotted line).
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2.2.3 Comparison of estimators and bias correction

Both estimates of the correlogram function in Fig. 1d exhibit shorter ranges than the
theoretical correlation. Of course, this could be completely due to sampling variability
and we cannot conclude from the estimates for a single realization (Fig. 1a) on the
behaviour of the estimators. Therefore, we extend the experiment as follows: For each5

of three Gaussian processes with unit variance and exponential correlation function
with practical ranges of 0.2, 0.6, and 1.5, we draw 100 realizations and estimate a
parametric (exponential) semivariogram model and the nonparametric correlation for
each of the realizations. Each realization is sampled in the domain [0,1]. The median
estimated parametric model for the process with practical range 0.2 is shown by the10

black dashed line in Fig. 3. This line is very close to the theoretical correlation (solid
black line). As a matter of fact, the estimator (4) is known to be unbiased. For finite-
size samples of correlated data, however, it is only approximately unbiased. In the
present example, the positive autocorrelation causes the variance of the process (the
semivariogram sill) to be underestimated. As a consequence, also the range of the15

semivariograms is underestimated. This effect is the more pronounced the larger the
practical range is compared to the domain size, i.e. keeping the domain size constant
(here equal to 1), the bias will be larger for larger ranges (red and blue dashed lines in
Fig. 3).

The dotted lines in Fig. 3 show the nonparametric correlation estimates from Eq. (5)20

based on the same 100 realizations of the three Gaussian processes. For small lags
and a practical range of 0.2, the estimate (black dotted line) is still fairly close to the
theoretical correlation. If the practical range is on the order of the domain size, however,
the nonparametric correlation is strongly biased towards too small values (red and blue
dotted lines). The bias in the nonparametric correlogram estimate is much larger than25

in the corresponding parametric estimate. (Note: At least for small lags, the different
normalizations N(si −sj ) vs. N in Eqs. (4) and (5) are only a minor contribution to the
difference between both estimates.)
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In order to understand this observation, we rewrite Eq. (5) as follows:

ρ̂(si −sj ) = 1−
(
1− ρ̂(si −sj )

)
= 1−

1− 1

NĈ(0)

∑
N(si−sj )

(
Z(si )− Z̄

)(
Z(sj )− Z̄

)
= 1−

 Ĉ(0)

2Ĉ(0)
+
Ĉ(0)

2Ĉ(0)
− 1

NĈ(0)

∑
N(si−sj )

(
Z(si )− Z̄

)(
Z(sj )− Z̄

) .
For lag distances that are much smaller than the domain dimensions, we can approxi-5

mate

Ĉ(0) ≈ 1

|N(si −sj )|
∑

N(si−sj )

(
Z(si )− Z̄

)2
and

N ≈ |N(si −sj )|.

Thus,

ρ̂(si −sj )≈1− 1

2Ĉ(0)|N(si −sj )|

∑
N(si−sj )

(
Z(si )− Z̄

)2
+ (6)10

(
Z(sj )− Z̄

)2−2
(
Z(si )− Z̄

)(
Z(sj )− Z̄

)
,

and finally

ρ̂(si −sj )≈1−
γ̂(si −sj )

Ĉ(0)
. (7)

Equation (7) shows that the calculation of a nonparametric correlogram is approxi-
mately equivalent to the estimation of a semivariogram, and the subsequent conver-15

sion of the semivariogram to a correlogram using the simple plug-in estimate of the
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variance. If the interest is in estimating the correlation and variance of the process
Z , the estimators (5) and Ĉ(0) are a poor choice. For positively correlated data, Ĉ(0)
underestimates the variance much more than the semivariogram sill, since the latter
is largely determined by the semivariance values corresponding to the largest lag dis-
tances and the extrapolation performed by fitting the parametric semivariogram model.5

This explains the larger bias of (5) compared to (4).
In the present context, the more important consequence of (7) is, however, that

the nonparametric correlogram estimator (5) and the plug-in variance Ĉ(0) combine
such as to yield an estimate of the semivariogram γ that is approximately unbiased for
small lag distances. This is the justification for using these estimators for geostatistical10

prediction as done here as well as in earlier studies (notably Velasco-Forero et al.,
2009). The semivariance provides a description of both the spatial dependence and the
variance of the spatial field, and completely determines (jointly with the actual values
of the predictors) the solution of geostatistical prediction (Kriging).

Kriging will be the focus of the remainder of this paper. Before, we briefly digress15

and show how the bias of the estimator (5) can be mitigated in situations where this is
of interest. Given an alternative estimate σ̂2 of the variance, assumed to be superior
to the sample variance Ĉ(0), the corresponding estimate of the correlation function is
according to Eqs. (3 and 7):

ρ̂c(si −sj )=1−
γ̂(si −sj )

σ̂2
≈1−

Ĉ(0)

σ̂2

(
1− ρ̂(si −sj )

)
. (8)20

For the synthetic data of our introductory example (Fig. 1a), we have used the sill of
the parametric semivariogram (Fig. 1c) for σ̂2 in Eq. (8) and the corrected correlation
function obtained in this way is the dash-dotted line in Fig. 1d. Repeating the exper-
iment described at the beginning of this section with the bias-corrected estimator (8)
yields the results shown in Fig. 4. Indeed, the correction works and the bias-corrected25

correlograms are very close to the parametric correlograms for small lag distances.
With increasing lag distance, the approximation the bias correction is based on deteri-
orates. This can be seen for the example with largest practical range (blue dotted line
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in Fig. 4). We have tested the calculation of bias-corrected correlograms not only for
synthetic data but also for gridded radar precipitation fields. The test confirms that the
bias correction works, i.e. that the bias-corrected nonparametric correlograms agree
much better with the parametric correlograms than the uncorrected nonparametric cor-
relograms (not shown). This suggests that the issues discussed in this section are5

relevant at the scales of hourly mesoscale precipitation fields.

2.3 Kriging formulations

In this study, we test four Kriging variants. We compare the use of the classical semi-
variance estimator and of nonparametric correlograms in ordinary Kriging (OK), and
test nonparametric correlograms in two versions of Kriging with external drift (KED).10

Here, the OK variants are gauge interpolations where the radar composite is only used
to model the correlogram. Thus, the OK variants are illustrative prototype methods for
comparing the use of parametric and nonparametric correlograms in Kriging, rather
than “genuine” radar-raingauge combination methods. In contrast, the KED methods
more fully exploit the radar information and are candidates for operational merging15

techniques.
In all Kriging applications, we are given k =1,...,K gauge measurements ZG(sk) and

l = 1,...,L radar measurements ZR(sl ) at the grid points of the radar composite. We
associate all raingauges with the nearest radar pixel. The prediction locations coincide
with the grid of the radar composite; for clearness we use superscripts whenever we20

refer to prediction locations, e.g., s
l . Throughout this study, we work with a global

Kriging neighbourhood and do not apply any variable transformation to the predictors.
Below we shortly describe how to calculate OK and KED predictions and variances;
for more detailed descriptions of the methods the reader is referred to standard texts
(e.g., Cressie, 1993; Wackernagel, 2003).25
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2.3.1 Ordinary Kriging

In all Kriging formulations, the process of the interpolated field Z(s) is modelled as
the sum of a stochastic part, which is a second-order stationary process Y (s), and a
deterministic part. In OK, the deterministic part is assumed to be a constant mean field
a, i.e.5

Z(s)=a+Y (s). (9)

The OK prediction is a weighted average of raingauge values

Ẑ(sl )=
K∑
k=1

λlkZG(sk), (10)

and the optimal weights λlk are the solution of the following systems of equations:
Ĉ11 ··· Ĉ1K 1

...
. . .

...
...

ĈK1 ··· ĈKK 1
1 ··· 1 0

=


λ1

1 ··· λL1
...

. . .
...

λ1
K ··· λLK
µ1 ··· µL



Ĉ1

1 ··· ĈL1
...

. . .
...

Ĉ1
K ··· ĈLK

1 ··· 1

 , (11)10

where we have introduced the shorthand notation Ĉkk′ = Ĉ(0)ρ̂(sk −sk′) for covari-
ances between gauge loactions, Ĉlk = Ĉ(0)ρ̂(sk −s

l ) for covariances between gauge
and prediction locations, and µl denotes a Langrange multiplier that ensures

∑
kλ

l
k =1.

The OK variance is given by

σ̂2
OK

(sl )= Ĉ(0)−µl −
K∑
k=1

λlkĈ
l
k . (12)15

The covariances Ĉ in (Eqs. 11 and 12) correspond to the stochastic model part
Y (s). In OK, it is natural to use available measurements of Z for the estimation of
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the spatial covariance structure of Y . Here, the covariances are estimated from the
radar composites. We use a classical parametric semivariogram fit with anisotropy (see
Appendix A) as well as the nonparametric correlogram estimate (Eq. (5), Sect. 2.2.2).
The corresponding OK versions are denoted by OKp and OKnp.

2.3.2 Kriging with external drift5

In KED, the deterministic part of the model is supposed to be a linear function of an
auxiliary field (here, the radar composite ZR):

Z(s)=a+bZR(s)+Y (s). (13)

Just as in OK, the prediction is a weighted mean of raingauge values as in Eq. (10),
but here the weights are the solution of the following systems of equations:10 
Ĉ11 ··· Ĉ1K 1 R1

...
. . .

...
...

...
ĈK1 ··· ĈKK 1 RK

1 ··· 1 0 0
R1 ··· RK 0 0

=


λ1

1 ··· λL1
...

. . .
...

λ1
K ··· λLK
µ1

a ··· µLa
µ1

b ··· µLb




Ĉ1

1 ··· ĈL1
...

. . .
...

Ĉ1
K ··· ĈLK

1 ··· 1
R1 ··· RL

 , (14)

where we write Rk =ZR(sk) and R l =ZR(sl ) for the radar values at the gauge and at
the prediction locations. The additional Lagrange multiplier ensures that

∑
kλ

l
kRk =R

l .
The KED variance is given by

σ̂2
KED(sl )= Ĉ(0)−µla−µlbR

l −
K∑
k=1

λlkĈ
l
k . (15)15

A well-known problematic issue in the application of KED is that there is no straight-
forward choice for which data to use to estimate the covariance structure of Y (s). The
estimate would have to be based on residuals between an (a priori unknown) linear
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function of the radar field and an (a priori unknown) merged interpolated field. An
elegant solution to this problem is to fit the parameters of the stochastic and the deter-
ministic part of the model jointly by means of maximum-likelihood methods (Diggle and
Ribeiro Jr., 2007; Erdin, 2009); yet for sparse gauge networks and in situations with
few wet radar-raingauge pairs, this estimation might not be very robust (In how far this5

is a problem for operational implementations is open. These methods are being tested
in a separate activity within the CombiPrecip project.).

Here, we follow a different solution suggested by Velasco-Forero et al. (2009) that
consists of the following steps:

1. Use OKnp to interpolate the radar values at the gauge locations.10

2. Use the residuals between the radar field and the prediction from step 1 to esti-
mate the nonparametric correlogram and the variance of Y (s).

3. Use the correlogram and variance obtained in step 2 for the KED prediction ac-
cording to (Eqs. 14 and 15).

We refer to this method as KEDOK. Obviously, the residuals used to estimate the15

spatial covariance structure in KEDOK are chosen pragmatically for the lack of better
alternatives. Therefore, we also test the following extension of the KEDOK method:

1. Use KEDOK to obtain a preliminary prediction.

2. Use the residuals between the radar field and the prediction from step 1 to esti-
mate the nonparametric correlogram and the variance of Y (s).20

3. Use the correlogram and variance obtained in step 2 for the KED prediction ac-
cording to (Eqs. 14 and 15).

This is our second KED variant and we refer to it as KEDKED. The estimation of the
covariance of Y (s) is still pragmatic (we use the preliminary KEDOK prediction as a
substitute of the interpolated target field and neglect the linear function of the radar25
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field), but we hypothesize that it yields a better description of the covariance of Y (s)
than the OK residuals used in KEDOK.

2.4 Evaluation

2.4.1 Test cases

Examples of results from the Kriging variants will be shown for three test cases. Fig-5

ure 5 shows raingauge (left) and radar (right) measurements for episodes of 1 h dura-
tion during these cases.

Test case 1 (Fig. 5a,b) is from the August 2005 floods that affected several European
countries. In Switzerland, this event caused six casualties and the highest flood-related
damage on record since 1972. Raingauges registered totals of up to 170 mm in 24 h.10

Figure 5a,b as well as figures for other hourly intervals and daily totals (not shown)
show that radar accumulations during this event systematically underestimate gauge
measurements. A narrow band of intense precipitation in the northeast of Switzer-
land, which can be seen on the radar composite (Fig. 5b), causes large differences in
measured precipitation between nearby gauges.15

Test case 2 (Fig. 5c,d) is characterized by intense, short-lived, and localized precip-
itation cells in the northern part of Switzerland. One of these cells gained a certain
fame because of its interference with the football match Switzerland-Turkey at EURO
2008 in Basel. As far as the raingauge and radar accumulations for the corresponding
hour are concerned, however, the effect of this cell is not very pronounced. The Basel20

gauge (at the northern border of Switzerland, Fig. 5c) merely registered a value 1 mm
for that hour. Much larger hourly accumulations can be seen in two separate regions
in the northwest and the northeast of Switzerland. Quite clearly, the gauge network
is not sufficiently dense to capture the local precipitation maxima within these regions
that are evident on the radar composite (Fig. 5d).25

During the event of test case 3, heavy convective hailstorms moved over the Swiss
Plateau at a speed of more than 60 kmh−1. The comparison of the daily radar and
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gauge data (not shown) shows that the spatial pattern is very similar between both
measurements, but the magnitude of the radar measurements is considerably higher
than that of the gauges. This is a well-known phenomenon for radar measurements of
hail (Doviak and Zrnc, 1993). Again, the gauges of the sparse real-time network do not
capture the regions of strongest precipitation for the selected hour (Fig. 5e,f). A closer5

inspection of the radar composite shows an artificially rugged structure due to the fact
that precipitation cells displace substantially between consecutive full scan periods of
the radar (see also Fabry et al., 1994).

2.4.2 Cross validation

We use cross validation for the quantitative evaluation of the different merging tech-10

niques. One gauge is removed from the data in turn, and the prediction of the method
under consideration is then compared to the value measured by the removed gauge.
Since correlograms or semivariograms are estimated from the radar field for all meth-
ods considered here, the correlograms and semivariograms are the same in cross
validation as for the complete set of gauges. In the KEDOK and KEDKED methods that15

involve auxiliary initial steps for the construction of a residual field used to estimate
nonparametric correlograms, the cross-validated gauge is only removed in the final
Kriging step.

This kind of leave-one-out cross validation with comparison to gauges is probably
the most popular procedure in the evaluation of combination techniques for raingauge20

and radar data. Among the numerous studies that have applied cross validation are
Seo (1998), Haberlandt (2007), and DeGaetano and Wilks (2009). Nevertheless, some
critical issues should be born in mind in this analysis:

– Gauge values are assumed to be true values at their specific locations, but in-
clude measurement errors for several reason (Sevruk, 1985). These errors are25

assumed to be small compared to the prediction errors in the precipitation fields
at short time scales. For particular cases (snowfall, strong wind), however, these

6942

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/6925/2010/hessd-7-6925-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/6925/2010/hessd-7-6925-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 6925–6979, 2010

Radar-raingauge
combination with

nonparametric
correlograms

R. Schiemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

errors can be substantial and should be considered in principle (Although a quan-
titative correction is hardly possible).

– A representative spatial distribution of gauges has to be assumed if summary
measures are expected to comprehend characteristics of a method over the
whole study domain. The MeteoSwiss raingauge network justifies this assump-5

tion reasonably in terms of the geographical distribution within the different parts
of Switzerland. Remote and high-altitude locations, however, are somewhat un-
derrepresented by the network.

– The spatial and temporal support of radar and raingauges is different. Spatially,
raingauges can be approximated as point measurements, whereas the radar val-10

ues correspond to averages over the volume of a grid cell. This yields to a smooth-
ing of radar values compared to gauges (Zawadzki, 1975). Thus, differences be-
tween raingauge and radar measurements are not solely due to radar errors, but
also due to differences in representativeness.

– Additional uncertainty is introduced by associating the location of a raingauge with15

the centre of the nearest radar grid cell (nearest-neighbour approximation).

These issues illustrate that care should be excercised when interpreting radar-
raingauge differences. Nevertheless, under the assumption that these effects lead
primarily to a random component in the radar-raingauge differences, comparisons over
a large sample of raingauges still provide useful guidance on the relative performance20

of different merging techniques.

2.4.3 Quality measures

Skill statistics are calculated from gauge observation/cross-validation prediction pairs
{Zi ,Ẑi}, where i ,...,I enumerates all such pairs either for a single test case or for an
extended validation period. We use the following skill measures:25
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1. The BIAS assesses overall systematic errors of a method. We express it in terms
of a logarithmic scale, as customary in radar meteorology,

BIAS=10 log10

∑
i Ẑi∑
iZi

. (16)

2. The root-mean-square error (RMSE) is a widely-used skill measure to assess the
overall quality of a method. We use it on a square-root scale,5

RMSE=

√√√√1
I

∑
i

(√
Ẑi −

√
Zi

)2

. (17)

3. The median absolute deviation (MAD) is a robust measure of dispersion, i.e. it is
less influenced by outliers than the RMSE:

MAD=median
i

(
|
√
Ẑi −

√
Zi |
)
. (18)

4. SCAT (Germann et al., 2006) evaluates the performance of a method to quan-10

tify precipitation for locations where rain is actually predicted and observed.
SCAT is based on the cumulative error distribution function (CEDF), defined as
the contribution to total precipitation as a function of the logarithmic prediction-
observation ratio (in dB) at locations where both, observation and prediction are
wet (≥ 0.5 mm). SCAT is defined as half the distance between the 16% and 84%15

quantiles of the CEDF, which makes it robust to outliers with large over- or under-
estimation. The observed CEDF points are interpolated linearly to determine the
required quantiles;

SCAT=
1
2

(CEDF84−CEDF16) . (19)
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5. The Hansen-Kuipers Discriminant (HK) is a skill score to assess dichotomous
predictions. In our context, it can be used to measure the ability of a method
to distinguish between dry and wet areas. We define a dry observation to cor-
respond to < 0.5mm and a wet observation to ≥ 0.5mm. Observation-prediction
pairs {Zi ,Ẑi} can then be used to construct a 2×2 contigency table (Table 1) and5

HK is calculated as

HK=
ad −bc

(a+c)(b+d )
. (20)

This is equal to the Probability of Detection (POD) minus the Probability of False
Detection (POFD), and −1≤HK ≤ 1. HK = 0 means that the forecast is as skillful
as a random forecast, HK = 1 is a perfect forecast, and a negative HK implies a10

forecast worse than random.

Whe compute all of the above skill measures for the three test cases, and throughout
an extended evaluation period. All hourly intervals in 2008 with at least one wet gauge
(≥ 0.5mm) and without missing values in the radar composite are included into the
extended evaluation. We find that the first four scores, especially MAD, are hard to15

interpret if many observation-prediction pairs with very small values are included into
the evaluation. Therefore, we only include pairs with gauge observation Z ≥ 0.5mm
in the calculation of the scores 1–3. For these three scores, this leaves 52/13/30
pairs of values for test cases 1/2/3. The calculation of HK is based on all observation-
prediction pairs (75 for the test cases). As far as the results for the extended evaluation20

period are concerned, the scores are calculated from a large number of pairs (37 416
for BIAS, RMSE, MAD, and SCAT; and 222 013 for HK). The constraint of allowing
radar fields without any missing radar pixel only reduces the evaluation period to 10
months (there are missing values in April and May 2008). Nonetheless, the results from
the extended evaluation are highly significant and approximately represent averages25

across all seasons.
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2.4.4 Evaluation of Kriging uncertainty

A potential advantage of geostatistical merging techniques is that they are based on
a stochastic concept. They do not only yield an interpolated field, but also an esti-
mate of the uncertainty in this interpolation at each grid point. In particular, following
the cross-validation approach described in Sect. 2.4.2, a measure of uncertainty – the5

cross-validation Kriging variance – can be calculated at the location of the removed
gauge. This can be used to assess how useful the uncertainty estimate provided by
the different methods is. More specifically, we test if the Kriging variance along with a
Gaussian assumption on the distribution of errors can be used to construct an accurate
confidence interval at a point. To this end, we calculate for each gauge and through-10

out the extended evaluation period a z-score
(
Ẑi −Zi

)
/σ̂i , where Ẑi and σ̂2

i are the

cross-validation prediction and variance, and Zi is the value measured by the removed
gauge. Then, the frequency of threshold exceedances of z can be compared with the
frequency that is expected under the assumption of a standard Gaussian distribution
of z.15

3 Results

3.1 Test case 1

The methods OKp and OKnp are compared in Fig. 6 for test case 1 (see Fig. 5a,b for the
corresponding raingauge and radar input data). We first discuss the results of method
OKp shown on the left. The empirical semivariogram obtained from the thinned-out20

radar field (Fig. 6a) clearly captures the anisotropy of the rainfall field for this case. It
can be seen that the orientation of the axis with strongest spatial dependence changes
with the lag distance. It is aligned in a southwest-northeasterly direction for all lags, but
is much more zonally (west-east) oriented for small lags than for large lags. The para-
metric model fit to the empirical semivariogram is shown in Fig. 6b. Our parametrization25
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(see Appendix A) cannot accomodate different directions of anistropy. Instead, the fit-
ted semivariogram model is a compromise between different directions (expressed by
means of a single anisotropy angle) and strenghts (expressed by means of a single
anisotropy ratio). In this particular example, the fit result appears to be influenced
more by the larger lag distances than by the values of the empirical semivariogram5

near the origin. In Ordinary Kriging from a sparse network, the semivariogram model
has a very strong influence on the Kriging prediction, and indeed we can clearly see
its imprint in Fig. 6d. The comparison to the radar field for this case (Fig. 5b) suggests
that the OKp prediction does not represent the spatial characteristics for this rainfall
field very well. The dominant rainfall patterns and their orientation, in particular the10

narrow band of intense precipitation in the northeast of Switzerland, are not captured.
The result of the nonparametric correlogram fit – converted into a semivariogram

along with the plug-in estimate of the variance of the radar field – is shown in Fig. 6c.
The nonparametric semivariogram naturally represents the change of the anisotropy
angle with lag distance and no decisions about which lags to give preference have15

to be made, since the nonparametric semivariogram is used directly in Kriging. Even
though radar information is only incorporated via the semivariogram, the OKnp predic-
tion (Fig. 6e) is able to reproduce the narrow precipitation band and compares much
better to the original radar field. The cross-validation results corroborate what the vi-
sual inspection of the results suggests for this example: all skill measures yield a better20

score for OKnp than for OKp (Table 2).
For both the OKp and the OKnp methods we see that the Kriging prediction is strongly

influenced by the semivariogram throughout the domain. Even in areas with no appar-
ent anisotropy in the centre/southwest of Switzerland, the Kriging prediction exhibits
a strong anisotropy due to the fact that the semivariogram estimate is largely deter-25

mined by the radar measurements in the northeast of the country. This is the downside
of estimating a semivariogram globally for the whole domain as done throughout this
study.
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Figure 7 shows results from the two KED variants. The nonparametric semivari-
ograms determined from radar residuals (Fig. 7a,b) are quite different from one another
in terms of their description of the range and variance of the residual field. This comes
as no surprise, as the residual fields used for correlogram estimation are obtained in
rather different ways (see Sect. 2.3.2). Nonetheless, the Kriging predictions from both5

methods look quite similar (Fig. 7c,d). This is due to the fact that the radar field is used
as external drift variable here and the correlogram is less decisive for the predicted field
than in OK. Both methods yield merged fields that exploit the fine-scale spatial detail
of the radar composite, but are also much closer in magnitude to the values registered
by the raingauges. In spite of the qualitative similarity of the predictions of the KED10

methods, the comparison of both methods in terms of cross-validation analysis gives a
quite clear result for this case: all four skill measures that depend on the precipitation
amount at wet gauges favour KEDKED (Table 2), only the distinction of wet and dry
locations is slightly better for KEDOK as expressed by the higher HK score. In fact, this
property of the precipiation field is better represented in the original radar field than in15

any of the radar-raingauge combinations. This agrees with the findings of Erdin (2009)
who showed for daily fields and several Swiss test cases that raingauge-radar combi-
nation techniques yield improved estimates in many respects; but that the distinction
of wet and dry areas is best in the pure radar measurements.

3.2 Test case 220

The isolated patches of high precipitation in the radar composite for test case 2 (Fig. 5d)
suggest that the spatial dependence is of short range. This is well captured by the
parametric semivariogram fit (Fig. 8b) and also by the semivariogram based on the
nonparametric correlogram estimate (Fig. 8c). While the parametric semivariogram
is completely isotropic, the nonparametric semivariogram exhibits some short-range25

anisotropy the orientation of which again changes with lag distance. The dominant
anisotropy of this semivariogram at short lags appears to reproduce that of three ad-
jacent patches of high precipitation at the northern border of Switzerland. All in all,
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however, anisotropy is not as important here as in the other two test cases as evident
in the OK predictions (Fig. 8d,e). The fit of a simple monotonously decaying function
(here exponential) for the parametric semivariogram yields a smoother prediction by
OKp than by OKnp. The more irregular character of the OKnp prediction better agrees
with the original radar composite, even though, of course, the precise location and5

shape of precipitating areas is not captured well since the radar is not a proper pre-
dictor variable in the OK methods. The skill measures for OKp and OKnp do not differ
greatly for this test case. Compared to other methods/test cases, both OK methods
exhibit a large negative bias, arguably due to the fact that areas of high precipitation
are simply “overlooked” in interpolation from a sparse gauge network and for a case10

with small-scale precipitation patterns.
As in the previous test case, the skill measures somewhat favour the KEDKED predic-

tion over the KEDOK prediction (Table 2). Both KED methods score distinctively better
than the OK methods, and in particular they have a much smaller bias because of
their better exploitation of the radar information. The KEDOK and KEDKED predictions15

(Fig. 9c,d) are remarkably similar to the original radar field for this test case, and also
quite similar to one another. Consequently, the evaluation results are also quite similar
for these three fields.

3.3 Test case 3

The spatial dependence structure for this test case is largely determined by three bands20

of intense precipitation that are aligned fairly similarly in a southwest-northeasterly di-
rection (Fig. 5f). Here, the assumption of a domain-wide spatial dependence model and
the description of anisotropy in terms of a single anisotropy ratio and angle, appears to
be much better suited than for the test cases discussed above. Indeed, the parametric
semivariogram model agrees quite well with the semivariogram based on the nonpara-25

metric correlogram estimate for small lag distances (Fig. 10b,c), even though the range
is larger for the latter. Consequently, also the OK predictions are all in all rather similar
(Fig. 10d,e), yet for OKnp the impact of individual raingauge values on the interpolated
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field can be discerned at larger lag distances. This can be seen clearly for the sta-
tion Bern (“BER”) in the centre/west of Switzerland that registered an accumulation of
14 mm of rain during the hour of this test case (Fig. 5e) and the band of high precipi-
tation to its west in the OK predictions (Fig. 10d,e). This band is more pronounced for
the OKnp prediction than for OKp and remarkably similar in shape to the corresponding5

band actually observed in the radar composite (Fig. 5f). The cross-validation results
for the two OK predictions (Table 2) are in line with the apparent similarity of the two
fields: while some of the skill measures yield favourable results for OKnp (BIAS, MAD),
others give preference to OKp (SCAT, HK).

As in the previous test cases, the KED combination methods succeed to incorporate10

the fine-scale spatial detail of the radar and at the same time correct for the substantial
bias (here positive) of the radar with respect to the gauges. This is evident from the
inspection of the predicted fields (Fig. 11c,d) and also from the quantitative evaluation
(Table 2). In cross-validation, the KED methods score better than the OK predictions
and also than the original radar field, even in terms of the distinction of dry and wet15

locations measured by HK. While for the previous test cases the KEDKED predictions
receive higher scores than KEDOK predictions, there is no clear picture for this test
case. The semivariograms for KEDOK and KEDKED (Fig. 11a,b), determined from dif-
ferent residual fields, have an anisotropy similar to the semivariograms for OKp and
OKnp (Fig. 10b,c), but quite naturally, the semivariogram sills and ranges are smaller20

than for the OK semivariograms, which are based on the original radar field. This
observation holds also for the other two test cases.

3.4 Systematic evaluation

As illustrated for the test cases above, each case is unique and it is not possible to draw
conclusions on the average performance of a merging technique from the consideration25

of one or a few examples. Therefore, we have also conducted the evaluation through an
extended period of time both for the Kriging prediction (best estimate) and the Kriging
variance as described in Sects. 2.4.2–2.4.4. Due to the comparatively slow estimation
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of the empirical semivariogram in the OKp method, this method is not included into the
extended evaluation.

3.4.1 Kriging best estimate

The evaluation results for the original radar field and the three merging techniques are
summarized in Table 3. The skill measures in this table assess the performance of5

the techniques in average terms across a large number of cases as well as across
different regions of Switzerland. The evaluation results are unequivocal. The average
performance of the merging techniques is better than that of the radar alone, the KED
methods outperform the OKnp method, and KEDKED performs better than KEDOK. With
the exception of a higher bias for OKnp than for the pure radar, all skill measures im-10

prove from left to right in the columns of Table 3. Somewhat surprisingly, this includes
the HK score, i.e. the distinction of wet and dry conditions. The radar has been shown
to represent this feature of the precipitation field very well for a number of relevant test
cases (see Erdin (2009) and also Table 2). In the present “climatological” evaluation,
the skill of the radar deteriorates because there are some regions in Switzerland (in the15

south of the country; in the Valais and Grisons cantons), where the currently available
radar composite is of comparatively lower quality due to the very complex topography
of these regions and their relatively long distance from the nearest radar. In particular,
the radar misses many precipitation occurrences in these regions, which appears to
be the reason for the rather low HK score. (In fact, the spatially varying radar skill also20

partly explains the differences between the radar skill for the different test cases. The
radar skill is much higher for test case 2 than for the other two cases, arguably because
in this case it did not rain in regions where the radar skill is typically rather low.).

Figure 12 shows the results of the extended evaluation for the RMSE on a station
by station basis. In accord with the above discussion, the radar skill is comparatively25

low in remote regions of complex topography (Fig. 12a). The OKnp method (Fig. 12b)
introduces an improvement in the skill that is fairly homogeneous throughout the coun-
try. It is interesting to compare the two KED methods the RMSE of which is shown in
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Fig. 12c,d. Both methods have markedly better skill (lower RMSE) than OKnp in re-
gions where the radar performs well, in the Swiss middleland in the centre/north of the
country. For KEDKED however, RMSE is also substantially reduced in the mountainous
regions in the south of Switzerland, much more so than for KEDOK. This observation
appears to justify the hypothesis we made when introducing the KEDKED method in5

Sect. 2.3.2. In regions where the radar is a powerful predictor variable, the stochastic
part of the geostatistical model is less decisive for the prediction skill and, accordingly,
the KEDOK and KEDKED methods perform similarly. In regions where the quality of the
radar is lower, the quality of the prediction will depend more on the specification of the
stochastic part of the model. This is consistent with the clearly superior performance10

of KEDKED in these regions.

3.4.2 Kriging uncertainty

The mere inspection of the Kriging variances for individual test cases reveals con-
siderable shortcomings. An example for test case 1 and the OK and KED methods
is provided in Fig. 13. For all four methods, the Kriging variances are unrealistically15

homogeneous throughout the domain (they are very similar for dry and wet regions),
reflect the domain-wide anisotropy of the correlogram model, and are equal to zero at
the gauge locations due to the fact that no nugget effect is taken into account by the
correlograms used herein.

The results of evaluating the Kriging variance for the OKnp method are shown in20

Fig. 14. In the cross-validation analysis, we have computed a series of z-scores for
each gauge as explained in Sect. 2.4.4. Figure 14a shows for each gauge, how of-
ten the z-score is found to be smaller than the 5%-quantile of the standard Gaussian
distribution, which is approximately equal to −1.64. This corresponds to situations
where the value predicted by OKnp substantially underestimates the actually observed25

value (by more than 1.64 times the Kriging standard deviation). Under the assump-
tions of a well estimated Kriging variance and a Gaussian distribution of errors, this is
expected to occur in 5% of the cases. But in fact the probability of underestimating is
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drastically larger than expected under these assumptions (Fig. 14a). In other words,
if a confidence interval was constructed from the Kriging variance and under the as-
sumption of Gaussian error distribution, the upper end of this confidence interval would
be too small. The OKnp method misses the peaks of the gridded field more often than
suggested by the geostatistical model. As far as overestimations are concerned, the5

observed occurrence frequencies differ substantially from the expected value at a few
gauges, yet this effect is less severe than for the underestimations (Fig. 14b).

We have also assessed the uncertainty estimates provided by the KEDOK and
KEDKED methods. The results (not shown) are very similar to those shown for OKnp in
Fig. 14, but the overestimation occurrence frequencies are somewhat “worse” (higher)10

than the corresponding frequencies shown in Fig. 14a for OKnp. Several reasons must
be expected to contribute to the poor quality of the uncertainty estimate of the methods
tested here. In all methods, we have used the radar and raingauge data as is, i.e.
we have made no effort to apply a variable transformation (e.g., the Box-Cox transfor-
mation) such as to make the residuals of the geostatistical models follow a Gaussian15

distribution. In fact, given the high skewness of hourly precipitation data it would be
quite surprising to find that the residuals of the untransformed data are Gaussian. It is
our current working hypothesis, that the missing data transformation is a major reason
for the poor uncertainty estimate. Accordingly, the choice of an appropriate transfor-
mation family and the estimation of the transformation from the data on a case-by-case20

basis constitute a separate effort within the CombiPrecip project running in parallel to
this study. Further issues that may contribute to the deterioration of the uncertainty
estimate are the quality of the approximation in Eq. (7) and, for the KED methods, the
pragmatic choice of residual fields used to estimate the nonparametric correlogram.
The fact that the assessment of the Kriging uncertainties yields rather similar results25

for the OKnp, KEDOK, and KEDKED methods, indicates that the effect of the last issue
is comparatively small.
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4 Findings summary and discussion

In this study, we have tested using nonparametric correlograms for the construction
of hourly gridded precipitation fields obtained from the geostatistical combination of
raingauge and radar data in Switzerland.

First, the estimation of a parametric semivariogram, as customary in geostatistical5

applications, has been compared with the estimation of nonparametric correlograms.
Application of the two estimation techniques to synthetic data of known correlation
structure has shown that the nonparametric correlograms may severly underestimate
the decorrelation length (the range of the correlogram). This estimation bias is greater,
the smaller the dimensions of the data sample are in relation to the actual range of10

the spatial dependence. The bias in the correlogram is mostly due to the fact that the
correlogram estimate is based on the sample (“plug-in”) variance as an estimate of the
variance of the spatial field. For positively correlated data, the sample variance may
substantially underestimate the process variance, much more so than the semivari-
ogram sill traditionally used in geostatistical applications.15

It is important to note, however, that the above does not preclude the nonparametric
estimation of correlograms from being used in geostatistical prediction (Kriging). We
have also shown that the nonparametric correlogram and the sample variance (both
substantially biased in many cases) combine into an estimate of the semivariogram
that is approximately unbiased for small lag distances. This provides the justification20

for using nonparametric correlograms here as well as in previous studies, since the
values of the semivariogram at small lags are known to be decisive for the Kriging
prediction.

We have also compared the nonparametric correlogram estimation with the tradi-
tional semivariogram estimation by using them in Ordinary Kriging of gauges for three25

CombiPrecip test cases. The estimation of nonparametric correlograms (more pre-
cisely, of semivariograms based on the nonparametric correlograms) is very attractive
from an operational point of view since (i) the entire spatially complete radar field can
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be taken into account, (ii) no parametric semivariogram model has to be fitted, and (iii)
the estimation of the nonparametric correlogram is fast and robust. For the three test
cases considered here, OK in terms of the nonparametric correlogram (method OKnp)
successfully captures the spatial dependence structure of the radar field. A quanti-
tative comparison of the OKnp method with OK in terms of the traditional parametric5

semivariogram (method OKp) has shown that OKnp performs similarly to or better than
OKp for the three test cases.

Furthermore, two variants of Kriging with external drift have been tested in this study.
The first variant is the method suggested by Velasco-Forero et al. (2009), termed here
KEDOK. The second variant builds on the KEDOK method and constructs a more realis-10

tic residual field used to estimate the nonparametric correlogram of the stochastic part
of the KED model. Both variants have been assessed by means of cross-validation and
a range of skill measures through an extended evaluation period of one year. The re-
sults clearly show that KEDKED yields better merged precipitation fields than KEDOK on
average. Additionally, the extended evaluation shows that both KED methods perform15

better than the original radar composite or the gauge interpolation OKnp.
We have also assessed the uncertainty estimate provided by the OKnp, KEDOK, and

KEDKED methods. All three methods underestimate the precipitation amount more
often than expected from the Kriging variances and the assumption of a Gaussian
error distribution. Consequently, uncertainty estimates for the methods presented here20

should be based on the empirical error distribution rather than on the Kriging variances.
A number of issues have not been addressed in this study and remain for current

and future work. It is conceivable that the failure of the uncertainty estimate of the
present implementations is largely due to the fact that no variable transformation is
applied to the precipitation data. Finding a suitable transformation on a case-by-case25

basis constitutes a part of the CombiPrecip project in its own right. Given the practi-
cal advantages of the nonparametric correlogram estimation, it appears promising to
test if a data transformation can be incorporated into the methods presented here (in
particular KEDKED).
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A potential disadvantage of nonparametric correlograms is that it can only be used
when a complete spatial field is available for estimating the spatial dependence struc-
ture of the stochastic part of the geostatistical model under consideration. While this is
straightforward for Ordinary Kriging, we have shown that in other Kriging formulations
the choice of an appropriate field is much less clear. Moreover, the methods tested5

in this study assume that the estimation of the spatial dependence structure and the
parameters of the deterministic part of the geostatistical model can be carried out in
two consecutive independent steps. This appears to be at odds with modern geo-
statistical estimation techniques (maximum-likelihood or reduced maximum likelihood),
where both the parameters of the deterministic part of the model and of the spatial10

covariance structure are estimated jointly. An iterative approach such as the KEDKED
method suggested here may be a first step towards methods that self-consistently esti-
mate both the deterministic part of the geostatistical model and the spatial covariance
of the stochastic part, but still take advantage of the computational convenience offered
by the nonparametric estimation of correlograms.15

Appendix A

Estimation of parametric semivariograms with anisotropy

The procedure used for the estimation of parametric semivariograms with anisotropy
consists of five steps. It is illustrated in Fig. 15 for test case 3.20

1. A random subsample of radar pixels is drawn from the full composite for the sake
of computational feasibility. In the present implementation, we draw a larger sam-
ple if there are more pixels with zero precipitation in the composite. This is to
avoid poor sampling of wet areas in situations where these areas are small. In
the example provided here, 3370 radar pixels are sampled (Fig. 15a).25

2. As described in Sect. 2.2.1, a one-dimensional omnidirectional semivariogram is
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fit to the sample variogram obtained from the radar subsample drawn in step 1
(Fig. 15b). We choose an exponential model

γ̂(u)= σ̂2
fg

(
1−exp

(
u

φ̂fg

))
, (A1)

where u= |si −sj | is the lag distance; and thus obtain first-guess estimates of the

variance σ̂2
fg and of the range parameter φ̂fg. The one-dimensional sample vari-5

ogram is calculated from data pairs of a maximum lag distance umax =150km, and
the exponential model is fit to the sample variogram by means of an n-weighted
least-squares method (Diggle and Ribeiro Jr., 2007, Sect. 5.3.1). The practical
range is û?fg.

3. A two-dimensional sample semivariogram is calculated from the radar subsample10

according to Eq. (4), here understood as a function of a two-dimensional lag vec-
tor u= (u,v). The sample variogram is computed with a lag-distance tolerance of
5 km in the horizontal and vertical. The maximum lag taken into account for the
calculation of the sample variogram is equal to min(û?fg,150km). The result for the
case considered is shown in Fig. 15c.15

4. Only the central part of the two-dimensional sample semivariogram is considered
in fitting a parametric model (Fig. 15d). In the present implementation, we retain
sample semivariogram values γ̂(u) that fulfil the ad-hoc condition

γ̂(u)≤ 1
e
σ̂2

fg . (A2)

5. A parametric model is fit to the sample semivariogram values retained in step 4:20

γ̂(u) = σ̂2

(
1−exp

(
−
‖SRu‖
φ̂

))
, where (A3)
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S =
[

1 0
0 ψ̂−1

R

]
, (A4)

R =
[

cos(ψ̂A) −sin(ψ̂A)
sin(ψ̂A) cos(ψ̂A)

]
. (A5)

This is the usual exponential model applied to a lag-distance vector u
′ = SRu

transformed to isotropic coordinates by a rotation R and a differential stretching
S. The additional parameters are referred to as the anisotropy angle ψ̂A and the5

anisotropy ratio ψ̂R. ψ̂A is the angle between a vertically aligned lag vector and
the direction of largest spatial correlation. ψ̂R is the ratio of correlation lengths
in the direction of largest spatial correlation and the perpendicular direction of
smallest correlation.

The estimation is carried out such as to minimize the sum of the squared dif-10

ferences between the retained sample semivariogram values and the estimated
semivariogram model γ̂(u;σ̂2,φ̂,ψ̂A,ψ̂R). To this end, we use the optimization al-
gorithm by Byrd et al. (1995) that allows to specify lower and upper bounds of
the parameters. The optimization procedure requires start values for each of the
parameters. These start values are determined as the best (in a least-square15

sense) combination of parameters allowed to vary within a set of plausible values.
Here, these sets of plausible start values are the following:

σ2
start ∈ {0.8,0.9,1,1.1,1.2} σ̂2

fg , (A6)

φstart ∈ {0.1,0.2,0.5,1,2,5,10} φ̂fg , (A7)

ψA,start ∈ {−3,−2,...,4} π
8
, (A8)20

ψR,start ∈ {1,2,4,6} (A9)

and the lower and upper bounds for the parameters are

σ2
bounds ∈ {0.5,3} σ̂2

fg , (A10)
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φbounds ∈ {0,50} φ̂fg , (A11)

ψA,bounds ∈ {−π
2
,
π
2
}, (A12)

ψR,bounds ∈ {1,20}. (A13)

Figure 15e shows a countour plot of the fitted anisotropic semivariogram. The
estimated parameter values for this example are σ̂2 =115mm2, φ̂=56.6km, ψ̂A =5

0.81 π2 , and ψ̂R =4.35.
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Table 1. 2×2 contigency table for the calculation of HK from observation-prediction pairs
{Zi ,Ẑi}.

Z wet Z dry Sum

Ẑ wet a b a+b
Ẑ dry c d c+d
Sum a+c b+d I
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Table 2. Cross-validation skill measures for the original radar field and different merging tech-
niques for the three test cases.

radar OKp OKnp KEDOK KEDKED

case 1
BIAS −2.88 −0.90 −0.54 −0.29 −0.23
RMSE 0.73 0.83 0.67 0.62 0.50
MAD 0.46 0.45 0.39 0.34 0.21
SCAT 2.19 3.62 2.73 2.00 1.16
HK 0.61 0.45 0.51 0.56 0.52

case 2
BIAS 0.47 −4.51 −3.23 −0.61 −0.01
RMSE 0.44 1.03 0.95 0.50 0.31
MAD 0.18 0.62 0.77 0.27 0.18
SCAT 1.79 3.52 3.03 2.90 2.32
HK 0.93 0.48 0.56 0.87 0.93

case 3
BIAS 4.18 −0.57 −0.43 −0.02 0.26
RMSE 1.47 0.83 0.82 0.66 0.73
MAD 0.94 0.69 0.61 0.48 0.48
SCAT 3.49 3.38 3.85 3.42 2.97
HK 0.67 0.67 0.52 0.69 0.74
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Table 3. Cross-validation skill measures for the original radar field and different merging tech-
niques for the extended evaluation in 2008.

radar OKnp KEDOK KEDKED

BIAS −1.16 −1.29 −0.92 −0.60
RMSE 0.61 0.51 0.47 0.39
MAD 0.38 0.27 0.26 0.20
SCAT 2.86 2.61 2.35 1.91
HK 0.59 0.64 0.68 0.73
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Fig. 1. Semivariogram and correlogram estimation. (a) One-dimensional synthetic data sam-
ple, (b) semivariogram cloud, (c) empirical semivariogram and fitted parametric model, (d)
theoretical and estimated correlograms.
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Fig. 2. Correlogram estimation using the fast Fourier transform. (a) One-dimensional section
through the radar comopsite for test case 3 (6.33–8.13◦W at 46.39◦N; mm), (b) centered and
zero-padded data, (c) normalized power spectral density in wrap-around order, (d) nonpara-
metric estimate of the correlation function. Lags are in km.
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Fig. 3. Behaviour of parametric and nonparametric correlogram estimators for Gaussian spa-
tial processes of different ranges. Dashed black line: Median fitted parametric model for a
Gaussian process of practical range 0.2. Dotted black line: Median nonparametric correlogram
estimate for a Gaussian process of practical range 0.2. Red and blue lines: the same for pro-
cesses of larger practical ranges (0.6,1.5). All dashed and dotted lines show the median of
estimates of 100 realizations of the Gaussian process. Solid line: theoretical correlation (for all
ranges; the abscissa is scaled by the practical range).
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Fig. 4. As Fig. 3 but for bias-corrected nonparametric correlograms calculated according to
Eq. (8).
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Test case 1: 2005-08-21 17:00-18:00 UTC
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Test case 2: 2008-06-11 19:00-20:00 UTC
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Test case 3: 2009-07-23 15:00-16:00 UTC

Fig. 5. Test cases considered in this study. (a, c, e) Hourly raingauge accumulations, (b, d,
f) hourly radar accumulation; all in mm. (a, b) August 2005 floods (test case 1), (c, d) EURO
2008 flooding (test case 2), (e, f) fast and heavy thunder cells with hail over the Swiss Plateau
(test case 3). 6969
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Fig. 6. Ordinary Kriging for test case 1 with a parametric semivariogram (OKp) and a nonpara-

metric correlogram (OKnp). (a)Empirical semivariogram from subsampled radar field (mm2), (b)

exponential anisotropic semivariogram fit (mm2), (c) nonparametric correlogram from complete
radar field (expressed as a semivariance, mm2), (d) OKp prediction, (e) OKnp prediction (mm).

46

Fig. 6. Ordinary Kriging for test case 1 with a parametric semivariogram (OKp) and a nonpara-

metric correlogram (OKnp). (a) Empirical semivariogram from subsampled radar field (mm2),

(b) exponential anisotropic semivariogram fit (mm2), (c) nonparametric correlogram from com-
plete radar field (expressed as a semivariance, mm2), (d) OKp prediction, (e) OKnp prediction
(mm).
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Fig. 7. Kriging with external drift for test case 1 (left: KEDOK, right: KEDKED). (a) Nonparametric
correlogram for KEDOK expressend as a semivariogram (mm2), (b) nonparametric correlogram
for KEDKED expressed as a semivariogram (mm2), (c) KEDOK prediction, (d) KEDKED prediction
(mm).
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Fig. 8. As Fig. 6 but for test case 2.
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Fig. 9. As Fig. 7 but for test case 2.
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Fig. 10. As Fig. 6 but for test case 3.
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Fig. 11. As Fig. 7 but for test case 3.
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Fig. 12. RMSE (mm0.5) for extended evaluation in 2008 by gauge station.
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Fig. 13. Square root of the Kriging variance for test case 1 and OK and KED method variants
(mm).
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Fig. 14. Assessment of the Kriging variance for the OKnp method. At each gauge location the
color and numbers (%) show (a) the relative frequency of underestimating the precipitation by
1.64 standard deviations or more, (b) the relative frequency of overestimating the precipitation
by 1.64 standard deviations or more. The analysis includes all gauge observations ≥ 0.5 mm.
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Test case 3 (2009-07-23 15:00 - 16:00 UTC)

Fig. 15. Estimation of a two-dimensional parametric semivariogram. (a) Subsample of 3370
random radar pixels from the full composite of test case 3 (Fig. 5f; mm). (b) First-guess one-
dimensional semivariogram from the subsample, (c) two-dimensional sample variogram, (d)
two-dimensional variogram restricted to small lags, (e) exponential anisotropic variogram model
fitted to the central part of the variogram (all in mm2).
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