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Abstract

Pumping stations play an important role in flood mitigation in metropolitan areas. The
existing sewerage systems, however, are facing a great challenge of fast rising peak
flow resulting from urbanization and climate change. It is imperative to construct an
efficient and accurate operating prediction model for pumping stations to simulate the5

drainage mechanism for discharging the rainwater in advance. In this study, we pro-
pose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system
(ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting
of the number of open and closed pumps of a pivotal pumping station in Taipei city
up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in10

terms of model efficiency, accuracy, and correctness. Furthermore, the results not only
show the predictive water levels do contribute to the successfully operating pumping
stations but also demonstrate the applicability and reliability of ANFIS in automatically
controlling the urban sewerage systems.

1 Introduction15

Taiwan is located in subtropical zone with frequent thunderstorms and typhoon events.
Both temporal and spatial distributions of precipitation are uneven due to the mountain-
ous topography which occupies about 70% of Taiwan. In addition, the time of concen-
tration in a metropolitan area is reduced and both the rate and amount of surface runoff
increase owing to more impervious areas caused by urbanization. As a result, the phe-20

nomenon of inundation in urbanized area will occur if the surface runoff exceeds the
design capacity of the sewerage system. For example, Typhoon Zeb attacked Taiwan
on 15 October 1998, and the surcharged water through manholes and pumping sta-
tions resulted in serious inundation in Taipei. Typhoon Nari brought massive rainfalls at
an astonishing level of 500 mm/day on 17 September 2001 which resulted in 27 deaths25

and countless economic losses.
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In case of inundation in urban areas, the operation strategy for sewerage systems in
Taipei City is to set up pumping stations which are the major hydraulic facilities for inner
rainwater discharges. Undoubtedly, pumping stations play a key role in flood reduction
in metropolitan areas. Nevertheless, fast rising peak flows resulting from urbanization
and climate change are highly challenging to existing sewerage systems. In fact, the5

current pumping operation procedure depends more highly on the experiences of local
operators than on the pumping operation standards. In other words, there are no ex-
plicit guidelines for pumping operations. Operators have to stand by prior to the coming
of extreme rainfall events and keep monitoring and operating until storms’ departure.
It is time- and human resources-consuming with no guarantee of safe pumping oper-10

ations because only the information of current water level measurements is available
for operators. Therefore, it is necessary to construct an efficient and accurate pump-
ing operation model to simulate the drainage mechanism for discharging rainwater in
advance. Furthermore, the advantages of building a suitable and successful pumping
operation prediction model for a sewerage system are to increase its storage capacity15

prior to peak flows by reducing water levels in advance and to decrease inundation
probability by speeding up discharge rates during storm periods. To achieve this goal,
two rule-based fuzzy neural networks are introduced in this study by taking the predic-
tive water levels into account to effectively on-line predict the number of open pumps
for a pivotal pumping station in Taipei city during the process of storm events20

The combination of an artificial neural network (ANN) and a fuzzy theory into a fuzzy
neural network has proven to be another powerful intelligent system and has received
much attention in recent years (Chang et al., 2005; Coulibaly and Evora, 2007; Firat,
2008; Nayak et al., 2004; Wang et al., 2009; Yarar et al., 2009). Both ANNs and fuzzy
theories are state-of-the-art technologies that try to mimic the human thinking process25

for learning similar strategies or experiences to make optimal decisions, and are well
recognized for their outstanding abilities in modeling complex nonlinear systems such
as precipitation estimation/prediction (Chiang et al., 2007a; Hsu et al., 1997), stream-
flow forecasting (Abrahart and See, 2002; Brath et al., 2002; Chiang et al., 2004;
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Chiang et al., 2007b; Dawson et al., 2002; Shrestha and Nestmann, 2009; Toth, 2009),
reservoir operations (Chaves and Kojiri, 2007; Hsu and Wei, 2007; Mehta and Jain,
2009; Pinthong et al., 2009), prediction of water quality parameters (Maier et al., 2004;
Sudheer et al., 2006; Tyagi et al., 2008), and pumping operations (Chang et al., 2008;
Rao et al., 2007).5

The ANN can be described as an information processing system which consists of
many nonlinear and densely interconnected artificial neurons. The attraction of ANNs
mainly comes from their characteristics of data processing. ANNs are effective in ex-
tracting significant features from complex databases and are capable of learning the
relationship between any data pairs. Moreover, fuzzy theories are based on the way10

how brains deal with inexact information. The fundamental inspirations of these two
methods are quite different. ANNs offer good performance in dealing with sensory
data, while fuzzy systems often deal with issues such as reasoning at a higher analyt-
ical level than ANNs. However, due to the lesser learning capability of fuzzy systems,
it is difficult to tune the fuzzy rules and membership functions from training datasets.15

Thus, a promising approach to reaping and capturing the strengths and benefits of a
fuzzy system and an artificial neural network is to merge them into a hybrid system
with a single framework. In this study, we evaluated the performance of two rule-based
fuzzy neural networks fed with different input combinations for predicting pumping op-
erations up to a forecast lead-time of 20 min. Furthermore, methodologies and a brief20

description of two rule-based fuzzy neural networks were presented. In the application
procedure, a study area and data set were first given, and the fuzzy neural network-
based pumping operation models were then performed. Next, the results of two fuzzy
neural networks were separately discussed. Finally, a conclusion of this study was
drawn.25
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2 Methodologies

We applied two popular rule-based fuzzy neural networks, namely counterpropagation
fuzzy neural network (CFNN) and adaptive neuro-fuzzy inference system (ANFIS), for
establishing the proper relationship between hydrological factors and pumping opera-
tions in an urban sewerage system.5

2.1 Counterpropagation Fuzzy Neural Network (CFNN)

The counterpropagation network (CPN), which was proposed by Hecht-Nielsen (1987,
1988), functions as a self-programming optimal lookup table, providing the mapping
between input and output patterns. There are two sets of network weights adjusted by
two different training algorithms. Weights between the input and Kohonen layers are10

trained by using Kohonen’s self-organizing learning rule; whereas weights connecting
the Kohonen and Grossberg layers are trained by using Grossberg’s learning algorithm.
CFNN, a combination of CPN and fuzzy arithmetic, was first introduced by (Nie and
Linkens, 1994). The architecture of CFNN consists of an input layer, a Kohonen layer,
and a Grossberg layer. Each neuron arranged in the Kohonen layer represents a rule.15

The connections between input and Kohonen layers indicate the “if” statement of a
rule. The connections between Kohonen and Grossberg layers represent the “then”
part of a rule. CFNN has a hybrid learning scheme and can be split into two stages
during model construction. In the first stage, the model with unsupervised learning is
used to build the if-then rule according to the similar characteristics of input vectors;20

while the weight vectors between the Kohonen and Grossberg layers are adjusted by
using supervised learning to improve the performance in the second stage. Compared
to other mapping networks, CFNN typically requires fewer training steps to achieve its
best performance because of its hybrid learning scheme that combines unsupervised
and supervised learning processes. CFNN is also a good pattern recognition engine25

and a robust classifier that has the capability of making decisions based on imprecise
input data. Chang et al. (2008) indicated the network has a simple basic structure with
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efficient learning ability to construct a human-like operating strategy for operating the
flood control system. The detailed procedure for constructing CFNN can be found in
(Chang and Chen, 2001) and is briefly described as follows.

2.1.1 Learning procedure of the CFNN

An input vector X =(x1,..., xi ,..., xn ) would be transformed to an output vector Y =(y1,5

..., ym ) through a logical judgment, which is called a set of rules. The connections be-
tween the input layer and the Kohonen layer are indicated as w, while the connections
between the Kohonen layer and the Grossberg layer are π. Weights arranged in the
Kohonen and Grossberg layers are, respectively, trained by the following steps. In the
Kohonen layer, each neuron represents a rule. First, a ∆ should be selected before10

the learning processes. The value of ∆ represents the interval in a triangular function.
Second, the distances between each input X (t) and the center w of the existing neu-
rons are calculated. The neuron with minimum distance is regarded as the winning
neuron. If the minimum distance is smaller than ∆, the center of w and π has to be
updated as15

wnew
j =wold

j +α[X (t)−wold
j ] (1)

πnew
j =πold

j +β[Y (t)−πold
j ] (2)

where α and β are learning rates within the interval [0, 1]. Y (t) is the output vector.
If the minimum distance is larger than ∆, a new rule will be created as wnew =X (t),
πnew

j = Y (t), and the existing N rules will become (N+1) rules. Generally speaking, the20

number of rules and the model accuracy will gradually increase when the value of ∆
increases. However, the complexity of the network is also proportional to the value of
∆.
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2.1.2 Forecasting procedure of the CFNN

The forecasting procedure of CFNN consists of pattern matching and weighted aver-
age, and is coupled with the concept of fuzzy control (Nie, 1997). Pattern matching
uses the Gaussian membership function (sj ∈ [0,1]) for calculating the distance be-
tween the input and the j th rule to assign a membership grade to each rule. If the5

distance is larger than ∆, then sj=0. It means the impact of the j th rule on the input is

null. The fuzzy control output
∧
Y (t) is then the weighted average of the output of each

rule and can be calculated as follows.

∧
Y (t)=

∑N
j=1sjπj∑N
j=1sj

(3)

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)10

Adaptive Neuro-Fuzzy Inference System (ANFIS) proposed by Jang (1993) is a multi-
layer feed-forward neural network that combines ANN and fuzzy logic. ANFIS is capa-
ble of learning any real continuous function by constructing a fuzzy inference system
(FIS) and is powerful in modeling complex nonlinear systems. It eliminates the basic
problem in fuzzy system design, which defines the membership functions and designs15

fuzzy rules, by effectively using the learning capability of ANN for automatic fuzzy rule
generation and parameter optimization (Nayak et al., 2004). Moreover, ANFIS not only
maintains the mapping ability of ANNs but also possesses the advantages of fuzzy
if-then rules for describing the local behavior of such mapping and solving the highly
non-linear control problem robustly. ANFIS has been widely studied and successfully20

applied to hydrology and water resources, such as Chang and Chang (2006).
Generally, the architecture of ANFIS consists of five layers where the nodes have

similar functions at the same layer named according to their operative functions. The
first layer consists of input nodes where each node corresponds to a linguistic label with
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a membership function. In this study, the membership function is chosen to be a bell-
shaped membership function. The output of the first layer specifies the degree where
the given input satisfies the membership function. The second layer consists of rule
nodes and the output of each node represents the firing strength of a rule. The node
generates its output by multiplying all incoming signals involved in the rule. Therefore,5

the outputs of this layer are the products of the corresponding degrees from Layer 1.
The third layer consists of average nodes that compute the ratio of each rule’s firing
strength to the sum of all rules’ firing strength. The fourth layer consists of consequent
nodes. The function of consequent nodes is to compute the contribution of each rule
towards the total output. The fifth layer consists of output nodes. This layer includes a10

stable single node that sums up values of all signals to calculate the final output.
The training of ANFIS is based on a hybrid supervised learning algorithm which

is a combination of a gradient descent method and a least-squares method. These
algorithms are employed to optimize both linear and nonlinear parameters. The update
process of all parameters will continue until reaching error tolerances. Furthermore, it15

is very important to define the fuzzy rules when designing an ANFIS model because the
number of determined parameters may increase enormously as the number of rules
increases. A solution to this problem is to use the subtractive fuzzy clustering algorithm
(SFCA) to establish the rule-based relationship between input and output variables.
The SFCA is devoted to the automatic determination of the minimum number of rules20

to discriminate the fuzzy quality associated with each cluster. The algorithm calculates
the measure of likelihood of each data, which defines the cluster center based on the
density of surrounding data points. Details of the ANFIS algorithm coupled with the
SFCA can be found Chang and Chang (2001).
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3 Applications

3.1 Study area and data

Taipei City is situated in the Taipei Basin where the Danshuei River System wanders
through the area. The average elevation of the area is only four meters above sea
level. The topography of Danshuei estuary is also narrow and therefore the ground5

runoffs concentrated from the city cannot be effectively discharged by gravity during
typhoon periods. Storm water in Taipei is drained by pumping stations which are the
principal hydraulic facilities for flood discharges, and therefore play an important role
in flood mitigation. The site under consideration is the Yu-Cheng catchment, located
in southeastern Taipei as shown in Fig. 1, which is chosen for a detailed investigation10

of different input strategies on pumping operations. The catchment with an area of
about 1645 ha has the biggest sewerage system in Taipei City. This region has five
rain gauging stations denoted by blue circles in Fig. 1. The outlet of the sewerage
system is the water level gauging station, YC10, marked by a red triangle. The Yu-
Cheng pumping station, marked by a purple square, was built in 1987 for the purpose15

of pumping the inner water into the Keelung River. This pumping station contains
seven massive pumps (see Fig. 1) with a total capacity of 184.1 cms and was the
most advanced and largest one in Asia in the 1980s. In general, the gravity gates of
Yu-Cheng pumping station remain open to drain away the inner water to the Keelung
River. When the water level of Keelung River rises up to the warning level (1.8 m),20

the pumps will be turned on and warmed up. These pumps will start pumping when
the water level of Keelung River is higher than 2.4 m; meanwhile, the gravity gates
are immediately closed, which means running water cannot be discharged by gravity.
These seven pump sets are operated independently and sequentially according to the
changes of water levels, which means when a running pump cannot control the water25

level under the level of 2.4 m, another pump will start working together with the first
one. Overall, the major function of pumping stations is to efficiently lower the water
levels of sewerage systems and keep them under the maximum tolerable level to avoid
flooding.
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Because YC10 is the outlet of the sewerage system, there is a high correlation be-
tween water levels and the operational strategies of the Yu-Cheng pumping station.
Therefore, water level measurements at YC10 were collected from 2002 to 2008 and
consisted of 17 storm events. This information was further calculated to obtain the
lifts of different duration (L(t): the difference of water levels between time t and t−5).5

Meanwhile, the precipitation, status of four gravity gates (open or close), and records
of seven pumps at the same observational periods were also collected. The precipita-
tion observation values collected at five rain gauges were used to calculate the mean
areal rainfall (R(t)) based on the Thiessen polygon method in order to effectively re-
duce the input dimension of the fuzzy neural networks. Regarding the information on10

gravity gates, the value is recorded as 1 when the gate is open; whereas the value
is recorded as 0 when the gate is closed. The status of four gravity gates is then
summed up as one input variable (G(t)). As far as the operation of pumps is con-
cerned, the recording rule is the same as that of gravity gates (1 means open; 0 means
closed). Accordingly, the status of seven pumps is then summed up as one input vari-15

able (P (t)). Besides, another important piece of information, the water level predictions
(L′(t+5), L′(t+10) , L′(t+15) , L′(t+20) ) at YC10 performed in our previous study
(Chiang et al., 2010) were also conducted in this study as an additional input. The
coefficient of efficiency (CE) between the predictive water levels and observations re-
mained 0.95 for 20-minute-ahead prediction in testing phase (see Table 1), indicating20

that the accuracy of water level predictions was high and should be helpful for modeling
pumping operations.

After data preprocessing, these data were normalized into the interval [0, 1] before
they were input into the models. A total of 2375 records of data, extracted from 17 ty-
phoon or storm events, with a temporal resolution of 5 min were collected. These data25

were divided into three different phases: training, validation, and testing. Data associ-
ated with eight events were arranged in a training phase for model learning purposes,
data associated with the other three events were dedicated to validate the optimal
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neural networks, and the remaining six events were used for testing the generation
capability of rule-based fuzzy neural networks.

3.2 Fuzzy neural network-based pumping operation models

In this study, two rule-based fuzzy neural networks were built for predicting the oper-
ation of pumps in Yu-Cheng pumping station by taking observational and forecasting5

information into account (see Fig. 2). Thus, two types of input strategies (conventional
and improved types) were designed for CFNN and ANFIS pumping operation mod-
els, separately. The conventional type only consists of observation data, whereas the
improved type not only considers the measurements but also adopts the water level
predictions. The main purpose is to investigate the impact of predictive water levels10

on pumping operation predictions. Therefore, the conventional type has four identical
structures, each with a single output, designed for 5-, 10-, 15-, and 20-minute-ahead
predictions of pumping operations. The time step is set as 5 min because the opera-
tional time step of the Yu-Cheng pumping station is 5 min. Table 2 shows the input-
output combinations for both CFNN and ANFIS models. It should be noted that the15

improved type has four different cases with different predictive information. Case 1 is
only fed with additional information of 5-minute-ahead water level predictions, Case 2
is fed with information of 5- and 10-minute-ahead water level predictions, Case 3 is fed
with information of 5-, 10-, and 15-minute-ahead water level predictions, and Case 4
is fed with information of 5-, 10-, 15-, and 20-minute-ahead water level predictions.20

Accordingly, each input case was also used for constructing pumping operation predic-
tion models up to 20 minute-ahead. As the input information changes, the number of
output reduces. For example, Case 4 only produces pumping operation predictions at
20-minute-ahead because the input information involves 20-minute-ahead water level
prediction. In sum, the improved type consisted of ten models fed with different input25

combinations and were designed for both CFNN and ANFIS.
As far as rule-based neural networks are concerned, it is important to determine the

appropriate number of rules. Having too many rules may result in similarities between
6735
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two or more rules, and therefore consume a great deal of computation time; whereas,
too few rules may not supply the network with sufficient capability to effectively describe
the relation between inputs and outputs. Therefore, the design of ∆ for CFNN and
radius (r) for ANFIS is a crucial step to enable the models to have better generalization
ability. Because there is no specific method suggested for the determination of these5

parameters, a trial-and-error procedure is adopted in this study. The initial setting of ∆
is set as 0.05 and is increased 0.01 in each step until ∆ reaches 0.8. Besides, the initial
values of learning rates α and β are set to 0.5 and the limit of fault tolerance is 0.0001
for CFNN. As for the ANFIS model, the initial setting of the radius is set as 0.1 and is
increased 0.01 in each step until the value of radius reaches 0.9. The mean square10

error (MSE) is taken as a criterion to determine these parameters via judging the error
between model outputs and actual operating values. Both MSE and mean absolute
error (MAE) are used for the evaluation of model performance. In general, MSE is
used as a common assessment index and usually results in larger errors that occur
in the vicinity of high values; whereas MAE computes all deviations from the original15

data series and is not weighted towards high values. Both of these indices are widely
used to estimate the fitness to the hydrological models, and therefore to facilitate the
comparison of different predictive results. These criteria are defined as follows.

MSE=

N∑
i=1

(P ′(t)−P (t))2

N
(4)

MAE=

N∑
i=1

|(P ′(t)−P (t))|

N
(5)20

where P ′(t) and P (t) are the numbers of active pumps obtained from model outputs
and observational records, respectively.
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4 Results and discussion

4.1 Results obtained from CFNN

Table 3 shows the results of pumping operations obtained from CFNN for both con-
ventional and improved types. First, the performance is obviously reduced with the
increase of forecasted lead time, no matter which type it is. Besides, the optimal num-5

ber of rules for these CFNN-based models is within the interval of [15, 28] which is
related to the value of ∆ and the complexity of input-output patterns. In other words,
the very complex data need smaller ∆ to derive a suitable number of rules, and a
smaller ∆ usually results in more rules. In our previous work (Chang et al., 2008), the
CFNN was investigated to predict the pumping operation for 5-min-ahead by being fed10

with observational data which has a similar concept to conventional type (t+5). In
this study, the CFNN was further extended for predicting pumping operation up to a
lead time of 20 min. Besides, the predictive water level was expected to provide useful
information and thus was conducted as an additional model input herein. It is clear
that all of the ten structures from four improved cases performed better than those of15

the conventional type, no matter what the forecast lead time was (see Table 3), which
indicates that the information from water level predictions do contribute to the predic-
tions of pumping operations and effectively improve the accuracy of model outputs as
compared with the conventional type.

As far as the same forecast lead time is concerned, another important result can20

be found among different improved cases. The finding is that the longer the lead time
is, the better the performance is produced by the model fed with the latest predictive
water level. For example, for predictions at a lead time of 20 min ahead by CFNN,
Case 4 not only produces better results than conventional types but also outperforms
other improved cases. This is mainly because the structure of Case 4 includes in-25

formation of future water levels up to 20 min. The same scenarios can be found for
model predictions at other lead times. Consequently, the best results for lead times of
5, 10, 15, and 20 min are derived from improved Case 1, Case 2, Case 3, and Case 4,
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respectively, (refer to the rows marked in gray in Table 3). Figure 3 illustrates the best
testing result at each forecast lead time. The blue line indicates the measured water
level, while the black dashed line and the red dotted line represent the actual records
of running pumps and the number of running pumps predicted by models, respectively.
As expected, the CFNN-based pumping operation models provide accurate predictions5

with slight underestimation in the vicinity of peak values for lead times of 5 and 10 min.
As for 15-minute-ahead predictions, the phenomenon of underestimation increased in
the period of 700–900 min, whereas the CFNN model overestimated the numbers of
running pumps from 900 to 1300 min for 20-minute-ahead predictions.

4.2 Results obtained from ANFIS and comparison10

Tables 4 and 5 show the results obtained from ANFIS for conventional and improved
types in validation and testing phases, respectively. The results of different models
accomplished in validation phase are corresponding with those of testing phase, indi-
cating that the ANFIS models were well trained and had no over-fitting problems. Ba-
sically, the performances of different types of ANFIS-based pumping operation models15

are similar to those of CFNN-based models. That is, all models with improved struc-
tures produce better predictions than those with conventional structures. And the best
results achieved by ANFIS models for each forecast lead time are identical to those
of CFNN models. As the gray shaded cells show in Tables 4 and 5, the ANFIS-based
improved Case 1 has the best pumping operation predictions at a lead time of 5 min20

and improved Case 2, Case 3, and Case 4 produce more precise predictions at lead
times of 10, 15, and 20 min, respectively. The dissimilarities between CFNN-based and
ANFIS-based pumping operation models are the efficiency of models and the accuracy
of outputs. The number of rules built in each ANFIS model is no more than five, which
is much smaller than the number of rules created in CFNN models. The results also25

demonstrate that the subtractive fuzzy clustering algorithm can enhance the capability
of ANFIS to effectively depict the input-output patterns by using the minimum rules.
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Regarding the accuracy of model predictions, the ANFIS models produce more pre-
cise predictions than CFNN models in terms of lower MAE and MSE (see Tables 3
and 5). Apparently, the ANFIS-based prediction models in this case study of pumping
operations are more effective than the CFNN-based models. Figure 4 presents the
comparisons between ANFIS operations and actual operations and the corresponding5

error patterns at different forecast lead times in testing phase. Obviously, the ANFIS-
based model shows its excellent capability for pumping operation predictions up to a
lead time of 20 min, and its results outperform those obtained from CFNN model. Ba-
sically, the error computed from real records and ANFIS outputs is within one pump
during high water level periods (600∼1000 min). From the error distribution shown in10

Fig. 5, it is evident that most of the predictions produced by ANFIS models are very
precise according to the bias values. Predictions with positive bias meant overesti-
mations, while underestimations were indicated as negative bias. Basically, results
displayed in Figs. 4 and 5 demonstrate that the predictions of pumping operations from
ANFIS well fit the observations without significant overestimation or underestimation15

existing in model outputs.
Figure 6 displays the patterns of accumulative absolute error (AAE) calculated from

CFNN and ANFIS. Basically, the CFNN model produces similar patterns for forecast
lead time up to 15 min with an AAE of about 40, 60, and 70 pumps for 5-, 10-, and
15-min-ahead predictions, respectively. However, the CFNN does not seem to capture20

the trend of pumping operations and thus results in an error of 140 pumps for 20-min-
ahead predictions. Whereas, it is clear that the error patterns generated by ANFIS
are very consistent and stable with the AAE less than 20, 30, 40, and 50 pumps for
lead time up to 20 min. Table 6 gives a detailed inspection of predictions obtained from
ANFIS-based pumping operation models for different forecast lead times in terms of25

correctness. The correctness was calculated from the number of actual running pumps
and the prediction values of the model. For 5-minute-ahead prediction, all correctness
of model predictions for different numbers of running pumps is higher than 90% except
for two sets of running pumps with correctness of 81%.
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To sum up, the overall correctness of ANFIS-based pumping operation models for
a forecast lead time of 5 min is about 95%, indicating the prediction is applicable to
pumping operations in urban sewerage systems. The results for lead times of 10, 15,
and 20 min maintain high accuracy with overall correctness of 92%, 90%, and 87%,
respectively, which is much better than those of CFNN with the overall correctness5

decreasing from 88% to 59%. Besides, when the number of running pump is more
than four sets, the precisions achieved by ANFIS models are all higher than 80%,
which demonstrates that the constructed model is reliable even when the water level is
high. Based on the comprehensive comparison, it is convincing that the ANFIS models
can be successfully applied to the operations of pumping stations in practice.10

5 Conclusions

The major purpose of this study is to construct an accurate pumping operation model
to effectively drain rainwater away in time and avoid the occurrence of flooding because
typhoons often bring heavy rainfalls. To achieve this goal, two rule-based fuzzy neu-
ral networks, CFNN and ANFIS, are applied to predicting the operation of a pumping15

station in an urban sewerage system in Taipei City. Both models combine the fea-
tures of artificial neural network and fuzzy logic to tune the complicated conversion
of human intelligence to pumping operating systems. Two input types were adopted
for separately training the CFNN- and ANFIS-based forecasting models to identify the
contribution of predictive water level information to pumping operations. The reliability20

and predictability of both models fed with predictive water levels were also explored
based on various inputs for forecast lead time up to 20 min.

A comprehensive comparison indicates that the constructed ANFIS model provides
better performance in predicting the operations of a pumping station than the CFNN
model. The similarity percentage, in terms of correctness, of running pumps between25

the ANFIS predictions and historical records is higher than 87% for 20-minute-ahead
prediction, which is much better than 59% obtained from the CFNN model. ANFIS not
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only outperforms CFNN in model accuracy but also in model efficiency. CFNN has to
build at least fifteen and up to twenty-eight rules to describe the relation between input
variables and pumping operations for different scenarios, whereas the number of rules
required for ANFIS is less than five, which is adequate to simulate a complex nonlinear
system.5

Results obtained from the two types of input combinations indicate that the predictive
water levels do contribute important prior knowledge and/or information to successful
operations of pumping stations in an urban sewerage system and offer an improvement
in preventing a city from inundation. As far as the same forecast lead time is concerned,
the best performance is always achieved in the model fed with the latest predictive wa-10

ter level information. This also implies that small bias existing in the predictive water
levels may result in a larger error if the pumping operation model is designed for longer
forecast lead time. Issues regarding such analysis will be an interesting topic for fu-
ture study. Overall, the study gives a preliminary investigation on the applicability of
fuzzy neural networks to urban sewerage systems and the contribution of predictive15

information to the operations of pumping stations. It is clear that the ANFIS model
can efficiently describe the relation between input patterns and pumping operations via
minimum rules and provide precise predictions of running pumps.
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sewerage gauge data for analysis objectives in this research.
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Table 1. Results of water level prediction at YC10 in terms of CE.

Lead time

5 min 10 min 15 min 20 min

Training 0.99 0.99 0.98 0.97
Validation 0.99 0.98 0.95 0.93
Testing 0.99 0.99 0.97 0.95
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Table 2. The input and output patterns of CFNN and ANFIS models for predictions.

Types Case Input Output

Conventional ∆ L(t), ∆ L(t−5),R(t),R(t−5),G(t),P (t) P ′(t+5)
P ′(t+10)
P ′(t+15)
P ′(t+20)

Improved 1 ∆ L′(t+5), ∆ L(t),R(t),R(t−5),G(t),P (t) P ′(t+5)
P ′(t+10)
P ′(t+15)
P ′(t+20)

2 ∆ L′(t+10), ∆ L′(t+5),∆ L(t),R(t),R(t−5),G(t),P (t) P ′(t+10)
P ′(t+15)
P ′(t+20)

3 ∆ L′(t+15), ∆ L′(t+10), ∆ L′(t+5), ∆ L(t),R(t),R(t−5), P ′(t+15)
G(t),P (t) P’(t+20)

4 ∆ L′(t+20), ∆ L′(t+15), ∆ L′(t+10), ∆ L′(t+5),
∆ L(t),R(t),R(t−5),G(t),P (t) P ′(t+20)

∗ ∆ L′(t+n)=L′(t+n)−L′(t+n−5)n∈ 5, 10, 15, and 20.

6746

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/6725/2010/hessd-7-6725-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/6725/2010/hessd-7-6725-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 6725–6756, 2010

Auto-control of
pumping operations
in sewerage systems

Y.-M. Chiang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Results obtained from CFNN for conventional and improved types.

MAE MSE
Lead time training validation testing training validation testing

Conventional type

t+5 0.59 0.18 0.11 1.18 0.22 0.16
t+10 1.16 0.93 0.94 1.88 1.25 1.04
t+15 1.94 1.64 2.26 4.82 3.39 5.69
t+20 1.96 1.64 2.28 4.88 3.49 5.77

Improved type-Case 1

t+5 0.27 0.03 0.05 0.45 0.04 0.06
t+10 0.36 0.08 0.06 0.59 0.10 0.08
t+15 0.49 0.12 0.14 0.98 0.16 0.19
t+20 0.59 0.16 0.16 1.12 0.23 0.25

Improved type-Case 2

t+10 0.27 0.11 0.04 0.47 0.14 0.06
t+15 0.46 0.18 0.10 0.69 0.22 0.13
t+20 0.48 0.30 0.16 0.77 0.43 0.24

Improved type-Case 3

t+15 0.43 0.10 0.09 0.94 0.14 0.13
t+20 0.46 0.29 0.16 0.76 0.42 0.24

Improved type-Case 4

t+20 0.39 0.26 0.15 0.67 0.36 0.20

Note: the gray shaded cells indicate the best results at each forecasted lead time.
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Table 4. Results obtained from ANFIS in the validation phase.

Validation Criterion
Lead time

t+5 t+10 t+15 t+20

Conventional type
MAE 0.04 0.10 0.17 0.21
MSE 0.05 0.13 0.21 0.26

Improved Case 1
MAE 0.03 0.08 0.16 0.18
MSE 0.04 0.10 0.18 0.26

Improved Case 2
MAE 0.07 0.13 0.16
MSE 0.09 0.18 0.24

Improved Case 3
MAE 0.12 0.18
MSE 0.15 0.26

Improved Case 4
MAE 0.16
MSE 0.22
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Table 5. Results obtained from ANFIS in the testing phase.

Testing Criterion
Lead time

t+5 t+10 t+15 t+20

Conventional type
MAE 0.03 0.04 0.08 0.08
MSE 0.04 0.05 0.10 0.11

Improved Case 1
MAE 0.02 0.04 0.07 0.06
MSE 0.03 0.05 0.08 0.10

Improved Case 2
MAE 0.03 0.05 0.07
MSE 0.05 0.08 0.11

Improved Case 3
MAE 0.04 0.06
MSE 0.07 0.10

Improved Case 4
MAE 0.05
MSE 0.09
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Table 6. Performance of ANFIS-based pumping operation in testing phase.

Prediction of running pumps (%)

t+5 0 1 2 3 4 5 6 7

0 107 0 0 1 0 0 0 0 99%
1 0 19 1 0 0 0 0 0 95%
2 1 1 17 2 0 0 0 0 81%

Records 3 0 0 3 61 1 0 0 0 94%
of 4 0 0 0 1 23 1 0 0 92%
running 5 0 0 0 0 1 24 1 0 92%
pumps 6 0 0 0 0 0 1 11 0 92%

7 0 0 0 0 0 0 0 0 100%
Overall correctness 95%

t+10 0 1 2 3 4 5 6 7

0 106 0 0 2 0 0 0 0 98%
1 0 18 2 0 0 0 0 0 90%
2 2 2 14 3 0 0 0 0 67%

Records 3 0 0 3 60 2 0 0 0 92%
of 4 0 0 0 0 22 3 0 0 88%
running 5 0 0 0 0 0 24 2 0 92%
pumps 6 0 0 0 0 0 2 10 0 83%

7 0 0 0 0 0 0 0 0 100%
Overall correctness 92%

t+15 0 1 2 3 4 5 6 7
0 105 0 0 3 0 0 0 0 97%
1 0 17 3 0 0 0 0 0 85%
2 3 3 12 3 0 0 0 0 57%

Records 3 0 0 3 57 5 0 0 0 88%
of 4 0 0 0 0 23 2 0 0 92%
running 5 0 0 0 0 0 23 3 0 88%
pumps 6 0 0 0 0 0 1 11 0 92%

7 0 0 0 0 0 0 0 0 100%
Overall correctness 90%

t+20 0 1 2 3 4 5 6 7
0 104 0 0 4 0 0 0 0 96%
1 0 16 4 0 0 0 0 0 80%
2 4 0 13 4 0 0 0 0 62%

Records 3 0 0 5 53 7 0 0 0 82%
of 4 0 0 0 0 22 3 0 0 88%
running 5 0 0 0 0 0 21 5 0 81%
pumps 6 0 0 0 0 0 0 11 1 92%

7 0 0 0 0 0 0 0 0 100%
Overall correctness 87%
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Figure 1 Location of the study area and gauging stations and the design of Yu-Cheng 554 
pumping station.   555 

 556 

Fig. 1. Location of the study area and gauging stations and the design of Yu-Cheng pumping
station.
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Fig. 2. The flowchart of model construction.
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(d) 
Figure 3 The best results obtained from CFNN for lead time of (a) 5, (b) 10, (c) 15, 561 

and (d) 20 minutes in the testing phase. 562 
 563 
 564 
 565 
 566 
 567 

Fig. 3. The best results obtained from CFNN for lead time of (a) 5, (b) 10, (c) 15, and (d) 20 min
in the testing phase.
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 568 

Figure 4 The best operations obtained from ANFIS in the testing phase (a) the 569 
measurements of precipitation and water level, (b) real operations, and the 570 
corresponding error pattern for (c) 5-, (d) 10-, (e) 15-, and (f) 20-min-ahead 571 
prediction.  572 

 573 

Fig. 4. The best operations obtained from ANFIS in the testing phase (a) the measurements of
precipitation and water level, (b) real operations, and the corresponding error pattern for (c) 5-,
(d) 10-, (e) 15-, and (f) 20-min-ahead prediction.
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Figure 5 The distribution of testing error calculated from real records and ANFIS 575 

outputs for lead time of (a) 5 (b) 10 (c) 15 and (d) 20 minutes. 576 
 577 

 578 

Fig. 5. The distribution of testing error calculated from real records and ANFIS outputs for lead
time of (a) 5 (b) 10 (c) 15 and (d) 20 min.
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(b) 
Figure 6 The patterns of accumulative absolute error obtained from (a) CFNN and (b) 580 

ANFIS. 581 
 582 
 583 

 584 

Fig. 6. The patterns of accumulative absolute error obtained from (a) CFNN and (b) ANFIS.
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