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Abstract

Understanding the error structures of remotely sensed soil moisture products is essen-
tial for correctly interpreting observed variations and trends in the data or assimilating
them in hydrological or numerical weather prediction models. Nevertheless, a spa-
tially coherent assessment of the quality of the various globally available data sets5

is often hampered by the limited availability over space and time of reliable in-situ
measurements. This study explores the triple collocation error estimation technique
for assessing the relative quality of several globally available soil moisture products
from active (ASCAT) and passive (AMSR-E and SSM/I) microwave sensors. The triple
collocation technique is a powerful tool to estimate the root mean square error while10

simultaneously solving for systematic differences in the climatologies of a set of three
independent data sources. In addition to the scatterometer and radiometer data sets,
we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture data sets as a
third, independent reference. The prime objective is to reveal trends in uncertainty
related to different observation principles (passive versus active), the use of different15

frequencies (C-, X-, and Ku-band) for passive microwave observations, and the choice
of the independent reference data set (ERA-Interim versus GLDAS-NOAH).

The results suggest that the triple collocation method provides realistic error esti-
mates. Observed spatial trends agree well with the existing theory and studies on the
performance of different observation principles and frequencies with respect to land20

cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled
(e.g. a sufficiently large number of common observations is available and errors of the
different data sets are uncorrelated) the errors estimated for the remote sensing prod-
ucts are hardly influenced by the choice of the third independent data set. The results
obtained in this study can help us in developing adequate strategies for the combined25

use of various scatterometer and radiometer-based soil moisture data sets, e.g. for im-
proved flood forecast modelling or the generation of superior multi-mission long-term
soil moisture data sets.
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1 Introduction

In recent years, an increasing number of global soil moisture data sets have become
available from passive and active coarse resolution satellite microwave sensors. Alto-
gether, these data sets span a period of more than 30 years (Table 1). Knowing the
quality of the different data sets and understanding the various error sources (sensor5

calibration, retrieval errors, model parameterisation, etc.) contributing to the observed
soil moisture variations is indispensable if one wishes to draw conclusions on trends
or anomalies in the data sets, e.g. in relation to climate change (Liu et al., 2009). But
also other applications, like the assimilation of remote sensed soil moisture conditions
in flood forecasting (Brocca et al., 2009) or numerical weather prediction models (Mah-10

fouf, 2010; Drusch, 2007; Scipal et al., 2008a) require accurate estimates of the quality
of the observations.

Most of the globally available microwave-based soil moisture products have been in-
tensively validated using in-situ observations (e.g. Jeu et al., 2008; Wagner et al., 2007;
Gruhier et al., 2010; Jackson et al., 2010). Even though the quality of the datasets15

can be established fairly accurately for the locations of the in-situ stations, available
ground observations are restricted to a few locations worldwide and often cover only
limited observation periods. In addition, reliable error estimation is complicated by rep-
resentativeness and scaling errors, which can be larger than the actual retrieval error
(Mart́ınez-Fernández and Ceballos, 2005). Also, differences in observation times and20

depths, and inaccuracies of the in-situ measurements may lead to faulty interpretations
of the obtained validation results (Gruhier et al., 2010).

In contrast to the locally confined in-situ validations, error propagation methods can
provide a more global picture of the uncertainty of soil moisture data sets. Error propa-
gation techniques assess the uncertainty of model estimates resulting from errors in the25

input variables. Naeimi et al. (2009) used a combined analytical Gaussian error propa-
gation method and numerical propagation approach based on Monte Carlo simulation
to estimate the uncertainty in soil moisture retrievals obtained from scatterometers
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using the TU Wien method (Wagner et al., 1999). Parinussa et al. (2010) found an
analytical solution for estimating the uncertainties of soil moisture estimates from ra-
diometers based on the LPRM model (Owe et al., 2008). A big advantage of error
propagation techniques is that they allow for calculating an error estimate for each indi-
vidual observation. However, the uncertainties obtained by error propagation methods5

only account for random errors in the model input variables but do not tell if the model
itself is correct. Therefore the uncertainties obtained for different models are difficult to
compare quantitatively.

Recently, Scipal et al. (2008b) introduced the triple collocation method in the field
of satellite based soil moisture research. The triple collocation method allows a simul-10

taneous estimation of the error structure and the cross-calibration of a set of at least
three linearly related datasets with uncorrelated errors (Stoffelen, 1998). By applying
triple collocation to a combination of TRMM radiometer data, ERS scatterometer data,
and modelled ERA Interim reanalysis soil moisture, Scipal et al. (2008b) obtained re-
alistic error estimates and were able to successfully distinguish spatial error trends of15

retrieved soil moisture. Miralles et al. (2010) successfully applied the triple colloca-
tion technique to soil moisture data products extracted from passive microwave remote
sensing, land surface modelling and low density ground-based observations with the
goal of explicitly estimating the spatial sampling uncertainty of coarse-scale soil mois-
ture estimates derived from ground observations.20

This study connects to the work of Scipal et al. (2008b) and uses the triple collocation
technique to establish the uncertainty of various recent passive (radiometer) and active
(scatterometer) microwave soil moisture products. Herein, the prime objectives will be
to reveal trends in uncertainty related to different observation principles (passive versus
active), the use of different frequencies (C-, X-, and Ku-band) for passive microwave25

observations, and the choice of an independent reference data set (ERA-Interim versus
GLDAS-NOAH). Results of this study will be used for developing appropriate strategies
for combining multiple satellite-based soil moisture products into a merged product (Liu
et al., 2010).
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2 Data

2.1 Scatterometer data

The Advanced Scatterometer (ASCAT) on MetOp-A operates in C-band (5.255 GHz)
at VV polarization and is operational since October 2006. Six radar antenna beams
illuminate a continuous ground swath at six different azimuth angles (at both sides of5

the platform 45◦, 90◦, and 135◦ sideward from the direction of the satellite motion). Inci-
dence angles range from 25◦ to 64◦ while the measurements used in this study have a
spatial resolution of 50 km. The backscatter measurements are converted to soil mois-
ture estimates by applying the TU Wien soil moisture retrieval algorithm (Wagner et
al., 1999; Naeimi et al., 2009). The TU Wien model exploits the unique sensor design10

and the advantages of a change detection method. To correct for the effects of plant
growth and decay, the model uses the multi-incidence angle measurement capability of
the sensor to extract the vegetation sensitive signature from the backscatter observa-
tions. A soil moisture index is then retrieved by scaling each observation between dry
and wet backscatter references, which results in a relative measure of surface (<2 cm)15

soil moisture ranging between 0 and 1 (or 0 and 100%). The soil moisture product is
available via EUMETSAT data distribution system in near real time.

2.2 Radiometer data

Since June 2002, the Advanced Microwave Scanning Radiometer – Earth Observing
System (AMSR-E) aboard the Aqua satellite provides a nearly daily global coverage.20

The instrument scans the Earth surface at an incidence angle of 55◦ while radiance
is measured at six frequencies. The two frequencies considered in this study are the
C-band operated at 6.9 GHz and the X-band operated at 10.7 GHz. Spatial resolutions
are 73x43 km and 51×30 km for the C- and X-band, respectively. In this study we only
use AMSR-E night-time observations, as it was shown that these are better suited for25

retrieving soil moisture than day-time observations (Jeu et al., 2008).
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The Special Sensor Microwave Imager (SSM/I) is found on board a series of Defense
Meteorological Satellite Program (DMSP) platforms. The first satellite was launched
in July 1987, while the last one was launched in October 2003. The SSM/I sensor
operates at four frequencies but only the Ku-band (19.3 GHz) will be considered in
this study. At this frequency, the footprint size is 69×43 km. Only descending mode5

observations from the F13 satellite (equator crossing in the early morning) will be used
in this study for the same reason as for AMSR-E.

The brightness temperatures measured by AMSR-E and SSM/I are converted to
surface soil moisture applying the Land Parameter Retrieval Model (LPRM; Owe et
al., 2008). LPRM is based on the solution of a microwave radiative transfer model10

and solves simultaneously for surface soil moisture, vegetation optical depth and land
surface temperature without a-priori information of land surface characteristics.

2.3 Reanalysis data

2.3.1 ERA-Interim

The ERA Interim reanalysis data set contains consistent atmosphere and surface anal-15

yses for the period from 1989 to present based on the ECMWF Integrated Forecast
System (IFS) model. The reanalysis assimilates various types of observations includ-
ing satellite and ground based measurements. This system runs at T255 spectral res-
olution (∼80 km horizontal resolution) with 91 vertical levels. In the IFS, land surface
processes are described by the Tiled ECMWF Scheme for Surface Exchanges over20

Land (TESSEL; Viterbo and Beljaars, 1995). In TESSEL soil processes are calculated
in four layers. The lower boundary of each layer is at 0.07, 0.28, 1.0 and 2.68 m depth,
respectively. To keep the land surface model simple, TESSEL uses a globally uniform
soil type with fixed soil hydraulic parameters. Saturation is prescribed with a value of
0.472 m3m−3, field capacity with 0.323 m3m−3, and the wilting point with 0.171 m3m−3.25
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2.3.2 GLDAS-NOAH

From the year 2000 onwards, the Noah model from the Global Land Data Assimila-
tion System (GLDAS) provides soil moisture and other atmospheric and land surface
variables at a 3-hour time interval for a regular global grid with a spatial resolution
of 0.25◦. The model is forced by a combination of NOAA/GDAS atmospheric anal-5

ysis fields, spatially and temporally disaggregated NOAA Climate Prediction Center
Merged Analysis of Precipitation (CMAP) fields, and observation based downward
shortwave and longwave radiation fields derived using the method of the Air Force
Weather Agency’s AGRicultural METeorological system. The soil profile is represented
by four vertical layers with a lower boundary of 0.10, 0.40, 1.00, and 2.00 m, re-10

spectively. Soil moisture is provided in kgm−3 which can easily be converted into
volumetric soil moisture. The Noah model uses the same soil property dataset as
LPRM (http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php), which is based on the Food
and Agriculture Organization (FAO) Soil Map of the World linked to a global database
of over 1300 soil samples. Data generated by the Noah model are publicly available15

from ftp://agdisc.gsfc.nasa.gov/data/s4pa/.

2.4 Spatial and temporal collocation of data sets

For the time period where observations were available for all three sources
(i.e. 2007/01/01–2008/12/31) the data were binned to daily files and collocated to a
0.25◦ regular grid using a nearest neighbour resampling.20

3 Triple collocation

3.1 Overview of theory

Suppose three estimates ΘSCAT (scatterometer-derived soil moisture), ΘRAD
(radiometer-derived soil moisture) and ΘMOD (modelled/reanalysis soil moisture) relate
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to hypothetical true soil moisture Θ in a linear fashion (Scipal et al., 2008b; Stoffelen,
1998):

Θ=αSCAT+βSCATΘSCAT+rSCAT
Θ=αRAD+βRADΘRAD+rRAD
Θ=αMOD+βMODΘMOD+rMOD

(1)

where rSCAT, rRAD and rMOD denote the residual errors in the estimates of ΘSCAT,
ΘRAD, and ΘMOD and αX and βX (with subscript X standing for SCAT, RAD, and MOD,5

respectively) represent the calibration constants. Goal of the triple collocation is to find
an estimate of rSCAT,rRAD and rMOD. From Eq. 1 we can first eliminate the calibration
constants by introducing the new variables Θ∗

X =ΘX/βX −αX/βX and r∗X = rX/βX (X
equals SCAT, RAD, and MOD, respectively), and then eliminate the unknown truth in
order to obtain Eq. (2):10 (
Θ∗

SCAT−Θ∗
RAD

)
= r∗SCAT−r∗RAD(

Θ∗
SCAT−Θ∗

MOD

)
= r∗SCAT−r∗MOD(

Θ∗
RAD−Θ∗

MOD

)
= r∗RAD−r∗MOD

(2)

By cross-multiplying the equations of Eq. (2) and assuming that the residual errors
rSCAT, rRAD, and rMOD are uncorrelated (i.e. the residual covariances become 0), we

obtain a direct estimate of the variance of residual errors e∗2
SCAT =

〈
r∗2SCAT

〉
if we average

over a sufficiently large sample population (indicated by square brackets). The error15

variances are hence fully determined by three independent, calibrated soil moisture
estimates:

e∗2
SCAT =

〈(
Θ∗

SCAT−Θ∗
RAD

)(
Θ∗

SCAT−Θ∗
MOD

)〉
e∗2

RAD =
〈(
Θ∗

SCAT−Θ∗
RAD

)(
Θ∗

RAD−Θ∗
MOD

)〉
e∗2

MOD =
〈(
Θ∗

SCAT−Θ∗
MOD

)(
Θ∗

RAD−Θ∗
MOD

)〉 (3)
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3.2 Implementation

In this study we follow a modification of the input data as proposed by Miralles et
al. (2010). Instead of using the original soil moisture data, we base our analysis on
soil moisture anomalies from the long-term mean. This has the advantage that we
are still able to determine the random errors of the SSM/I data set which, due to its5

Ku-band, has a higher sensitivity to atmospheric water vapour and vegetation and thus
on many locations shows a seasonality that differs from the other microwave sensors.
If estimated soil moisture is assumed to be a sum of the climatology mean and an
anomaly component it can be written as:

ΘX(t)=ΘDOY
X (t)+Θ̂X(t) (4)10

where ΘDOY
X (t) is the climatological expectation for soil moisture at the day-of-year

(DOY) associated with time-step t, and Θ̂X(t) is the anomaly relative to this expecta-
tion. ΘDOY

X values are obtained by averaging all valid soil moisture measurements in the
period of observation found on the respective DOY. The resulting seasonality curves
are smoothed by applying a moving window averaging with a kernel size of 31 days15

centred on the particular DOY (Crow et al., 2010). Due to the short observation period
of ASCAT, both ERS and ASCAT soil moisture estimates were used to obtain a reli-
able seasonality for ASCAT. This can be done as ERS relies on the same observation
principles and retrieval concepts as ASCAT.

Finally, to estimate e∗2
SCAT, e∗2

RAD and e∗2
MOD , one has to solve for the calibration ex-20

pressed in Eq. (1). Since the real truth is always unknown, one has to choose one
of the data sets as a reference. This means that e∗2

SCAT, e∗2
RAD, and e∗2

MOD will be ex-
pressed in the observation space of the selected reference data set. The choice of
the reference data set does not influence the relative magnitude of the errors which
theoretically can be scaled from one observation space into the other. Unless stated25

otherwise we choose ΘMOD as a reference. (Scipal et al., 2008b) used an iterative sim-
ple linear least-squares approximation assuming errors in both variables to solve for
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the calibration constants. As in our case for all sensors we are dealing with anomalies
from the long-term mean, we can apply a simple rescaling of soil anomaly Θ̂X(t) into
the observation space of the reference data set R based on the average and variance
(VAR) of the anomalies (Miralles et al., 2010):

Θ̂∗
X(t)= ¯̂ΘR+

√√√√√√VAR
(
Θ̂R

)
VAR

(
Θ̂X

) ·
(
Θ̂X(t)− ¯̂ΘX

)
(5)5

where Θ̂∗
X(t) is the rescaled soil moisture anomaly for time step t. These rescaled

values can now be inserted into Eq. (3). Notice that for the reference data set Θ̂X(t)
and Θ̂∗

X(t) are equal.
Theoretically, an infinite number of common observations (i.e. at time step t obser-

vations should be available for all three data sets) are required to obtain unbiased10

estimates of e∗2
X . Statistical tests revealed that a minimum number of 100 triplets is

a good trade-off (Scipal et al., 2008b). Hence, areas with less than 100 triplets are
masked in the results.

4 Results and discussion

4.1 Comparing scatterometer, radiometer and reanalysis data15

Figure 1a-c show the triple collocation errors for a combination of ASCAT, AMSR-E
C-band, and ERA-Interim soil moisture estimates. The errors e∗

X (i.e. the square-root
of the values obtained from Eq. 3) are expressed in the climatology of the ERA-Interim
re-analysis data set. The results of the error estimation suggest that all three data
sets are characterised by a relatively low error. The mean global error is 0.017 m3m−3

20

for the ASCAT (e∗
SCAT), 0.019 m3m−3 for the AMSR-E C-band observations (e∗

RAD) and

0.018 m3m−3 for ERA-Interim (e∗
MOD). The low error is partly due to the low dynamic
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range of the ERS-Interim soil moisture which has been used as reference. This dy-
namic range is known to be generally too low (Balsamo et al., 2009). Even though the
errors are expressed in the climatology of ERA-Interim, it is important to realise that
this data set does not profit relative to the other data sets from the selection as the
reference. This means that the relative magnitude of the errors remains the same if5

one of the other data sets would have been used as a reference.
The average errors are lower than those obtained by (Scipal et al., 2008b) for a

combination of the ERS-2 scatterometer (e∗
SCAT = 0.028 m3m−3), the TMI radiometer

(e∗
RAD =0.046 m3m−3) and ERA-Interim soil moisture (e∗

MOD =0.020 m3m−3). The lower
average error obtained in our study for the scatterometer can be ascribed to the im-10

proved design of ASCAT with respect to the ERS series. Most remarkable is the in-
crease in accuracy obtained for the AMSR-E radiometer compared to the TMI results
by Scipal et. al. Substantial improvements can be attributed to improvements of the
LPRM model and the better radiometric accuracy of AMSR-E, but large part is also
explained by the lower frequency of AMSR-E C-band observations compared to TMI.15

This makes AMSR-E based retrievals less sensitive to vegetation structure (See also
Sect. 4.2). The average global error calculated for ERA-Interim is consistent with the
average error obtained by Scipal et al. This confirms the robustness of the triple col-
location method and indicates a high spatial consistency of ERA-Interim soil moisture,
as the study of Scipal et al. did not cover northern latitudes due to the limited cover-20

age of the TMI sensor. The small difference observed for ERA-Interim is very likely a
consequence of the latter. Finally, the use of soil moisture anomalies instead of orig-
inal observations and the different scaling technique have a minor influence on the
differences between the two studies.

Generally, error estimates are lowest in arid regions such as Southern Africa, main-25

land Australia, or Central Asia (Fig. 1a–c). This is explained by the very low amounts
of precipitation received and hence the very low variability of soil moisture. The global
picture would look different if relative instead of absolute errors were considered, as
low errors in dry regions (low overall soil moisture content) have larger relative impact
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than in humid regions.
Despite the similar average errors of the three data sets, several characteristic dif-

ferences in the spatial distribution of the errors can be observed between the data sets
(Fig. 1a–c). In very dry areas (e.g. those of central Australia) errors of soil moisture de-
rived from AMSR-E C–band are remarkably lower than soil moisture estimates derived5

from ASCAT and, to a smaller degree, than the modelled soil moisture of ERA-Interim.
In these regions the AMSR-E observations are hardly disturbed by vegetation which
explains the low error estimates. The relatively high errors obtained for scatterometer
data in these areas are a well-known phenomenon believed to be related to volume
scattering effects in dry, loose sand and the systematic orientation of sand ripples and10

dunes over large areas leading to systematic influence of the azimuth viewing direction
(Bartalis et al., 2006).

On the other hand, soil moisture derived from AMSR-E is prone to larger random er-
rors in moderately to densely vegetated areas, like for instance found in south-eastern
North America and northern Argentina. Vegetation affects the AMSR-E observations15

from above the canopy in two ways. First, vegetation will absorb or scatter the radiation
emanating from the soil. Secondly, the vegetation will also emit its own radiation. These
two effects tend to counteract each other. The observable soil emission will decrease
with increased vegetation, while emission from the vegetation will increase. Under a
sufficiently dense canopy, the emitted soil radiation will become totally masked, and20

the observed emissivity will be due largely to the vegetation (Owe et al., 2001).
Figure 1d shows the areas for which either ASCAT (shown in blue) or AMSR-E (red)

gives the lowest triple collocation errors. Such a map can be useful for ranking the
different products in an attempt to merge the data sets (Liu et al., 2010). Nevertheless,
the resulting Boolean map should be taken with precaution as, especially in transition25

areas, errors may be very similar and none of the products should be excluded on be-
forehand. In areas where less than 100 triplets are available (left blank in the image) it
is expected that ASCAT would provide lower errors in moderately to densely vegetated
areas while AMSR-E would show lower errors in dry areas. These assumptions could
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be used to fill the map in Fig. 1d in order to obtain a complete global coverage.

4.2 Influence of radiometer observation frequency

Figure 2 illustrates the influence of increasing observation frequency on the error struc-
tures obtained for radiometer observations. The triple collocation was based on a com-
bination of ERA-Interim, ASCAT and the respective radiometer data set. On average,5

there is a clear average increase in errors with increasing frequency, especially in ar-
eas characterised by moderate to dense vegetation cover, like in southeast Siberia.
This behaviour can be explained by the fact that for the corresponding decrease in
wavelength (i.e. 4.3, 2.8, and 1.6 cm for AMSR-E C-band, AMSR-E X-band and SSM/I
Ku-band, respectively) the soil moisture signal emitted from the surface is increasingly10

absorbed by the vegetation canopy. For SSM/I Ku-band observations over moderate
and dense canopies this usually implies that measured brightness temperatures do
not contain a detectable soil moisture signal anymore. This is also the main reason
of the reduced spatial coverage seen in Fig. 2c for SSM/I as LPRM fails to converge
in densely vegetated areas and hence these pixels are masked. The trends observed15

for the different observation bands correspond well to the trends in frequency-related
uncertainties of LPRM products obtained by error propagation (Parinussa et al., 2010).

Despite the fact that many areas cannot be observed due to the increased sensitivity
of the signal to vegetation, observations in Ku-band can still be very valuable in arid to
semi-arid areas. For example, in the desert areas of North Africa and the Middle East20

no significant difference can be observed between Fig. 2a–c. This is also illustrated
by comparing the average errors of the three passive data sets over the areas where
all data sets have more than 100 triplets. This area is approximately equal to the valid
grid points in Fig. 2c. For this area, the average errors for AMSR-E C-band, AMSR-E
X-band, and SSM/I Ku-band are 0.0158, 0.0177, and 0.0175 m−3m−3, respectively, in-25

dicating only a slight loss in accuracy of the Ku-band compared to C-band and a nearly
similar accuracy with respect to the X-band observations. However, the conclusions
should be taken with caution as the trends in error structures obtained for the AMSR-E
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and SSM/I sensors do not rely only on differences in frequency but also on differences
in instrument design, radiometric accuracy, overpass times and so on.

4.3 Influence of reference data set

So far, the results presented were based on ASCAT, one of the radiometer data sets
and the ERA-Interim reanalysis data set. Theoretically, the choice of the third data set5

should not influence the results obtained for the other data sets, given the errors of
all three data set are uncorrelated. To test this theoretical hypothesis we repeated the
triple collocation with ASCAT and AMSR-E C-band while using GLDAS-NOAH instead
of ERA-Interim as a third, independent, data set. To be able to directly compare the
error structures based on the different re-analysis data sets, errors must be expressed10

in the same climatology. For this reason, the AMSR-E C-band data set was used as a
reference against which the other observations were rescaled.

Figure 3a and b show the errors obtained for AMSR-E C-band observations, using
ERA-Interim and GLDAS-NOAH as the third, independent data source, respectively.
The spatial distributions of the error structures are very similar for most areas. Compa-15

rable results were obtained for ASCAT error estimates (results not shown). If we look at
the areas where differences between the two combinations are largest (Fig. 3c) we see
that these commonly coincide with the areas where least observations are available,
like for instance around the most northern latitudes and the Sahel countries (Fig. 3d).
This implies that the minimum number of 100 triplets is not in every occasion a satisfy-20

ing proxy for the infinite number of common observations theoretically required, as this
approximation is based on the assumption that systematic biases are absent. Even
though theoretically systematic biases should have been removed by using anoma-
lies from the long-term seasonality and the subsequent rescaling, they may still persist
in areas with high soil moisture variability and in areas where soil moisture obser-25

vations are prone to large uncertainties, like in densely vegetated areas. Neverthe-
less, the average global errors for both combinations are very similar (e∗

RAD=0.054 and
0.053 m3m−3 based on ERA-Interim and GLDAS-NOAH, respectively; e∗

SCAT=0.050
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and 0.053 m3m−3 based on ERA-Interim and GLDAS-NOAH, respectively), underlining
the robustness of the triple collocation approach for different data set combinations.

5 Conclusions and outlook

The triple collocation technique is a promising method to estimate the error structures
of global soil moisture data sets. The errors retrieved in this study appear reasonable5

and the observed patterns can be explained by known performance issues of each data
set. This study underscores the conclusions drawn by Scipal et al. (2008b) concerning
the differences between scatterometer, radiometer and reanalysis soil moisture data
sets and shows the improvements of ASCAT and AMSR-E compared to the ERS-2
and TRMM sensors, respectively. Yet unclear is to what degree the deviating trends10

observed for active and passive data sets can be ascribed to the observation principle
(active versus passive) and how much depends on the retrieval method itself. Including
soil moisture data sets based on the same sensors but obtained with different retrieval
concepts could shed light on this issue and provide insight into the relative performance
of the retrieval methods. Nevertheless, several studies already pointed out the limited15

soil moisture retrieval capability of C-band passive microwave observations over mod-
erate to dense vegetated regions (e.g. Kirdyashev et al., 1979; Jackson et al., 1982;
Parinussa et al., 2010).

In general, a decrease of random error was observed for decreasing frequency. In
this prospect, extending the triple collocation analysis with SMOS observations would20

provide an interesting insight into the performance of soil moisture retrievals in L-band.
The results presented in this study should however be interpreted carefully. Two

assumptions are central for the validity of the derived error model: (i) residual errors
should be uncorrelated, and (ii) the different data sets observe the same physical phe-
nomenon. As the measurement technique and retrieval concept of the data sets used25

in this study are fundamentally different, the assumption of uncorrelated errors appears
justified. The second assumption is however not necessarily true. Even though all three
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data sets represent the same physical quantity, they observe different soil layers and,
hence, different dynamics. Therefore a higher order calibration might be necessary to
avoid the introduction of systematic errors (Drusch et al., 2005).

The error characterisation based on different independent reanalysis datasets pro-
vides us important insight in the robustness of the triple collocation technique. The5

results indicate that even a minimum number of 100 joint observations in some areas
are not sufficient to statistically describe the soil moisture deviations, particularly in
areas with high soil moisture dynamics and vegetation cover. This poses one of the
major limitations of the triple collocation technique since a sufficient number of triplets
can only be obtained when the overlapping time period is large enough. For the char-10

acterisation of some historic sensors (e.g. SMMR) this condition cannot be met for the
combination with active soil moisture data sets and other sources need to be explored.
For the most recent missions such as SMOS, this condition can only be met after a
certain period of operation.

Even though the triple collocation method seems to provide plausible error estimates15

of soil moisture, their exact accuracy can only be assessed by cross-validating them
with independent data sources such as in situ soil moisture measurements. These
could also provide information about the biases of soil moisture estimates, something
that is not accounted for by the triple collocation technique. It should also be recalled
that the triple collocation technique provides only one error estimate for the entire time20

series and thus it can be primarily used to characterise differences between sites.
Nevertheless, in combination with other uncertainty estimates, e.g. error propagation
results, the triple collocation results could be used to obtain daily error budgets that are
comparable between data sets. Therefore, the different accuracy assessment tech-
niques should be seen as highly complementary.25

The triple collocation results presented in this study allow us to identify systematic
differences and agreements between active and passive microwave-derived soil mois-
ture products, and between different frequency bands of radiometers e.g. with respect
to varying land cover or climatological zones. This in turn will help us in developing
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adequate strategies for merging active and passive observations for the generation of
superior multi-mission long-term soil moisture data sets.
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Table 1. Operational products in the field of global monitoring of soil moisture using active and
passive satellite microwave instruments.

First Release Data Set Producer Reference

2002 ERS-1/2 scatterometer Vienna University (Scipal et al., 2002;
of Technology (TU Wien) Wagner et al., 2007)

2003 AMSR-E radiometer US National Snow and Ice (Njoku et al., 2003)
Data Center (NSIDC)

2004 AMSR-E radiometer Japanese Aerospace Exploration (Koike et al., 2004)
Agency (JAXA)

2007 AMSR-E and TRMM radiometers United States Department (Jackson, 1993)
of Agriculture (USDA)

2008 ERS-1/2 scatterometer Centre d’Etudes des (Zribi et al., 2003)
Environnements Terrestre et Planétaires

2008 Windsat radiometer US navy (Li et al., 2010)
2008 SMMR, SSM/I, TRMM-TMI, Vrije Universiteit Amsterdam (Owe et al., 2008)

AMSR-E and WindSat radiometers (VUA) and NASA
2010 Soil Moisture and Ocean Salinity European Space Agency (ESA) (Wigneron et al., 2007)
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Fig. 1. Spatial errors of (a) ASCAT, (b) AMSR-E C-band, and (c) ERA-Interim surface soil
moisture estimates. Errors are expressed in the climatology of ERA-Interim. (d) shows the
areas in which either ASCAT (blue) or AMSR-E (red) shows the smallest error value. White
areas indicate areas for which less than 100 common observations are available.
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Fig. 2. Spatial errors e∗
PAS of (a) AMSR-E C-band, (b) AMSR-E X-band, and (c) SSM/I Ku-band

observations obtained with triple collocation based on ERA-Interim, ASCAT, and the respective
radiometer data set. Errors are expressed in the climatology of ERA-Interim.
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Fig. 3. Spatial errors e∗
PAS obtained with a combination of ASCAT, AMSR-E C-band and (a)

ERA-Interim or (b) GLDAS-NOAH. Errors are expressed in the climatology of AMSR-E. (c)
Difference between AMSR-E C-band errors obtained using GLDAS-NOAH and using ERA-
Interim as third independent soil moisture data set. (d) Number of triplets.
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