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Abstract

In this paper, a technique is presented for assessing the predictive uncertainty of
rainfall-runoff and hydraulic forecasts that conditions forecasts uncertainty on the fore-
casted value itself, based on retrospective quantile regression of hindcasted water level
forecasts and forecast errors. To test the robustness of the method, a number of retro-5

spective forecasts for different catchments across England and Wales having different
size and hydrological characteristics have been used to derive in a probabilistic sense
the relation between simulated values of discharges and water levels, and matching
errors. From this study, we can conclude that using quantile regression for estimating
forecast errors conditional on the forecasted water levels provides an extremely simple,10

efficient and robust means for uncertainty estimation of deterministic forecasts.

1 Introduction

Real-time flood forecasting, warning and response systems (often referred to simply as
“flood warning systems”) aim to give property owners, floodplain residents and respon-
sible authorities time to respond to a flood threat before a critical threshold is exceeded,15

thus allowing for mitigation of adverse consequences. As such, they constitute a non-
structural flood risk management measure. Extending the forecasting lead time allows
for time allocation for mitigating actions. A reliable assessment of certainty of predicted
events in a real-time context safeguards operational users from issuing false alarms
and institutional decision-makers from calling for unwarranted action. Real-time flood20

forecasting systems are currently operational in many parts of the world, including Eng-
land and Wales where the National Flood Forecasting System (NFFS) is used by the
Environment Agency (Werner et al., 2009).

Following the 2007 summer floods in England and Wales, the Pitt Review (Pitt, 2008)
recommended that “The Met Office and the Environment Agency should issue warn-25

ings against a lower threshold of probablity to increase preparation lead times for emer-
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gency responders”. This implies that the Environment Agency shift its flood forecasting
operations from a deterministic to a probabilistic approach.

While flood warning systems have the potential to significantly reduce flood risk,
uncertainty in water level forecasts may cause imperfect flood warning system per-
formance. This uncertainty has multiple causes including uncertain future bound-5

ary conditions of precipitation, evaporation and temperature from numerical weather
prediction models, imperfect model schematisations, parameter uncertainty and un-
known initial states or imperfect estimates thereof. A wide body of research over the
past decades has attempted to reduce these individual sources of uncertainty. This
research includes reducing, characterisation, assessment and modeling of paramet-10

ric uncertainty, deterministic state updating or data assimilation (Serban and Askew,
1991; Moore, 2007), error correction (Broersen and Weerts, 2005; Shamseldin and
O’Connor, 2001), ensemble data assimilation (Clark et al., 2008; Seo et al., 2009;
Weerts et al., 2010b), multimodel ensemble prediction and various probabilistic post-
processing techniques (Reggiani and Weerts, 2008; Reggiani et al., 2009; Seo et al.,15

2006; Wood and Schaake, 2008; Krzysztofowicz and Maranzano, 2004).
While this research has led to considerable progress in reducing uncertainties re-

lated to these sources, there will always be a residual uncertainty that cannot be fully
eliminated. Although this uncertainty in flood forecasting is widely recognised, many if
not most of the existing flood warning systems are based on deterministic forecasts,20

implying a certain, accurate prediction of water levels. In contrast, probability forecasts
explicitly estimate predictive uncertainty about future flows or water levels.

For a number of reasons, the move from deterministic forecasting to probability fore-
casting constitutes an improvement to flood warning systems. First of all, hydrological
forecasts are inherently uncertain. Deterministic forecasting alone suggests certainty25

which is unwarranted, whereas probabilistic forecasts explicitly show the certitude of
a prediction. Communicating that level of certitude then allows for the decision to be
made by a decision maker rather rather than a decision being implicitly taken by fore-
casters. Probability forecasts can then be used to take a risk-based decision, where
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the consequences of possible outcomes can be weighted by their probability of oc-
currence function (Todini, 2007; Raiffa and Schlaifer, 2000) Also, depending on these
consequences, decision makers can set a threshold of probability against which to de-
cide, thus choosing an appropriate balance between false alarms and missed floods.

Montanari and Brath (2004) report three approaches for estimating predictive un-5

certainty. The first option is that the model used for forecasting may be structured
as a probability model that generates probability distributions. A second option is to
estimate predictive uncertainty by analysing the statistical properties of the forecast
error series (that is, the difference between the prediction and the observation). The
third option is to use simulation and re-sampling techniques, thus applying Monte Carlo10

analyses. When choosing an approach to be implemented in an operational, real-time
flood forecasting system, computational efficiency and data availability are issues that
need to be taken into account.

The present paper proposes the use of “Quantile Regression” (Koenker and Bas-
set, 1978; Koenker, 2005) as a method to estimate predictive uncertainty. Quantile15

regression, as applied in this study, aims to assess the relationship between the hydro-
logical forecast and the associated forecast error. In contrast with “classical” regression
methods, quantile regression does not optimise on the mean of the dependent variable
(the forecast error) but rather on the quantiles (e.g. the median). By thus estimating
quantiles, an estimate of the full probability distribution of the forecast error may be20

achieved. This probability distribution may serve as an estimate for predictive hydro-
logical uncertainty.

The applicability of quantile regression is demonstrated by applying it on a number
of catchments in England and Wales. The catchments vary in size and in dominant
hydrological processes. A stand-alone version of the National Flood Forecasting Sys-25

tem (NFFS, Werner et al., 2009, 2004) was adapted to serve as a prototype of the
probabilistic forecasting system.

This paper first describes the theory of quantile regression and its application to flood
forecasting. Subsequently, the application to the NFFS catchments is described. This
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is followed by the results and discussion section showing verification metrics and, the
paper ends with conclusions.

2 Material and methods

2.1 Uncertainty estimation of water level forecasts using quantile regression

With progressing lead time, many sources of uncertainty impact the accuracy of fore-5

casts, different uncertainty components dominating at different lead times. In an oper-
ational setting, forward modelling of all these uncertainties can be infeasible because
it requires many data (e.g. meteorological ensemble forecasts) or many model runs
(e.g., Beven, 2006).

The stochastic approach used in this study, estimates effective uncertainty due to10

all uncertainty sources. The approach is implemented as a post-processor on a de-
terministic forecast. We estimate the probability distribution of the forecast error at
different lead times, by conditioning the forecast error on the predicted value itself.
Once this distribution is known, it can be efficiently imposed on forecasted values as
a post-processor. We estimate the relation between the probability distribution of the15

errors and the forecasted values at a given lead time, by means of quantile regression.
Quantile regression is a method for estimating conditional quantiles (Koenker, 2005;
Koenker and Basset, 1978; Koenker and Hallock, 2001). This requires conditioning
of the quantile regression relationships on a calibration dataset of forecasted values
and associated errors at the lead time of interest. To keep the methodology as ob-20

jective as possible, the degrees of freedom of the quantile regression relationships is
kept minimal by using a linear regression for each quantile of interest. Prior to linear
quantile regression, the heteroscedasticity of the error process, typically associated
with rainfall-runoff or hydraulic models, is taken care of by making the training pop-
ulation of forecasted values and associated errors Gaussian. For each lead time of25

interest, a different set of quantile regression relationships needs to be derived. This
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is because the magnitude of the effective forecast error increases with lead time. Be-
low, the method to derive the quantile regressions is formulated in detail. The method
can be followed when a large enough sample of hindcasted water levels or flows and
concurrent observed values is available.

2.1.1 Transformation of forecast errors from the original domain to the Gaus-5

sian domain

Let us denote the process of flow or water levels with a certain lead time as follows:

s(t)= ŝ(t)+e(t) (1)

where s is the real process of river flow or water levels at time t, ŝ is the forecasted
value and e is the error estimate, all at a certain time t and with a certain lead time10

(not explicitly denoted here). In practice, we approximate the process s by collecting
a population of observations and ŝ by simulating a population of hindcasted values
with the lead time of interest, at concurrent time stamps. These estimates can be
provided by (a combination of) hydrological and hydraulic models. Let us assume
that the error may be estimated by means of a probabilistic error model based on the15

following functional form:

e(t)= f
[
ŝ(t)

]
(2)

Once this relation is found, it allows an user to apply the error model in any case, with-
out any additional data requirements besides the estimate of the process ŝ. This is
convenient in an operational context, where the availability of additional data besides20

s to estimate uncertainty is not trivial. Now let us assume that the error structure is
both ergodic and stationary (i.e. no significant changes in the hydrological or hydraulic
processes or measurements have taken place). There is no warrant however, that the
error structure is homoscedastic. In fact, residual time series of rainfall-runoff models
are known to be heteroscedastic and non-linear in nature. In order derive an objective25

and reliable probabilistic relation as given in Eq. (2) a transformation of the regressor
5552
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and the concurrent associated errors to the Gaussian domain is applied through the
normal quantile transform (NQT). The NQT (van der Waerden, 1952, 1953a,b) is a non-
parametric method to map a variable, having any distribution, to a Gaussian distribu-
tion and has been described for hydrological applications by Kelly and Krzysztofowicz
(1997). Applications of the NQT in error estimation have been performed by Krzyszto-5

fowicz and Maranzano (2004) and by Montanari and Brath (2004). In detail, the plotting
positions of the cumulative distribution function of the available samples are associated
with their counterparts in the Gaussian domain. The samples in the Gaussian domain
can be discretely described by the inverse, Q−1 of the normal distribution

F (sN )=Q−1F (s) (3)10

or for individual samples

sNQT (t)=Q−1 (Pr[s≤ s(t)]) (4)

where sNQT is the Gaussian-transformed discharge or water level. Equation (4) de-
scribes the NQT of s. The same can be done for the error series, which results in
a discrete population of errors in the Gaussian domain here denoted as eNQT. To apply15

the inverse of the NQT, i.e. to convert any value in between the sampled points of sNQT
or eNQT to associated values s and e, we use linear interpolation for points within the
domain covered by the populations. If values are sought outside this domain linear ex-
trapolation is applied on a number of points in the tails of the distribution. Equation (1)
can now be applied in the normal domain,20

sNQT (t)= ŝNQT (t)+eNQT (t) (5)

where the subscript “NQT” refers to variables, transformed to the Gaussian domain.

2.1.2 Quantile regression in the Gaussian domain

If one assumes that the residuals of a relation between errors and forecasted values
(such as defined in Eq. 2) are Gaussian, an estimate of the sample mean of the relation25
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can be defined as the solution to the problem of minimizing a sum of squared residuals.
This approach has been followed by Montanari and Brath (2004) who consequently
estimate the variance of the relation to estimate effective uncertainty. If Gaussianity
of the residuals of Eq. (2) cannot be assumed, one can turn to the estimation of the
sample median and other quantiles instead. This approach has been chosen in this5

study by using quantile regression, which does not make any assumptions about the
nature of the residuals of the forecast – error relationship. The quantile regression
methodology is further explained below based on the Gaussian samples of eNQT and
sNQT.

The sample median (as opposed to the sample mean) can be estimated by minimiz-10

ing the sum of absolute residuals (as opposed to squared residuals). Minimizing a sum
of asymmetrically weighted absolute residuals (by giving different weights to positive
and negative residuals) can yield other (in fact, any) quantiles besides the median (for
more details, see Koenker and Hallock, 2001). Applying this to the sampled values of
sNQT and eNQT at a certain lead time of interest, this can be formulated as15

min
n∑

t=1

ρτ
[
eNQT,τ (t)− êNQT,τ

(
t,ŝNQT (t)

)]
(6)

with êNQT,τ the estimate of the Gaussian-transformed error at a certain quantile interval
τ and ρτ the weighting function that pushes êNQT,τ to its associated quantile location.
In case τ=0.5 this would yield the unconditional median. Other values of τ can be used
to determine other quantiles.20

We assume that estimates of the conditional quantiles in the Gaussian domain can
be described by the linear equation

êNQT,τ (t)=aτ ŝNQT (t)+bτ (7)

where aτ and bτ are the regression constants, valid for the lead time of interest. After
substitution of Eq. (7) into Eq. (6), aτ and bτ can be optimised efficiently by linear25

programming (Koenker, 2005; Koenker and Hallock, 2001).
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2.1.3 Imposing the error models in operational forecasts

To describe the distribution of errors, conditional on the forecasted values, quantile
regression functionalities within the R-package quantreg (Koenker, 2010) were used.
To tranform quantile estimates within the Gaussian domain, back to the untransformed
domain, linear interpolation has been used to connect the combinations of NQT trans-5

formed simulated values ŝNQT and estimated error quantiles êNQT,τ in the Gaussian
domain, to their counterparts in the untransformed domain, using the following rela-
tionship:

ŝτ (t)= ŝ(t)+NQT−1[aτ ŝNQT (t)+bτ
]

(8)

This yields calibrated discrete quantile relationships in the untransformed domain,10

which can be imposed on any forecasted value by means of linear interpolation, or
if forecasted values are found outside the domain of the calibration dataset, with linear
extrapolation.

The quantile error models can be derived at several lead times. The derived error
models can consequently be applied in an operational context. An experimental mod-15

ule setup for imposing the error models in the standalone version of NFFS has been
developed in the statistical computing language R-statistics (http://www.r-project.org/).
This R based module can be executed from within Delft-FEWS (Weerts et al., 2010a).

2.2 Case study descriptions

Figure 1 shows the locations of the case study areas relative to the coast line of Eng-20

land and Wales. The catchment in the North is the Upper Calder, the middle part is the
Upper Severn with multiple interconnected catchments and the two catchments South
are used in the Ravensbourne case study.
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2.2.1 North East Region, Upper Calder, Todmorden (147 km2)

The Upper Calder catchment, draining an area of 147 km2 to the river gauging station at
Mytholmroyd, just upstream of Caldene Bridge. It is underlain by Carboniferous rocks
of Millstone Grit and Coal Measures, with the former predominating in the high moor-
land areas. The river and its tributaries flow through steep and relatively narrow valleys.5

About 18% (26 km2) of the area drains to reservoirs. Typically these are reservoirs for
direct water supply, releasing only compensation flows unless spilling at times of flood.
The natural flow regime has also been modified by various channel improvements and
flood defences, including schemes at Todmorden and Mytholmroyd. Todmorden is
a forecast location for the Upper Calder with forecast location Todmorden is part of the10

the NorthEast (England, Environment Agency, NorthEast). The Upper Calder is a fast
responding catchment and is modelled with a PDM rainfall runoff model (Moore, 1997).
The PDM model is forced by the input created by a snow model.

2.2.2 Midlands Region, Upper Severn, various locations and sizes
(150–1000 km2)15

The River Severn rises in the Cambrian mountains at Plynlimon at a height of 741 m
a.o.d. and flows northeastwards through Llanidloes, Newtown and Welshpool before
meeting the Vyrnwy tributary upstream of Shrewsbury. The valley is wide and flat in
this confluence area, with a considerable extent of floodplain.

The river then flows through Montford to Shrewsbury, and is joined at Montford Bridge20

by the River Perry which flows from the Oswestry area to the North. The lowermost
point in the Upper Severn catchment is defined by Midlands Region as the gauge at
Welshbridge in Shrewsbury. There are also significant areas of floodplain in the reach
from Shrawardine, upstream from Montford, to Welshbridge. Average annual rainfall
can exceed 2500 mm in the Cambrian mountains in the upper reaches of the Severn,25

and in Snowdonia National Park, in the upper reaches of the Vyrnwy catchment. The
catchment area to Welshbridge is approximately 2284 km2, including 778 km2 for the
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Vyrnwy catchment to the flow gauge at Llanymynech. The main reservoirs in the Upper
Severn catchment are Lake Vyrnwy in the upper reaches of the Vyrnwy, and the Clywe-
dog Reservoir in the upper reaches of the Severn. There are no significant flow control
structures in the remainder of the Upper Severn catchment. The Upper Severn catch-
ment is represented in NFFS by a combination of MCRM rainfall-runoff models (Bailey5

and Dobson, 1981; Wallingford Water, 1994) and DODO routing models (Wallingford
Water, 1994).

2.2.3 Thames Region, Ravensbourne, two locations (32 and 68 km2)

The River Ravensbourne and tributaries drain highly urbanised areas from the south
of London towards Lewisham before joining the Thames at Deptford Creek. The total10

Ravensbourne catchment area is approximately 180 km2. The more slowly respond-
ing rural part of the Ravensbourne South Branch catchment makes up around 55 km2,
which does not contribute significantly to flood events and is therefore generally dis-
carded from analyses of flood hydrology (as verified by historic calibration data over
many events).15

The remaining 125 km2 is highly urbanised and has a very rapid response to rain-
fall and, due to the large proportion of paved surfaces, there is very little hydrological
memory (antecedent storage). As a result, hydrographs throughout the catchment of-
ten rise steeply from baseflow to threshold levels in around 30 min (sometimes less),
and fall again almost as rapidly at the upstream locations, whilst locations lower in the20

catchment take slightly longer to recede (due to later arrival of upstream contributions).
The NFFS integrated catchment model for Ravensbourne (Thames Region) comprises
16 TCM models (Greenfield, 1984; Wilby et al., 1994) providig inputs to an ISIS hydro-
dynamic model.
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2.3 Data used in the case studies

For both the calibration and validation only operational available data are used. The
data available from the archive consist of RTS data (observed level data, rain gauge
data, air temperature and catchment average rainfall data), Radar Actuals, Radar Fore-
cast, and Numerical Weather Prediction data (all three from UKMO) and is available5

from 2006 onwards. The operational forecasts of river discharges and water levels
benefit from the availability of operationally observed values. These are propagated
into the model by means of data assimilation, prior to forecasting.

The data was splitted in a calibration data set (2006 and 2007) and a validation data
set (2008 and 2009). Both the calibration and validation datasets contain several major10

flood events. Only the validation data set for the Thames Region contains few minor,
medium and major events for the period 2008 and 2009.

3 Results and discussion

3.1 Derivation of forecast error models

The quantile regression methodology to describe the predictive uncertainty as de-15

scribed in Sect. 2 has been applied on several forecast locations in the National Flood
Forecasting System (NFFS). In the calibration phase, the forecast error models are
derived. Figure 2 shows an example of the calibration for the Upper Severn forecast
location Welshbridge (2077) in the Gaussian domain. Figure 3 shows the example of
the derived forecast error model in the untransformed domain. The effect of the NQT20

on the derived 50% and 90% quantiles is evident.
When fitting the different quantiles during calibration it was sometimes found that the

different quantiles crossed at low water levels. This is an artefact of the fitting procedure
and this problem has been overcome by using a fixed error model below certain water
levels as is visible in Fig. 2.25
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After deriving these distributions for all forecast locations and at all lead times used
in the case studies, it can subsequently be applied in NFFS in real-time or hindcast
mode. For all case studies, the 5%, 25%, 50%, 75%, 95% quantiles have been derived
and used during the validation.

3.2 Validation of forecast error models5

Below, the application of quantile regression to provide a probabilistic forecast is pre-
sented for the 3 case studies, representing a wide variety of hydrological conditions,
and catchment sizes.

3.2.1 North East, Upper Calder

Figure 3 show the validation of the quantile regerssion method for the January 200810

events for 4 leadtimes (2, 6, 12 and 24 h). The observation fall most of the time within
the 90% confidence interval. It is also clear that the uncertainty increases with lead-
times as expected. One can also see that the uncertainty increases and decreases
depending on the forecasted water level and lead time. In Fig. 3, it is also visible that
some observed values lie outside the confidence interval. For a 90% confidence in-15

terval, and for each forecasted water level, this should happen only 10% of the time.
Because the sample size at high forecasted and observed water level in both the cal-
ibration and validation phase is limited (only few major and minor events, see for ex-
ample Fig. 2) it is very difficult to make strong statements of the performance at higher
water levels. Unfortunately, this is the area of main interest.20

Figure 4 shows the validation results for the January 2009 events. The forecasted
water level for January 2009 for longer leadtimes are not as good as in January 2008
(as can be seen by the 50% estimate). There are several false alarms forecasted
especially at longer leadtimes. The reason for this is not yet clear. The wider confi-
dence bounds at the peak values also indicate that false alarms, to some degree, were25

present in the calibration data set. However, it is also possible that it could possibly be
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related to changes in numerical weather prediction products used for the forecast.
Both Figs. 4 and 5 show that the quantile regression method tested here can not

correct “bad” forecasts. Surprisingly, the confidence intervals seem to be reasonably
accurate even though they were only estimated from a hindcast over a small period
(2006–2007). The quantile regression method more or less provides the confidence5

interval where one can expect the observation. The performance is further illustrated by
Table 1 which show the percentage of the observations within the confidence intervals
at various lead times.

3.2.2 Midlands region, Upper Severn

The case study on the Upper Severn using quantile regression is focused on several10

locations (see Table 2). These locations consists of both upstream (modelled with
MCRM) and downstream (modelled using DODO) forecast locations and were chosen
to show how quantile regression can be used to derive predictive confidence intervals
in a end-to-end forecasting system. Figure 6 shows the validation for the flood events
of November 2009 at Welshbridge (2077) at 12, 24, 36 and 48 leadtime. This figure15

shows how quantile regression can give estimates of the confidence intervals during
flood events. Validation results for the other locations are given in Table 2. Again, the
results for most locations are promosing as most percentage of observations within
a respective confidence intervals correspond well with the theoretical values of 50%
and 90%. This was further confirmed by Quantile-Quantile plots and sharpness plots20

(not shown here). Table 2 shows poor performance at Caersws and to some degree at
Welshpool, possibly related to operational water management (e.g. weirs, reservoirs).

3.2.3 Thames region, Ravensbourne

Figure 7 shows the validation results of the method for the February 2009 event for
Manor House Gardes (3489TH). Most of the time the observations fall within the 90%25

confidence interval. It is also clear that the uncertainty increases with lead times as ex-
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pected. One can also see that the uncertainty increases and decreases depending on
the forecasted level. The performance is further illustrated by Table 3 which show the
percentage of the observations within the confidence intervals at various lead times.
Table 3 shows that for these two locations the derived forecast error models are maybe
somewhat to wide as too many observations lie within the 50% and 90% confidence5

limits. However, this could be the results that the period 2008 and 2009 was not com-
pletely similar to the calibration period 2006 and 2007. In 2008 and 2009, there were
relatively few small, medium and major flood events for the whole of Thames region.
This should be further tested with a longer record that corresponds more to the cali-
bration period.10

4 Conclusions

A method to provide predictive uncertainty estimates of water level or flow forecasts is
presented. The developed method aims at characterising the distribution function of
the water level or flow forecast error conditioned on the value of the predicted water
level or flow by means of quantile regression relationships at quantiles of interest. The15

method therefore does not consider the independent sources of uncertainty but instead
considers the effective uncertainty of the forecast process only, which can be a result of
input or output uncertainty, model structural uncertainty or parameter uncertainty. The
quantile error relationships are estimated in the Gaussian domain. To this end, both
the available forecast population and error population are made Gaussian by means of20

a Normal Quantile Transform. Several sets of quantile regression relationships may be
derived at specific lead times that are of interest to the user. The quantile regression re-
lationships can straightforwardly be implemented as a post-processor in an operational
forecasting system.

The method was tested by deriving quantile regression relations for several lead25

times using a calibration hindcast set and consequently predicting forecast errors of
water levels using an independent hindcast set in three case studies in a standalone
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version of the National Flood Forecasting System of England and Wales. The three
case studies across England and Wales, contain a variety of catchments (size and be-
haviour) and hydrological models. From the results, we can conclude that the quantile
regression method to provide predictive uncertainty estimates of water level forecasts
is promising. We showed that the derived quantile regression relationships predict5

the error quantiles satisfactorily at all lead times. Moreover, the developed method
is simple to apply, requires very few assumptions, and is easy to understand by both
scientists and forecasters.

However, there are also a few limitations. The method, like all postprocessing meth-
ods, requires a long (homogeneous) calibration and validation set. In the case studies,10

only short calibration and validation sets were available, containing only a few extreme
events. This compromised error descriptions at higher predicted water levels, which
could only be made through extrapolation of the derived quantile regressed relations.
A validation period without real extreme events (e.g. Ravensbourne case study) in-
dicated that currently available data records may cause problems with deriving and15

testing the method.
Furthermore, homogeneity of data sets can be an issue (observed in particular in

the Upper Calder case study). Such inhomogeneities may be caused by a number
of factors, such as (a) changes in the hydraulics/hydrology of the river/catchment (in
fact, in this case the hydrological/hydraulic model itself needs re-calibration) and (b)20

(b) changes in the forecasting system changes considerably (e.g. by adaptation of
state updating procedures or models used) or (c) changes in external data sources
used to drive the forecasting system (e.g. meteorological models or external observed
boundary conditions). Like any other statistical postprocessing method, the developed
method requires recalibration if such inhomogeneities occur.25

If these limitations are considered or taken care of by the user, the developed method
can be straightforwardly employed in operational forecasting because (a) the required
data is always available in the operational context and (b) the methodology requires
little computation time.
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Table 1. Percentage of observations within respective confidence intervals for period January
2008–July 2009 for forecast location Todmorden (North East region).

Location id Confidence 2 h 4 h 6 h 12 h 18 h 24 h
& name interval

TODMDN1 25–75% 61.8 65.5 66.4 48.0 41.5 39.9
Todmorden 5–95% 89.2 90.2 90.6 89.7 90.1 90.4
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Table 2. Percentage of observations within respective confidence intervals for period January
2008–November 2009 for forecast locations Upper Severn (Midlands region).

Location id & Confidence 12 h 24 h 36 h 48 h
name interval

2003 25–75% 64.9 67.1 68.4 66.9
Vyrnwy weir 5–95% 92.2 92.3 92.3 91.1
2005 25–75% 53.3 49.5 52.9 60.3
Montford 5–95% 91.9 87.9 87.4 87.9
2014 25–75% 69.1 66.8 65.0 75.3
Abermule 5–95% 93.6 93.2 94.1 95.5
2020 25–75% 46.9 47.2 48.0 54.6
Yeaton 5–95% 88.0 84.8 85.8 90.9
2025 Rhos Y 25–75% 52.4 50.8 54.6 52.9
Phentref 5–95% 89.9 89.1 90.3 93.9
2028 25–75% 49.9 50.7 56.1 65.9
Llanymymech 5–95% 92.6 90.6 88.1 90.9
2038 25–75% 47.4 48.0 53.6 59.3
Llandlowel 5–95% 91.1 88.3 85.3 87.1
2072 25–75% 48.4 45.7 54.7 58.7
Llanidloes 5–95% 83.6 89.2 90.2 95.1
2074 25–75% 23.2 18.1 10.9 16.9
Caersws 5–95% 46.1 42.4 31.6 29.4
2076 25–75% 59.4 53.0 52.8 48.6
Meiford 5–95% 93.6 93.4 93.0 95.9
2077 25–75% 53.9 52.6 54.5 61.1
Welshbridge 5–95% 91.4 90.7 88.4 86.9
2109 25–75% 36.8 40.6 42.3 47.2
Bryntail 5–95% 86.6 89.9 89.8 91.2
2156 25–75% 41.4 47.3 53.3 60.2
Pont Robert 5–95% 88.6 89.7 89.4 90.7
2159 25–75% 40.9 40.2 44.5 45.1
Lanerfyl 5–95% 82.8 83.1 80.9 81.7
2175 25–75% 51.5 53.4 59.4 65.8
Crew Green 5–95% 91.7 91.8 88.9 90.0
2176 25–75% 54.6 51.1 48.6 59.9
Buttington 5–95% 87.4 90.6 90.2 92.7
2638 25–75% 49.9 48.7 43.2 39.6
Welshpool 5–95% 84.4 83.4 83.4 61.9
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Table 3. Percentage of observations within respective confidence intervals for period January
2008–July 2009 for forecast locations Ravensbourne (Thames Region).

Location id & Confidence 3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h
name interval

3470TH 25–75% 56.4 51.1 44.4 41.2 42.5 42.5 42.8 56.4
Catford Hill 5–95% 96.7 96.2 95.5 95.4 94.3 93.5 92.3 96.7
3489TH 25–75% 65.1 58.7 56.2 55.4 55.7 55.1 55.0 65.1
Manor House Gardens 5–95% 96.0 94.8 94.5 94.4 94 93.8 94.2 96
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Fig. 1. Overview of the locations of the case study areas relative to the coastline of England
and Wales. At the top the catchment of the Upper Calder, in the middle the Upper Severn with
multiple interconnected catchments, and at the bottom the two Ravensbourne catchments.
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QR error models at Welshbridge LT = 12 hr
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QR error models at Welshbridge LT = 36 hr
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QR error models at Welshbridge LT = 48 hr
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Fig. 2. Transformed forecast errors vs. transformed forecasted water levels (both in Gaussian
domain) together with the derived quantile regressions for the different confidence levels.
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Fig. 3. Forecast errors vs. forecasted water levels together with the derived quantile regressions
for the different confidence levels.
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Fig. 4. Validation of quantile regression method for water level forecasts at Todmorden for the
the January 2008 events for 2, 6, 12, and 24 h leadtimes. The darkgrey area represents the
50% confidence interval and the lightgrey area represents the 90% confidence interval, the
black dashed line the 50% estimate, and the black dots the observations.
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Fig. 5. Validation of quantile regression method for water level forecasts at Todmorden for the
January 2009 events for 2, 6, 12 and 24 h leadtimes. The darkgrey area represents the 50%
confidence interval and the lightgrey area represents the 90% confidence interval, the black
dashed line the 50% estimate, and the black dots the observations.
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Fig. 6. Validation of quantile regression method for water level forecasts at Welshbridge (2077)
for the November 2009 events for 12, 24, 36 and 48 h leadtimes. The darkgrey area represents
the 50% confidence interval and the lightgrey area represents the 90% confidence interval, the
black dashed line the 50% estimate, and the black dots the observations.
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Fig. 7. Validation of quantile regression method for water level forecasts at Maner House
Garden for the February 2009 event for 3, 6, 12 and 18 h lead times. The darkgrey area
represents the 50% confidence interval and the lightgrey area represents the 90% confidence
interval, the black dashed line the 50% estimate, and the black dots the observations.
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