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Abstract

Probabilistic forecasting is becoming increasingly popular in hydrology. Equally im-
portant are methods to evaluate such forecasts. There is still debate about which
scores to use for this evaluation. In this paper we distinguish two scales for evalua-
tion: information-uncertainty and utility-risk. We claim that the information-uncertainty5

scale is to be preferred for forecast evaluation. We propose a Kullback-Leibler diver-
gence as the appropriate measure for forecast quality. Interpreting a decomposition
of this measure into uncertainty, correct information and wrong information, it follows
directly that deterministic forecasts, although they can still have value for decisions,
increase uncertainty to infinity. We resolve this paradoxical result by proposing that10

deterministic forecasts are implicitly probabilistic or are implicitly assuming a decision
problem. Although forecast value could be the final objective in engineering, we claim
that for calibration of models representing a hydrological system, information should
be the objective in calibration, because it allows to extract all information from the ob-
servations and avoids learning from information that is not there. Calibration based on15

maximizing value trains an implicit decision model, which inevitably results in a loss or
distortion of information in the data and more risk of overfitting, possibly leading to less
valuable and informative forecasts.

1 Introduction

Over the last decades, probabilistic forecasting has become increasingly important20

in the field of hydrology. Lacking enough information to completely eliminate uncer-
tainty, probabilistic forecasts are intended to reduce uncertainty of the user about future
events and communicate the remaining uncertainty (Krzysztofowicz, 2001; Montanari
and Brath, 2004). In hydrology, the development of methods for evaluating such fore-
casts, however, has not kept pace with the development of methods of generating them25

(Laio and Tamea, 2007). This is an important problem, given the fact that science is
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required to make testable predictions and therefore needs unambiguous methods for
testing those predictions. Furthermore, the lack of methods for evaluation of hydrolog-
ical forecasts may hinder acceptance of those forecasts by the public. In this paper we
approach forecast evaluation from an information-theoretical point of view. By using
a decomposition we developed recently (Weijs et al., 2010) in combination with some5

results from information theory, we provide insights into what evaluation scores mea-
sure and what, in our opinion, they should measure. The most important insights are
that deterministic forecasts are not testable without additional assumptions and that the
purpose of a model should not influence the measure that is used for its calibration.

1.1 What is a good forecast?10

In general, the evaluation of forecasts can have several purposes. Evaluation may
serve to assign a level of trust in the forecast, to reward good forecasters, to diagnose
problems in forecasting models, and to provide an objective function for calibration
of the forecasting models. All these purposes for evaluation have in common that the
measures should allow comparisons between forecasts or between series of forecasts.15

Assigning a level of trust only makes sense if there are also alternatives; rewarding
a good forecaster has no use if there is no other forecaster or no other period of fore-
casts to compare to; diagnosing problems is not possible if there is no reference of what
the quality should be; optimization works by continuously comparing different models
or parameter sets.20

For directly comparing two (series of) forecasts, preferences must be complete
(a forecast must either be better, worse, or equally good than another one) and transi-
tive (preferences can not form a loop like A>B>C>A, where > denotes “is better than”),
which are the same requirements that are applicable to probability (Peterson, 2009).
These two requirements naturally lead to measures that take the form of a scalar real25

number. In contrast to this requirement for a one-dimensional measure, however, Mur-
phy (1993) argued that it is possible to distinguish three different dimensions of forecast
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“goodness”:

– Consistency: correspondence between forecasts and judgments;

– Quality: the correspondence between forecasts and observations;

– Value: incremental benefits of forecasts to users.

Consistency requires that what the forecaster communicates, the forecast, corre-5

sponds to his best judgment. This judgment is internal to the forecaster and should be
a rational distillation of all information available to him. Because a forecaster has only
limited access to information and is not completely rational, his best judgment may not
be the best judgment, but by definition he can never knowingly let his best estimate
diverge from the best estimate, or it would not be his best estimate.10

Quality is the dimension that is most important in pure science, as it concerns putting
the predictions to the test by comparing forecasts with observations. It is important to
note in this respect that an observation is also just an estimate of the truth and therefore
does not fundamentally differ from a forecast. In fact, we are comparing one estimate
of truth with another. The estimate that we regard as most trustworthy, usually the one15

that is made in hindsight, is called observation, the other estimate is the prediction or
forecast. In meteorology, the evaluation of quality is called verification (Latin: veritas=
truthfulness). This term is somewhat misleading, because establishing that a model
simulates the truth is impossible (Oreskes et al., 1994).

Value is related to a decision problem attached to the forecast and more closely re-20

lated to engineering than to science. It is therefore not only dependent on the forecasts
and the observations, but also on who is using the forecasts. Hydrological forecasts
may, for example, have significant value for reservoir operation, evacuation decisions,
and agriculture. Good forecasts for dam operation can for example lead to more hy-
dropower, less flood damage, and, at the same time, fewer unnecessary pre-releases25

for flood protection. One could attempt to express these benefits in monetary terms,
but from a decision-theoretical point of view, it is better to use the more general term
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utility. This takes into account that not every unit of money necessarily has the same
value and that other things than money might be important. By definition, the utility of
an uncertain event is equal to the expected utility of that event (Von Neumann and Mor-
genstern, 1953). In engineering, risk is defined as expected damage or loss (disutility).
Risk is therefore the opposite of utility. For adverse events, like floods, anticipation5

can reduce risk and the value of hydrological forecasts can thus be expressed as the
reduction in risk they provide when used in decision making. At first sight, this seems
to be an appropriate criterion for evaluation of real world forecasts.

1.2 Problems with evaluation of hydrological forecasts

The current problem in defining a framework for evaluation of forecasts lies partly in10

that the distinction between the latter two dimensions, quality and value, is not always
explicitly made. As most purposes of evaluation require a one-dimensional measure
of goodness, a choice between value and quality must be made and if the latter is
chosen, an unambiguous quality measure must be defined that can not rely on user
preferences. The hydrological and meteorological literature, however, offers a wide15

range of verification measures. Although the properties of these measures are well-
studied, it is not always clear what is actually measured. Laio and Tamea (2007) give
an overview of some commonly used measures in meteorology that could be applicable
in hydrology.

What is missing from this overview, and also in two standard works about fore-20

cast verification (Wilks, 2005) and (Jolliffe and Stephenson, 2003), are measures for
forecast evaluation based on information theory (Weijs et al., 2010). We argue that
information-theoretical scores are measures for quality par excellence, for forecasts
stated in terms of probability.

Except for probabilistic forecasts, two other types of forecasts are commonly used25

and presented in the overview given in Laio and Tamea (2007): deterministic fore-
casts and interval forecasts. We think that these types of forecasts can in principle
not be evaluated unambiguously without reference to external assumptions relating to
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probability or utility. The result that the intervals contain 90% of the observations is
meaningless if the intervals are not stated in terms of probability. The result that a de-
terministic forecast has an error of 10 m3/s does not have meaning if it is not known
what the implications are or how likely we think this error was.

Instead of seeing this as a problem of the evaluation methods, we argue that this5

should be seen as a problem of the forecasts themselves. They do not fulfill the re-
quirement of testable predictions. Moreover, determininistic forecasts are not consis-
tent with judgments, which, given that we know a model is an approximation, are better
described in terms of probability.

Notwithstanding these problems with deterministic forecasts, they are still common in10

hydrology and are usually evaluated with measures like NSE and MSE, MAE. Actually,
many of the methods for producing probabilistic forecasts make use of deterministic
forecasts and their evaluation, for example Monte-Carlo based methods. Therefore, it
is likely that there exists some reason that makes deterministic forecasts acceptable
from a practical point of view. Also here the information-theoretical viewpoint could15

provide some new insights.

1.3 Outline

In this paper, we propose to use information theory as the central framework for fore-
cast quality. By viewing the forecast evaluation problem from an information-theoretical
perspective, we hope to shed some light on what is measured and what should be20

measured by verification scores.
In Sect. 2, we present an information-theoretical score for forecast quality along with

its decomposition as recently presented by Weijs et al. (2010). In that paper it was also
shown that the components of a commonly used Brier score decomposition are second
order approximations to our information components. The information-theoretical diver-25

gence score can be interpreted as remaining uncertainty after receiving the forecast,
which should be minimized. In Sect. 3 we analyse the seemingly paradoxical impli-
cation that deterministic forecasts increase the uncertainty to infinity and we offer two
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interpretations to resolve this paradox. In Sect. 4, the question is addressed whether
or not the utility a model provides for users should be considered in the calibration pro-
cess. The conclusions are summarized in the last section, where we argue that issuing
forecasts can best be considered a communication problem and that the information
they provide is the most sensible measure for their evaluation.5

2 Information-theoretical evaluation of forecasts

Information theory provides a number of measures relating uncertainty and information,
within the framework of probability theory. Since forecasting can be seen as providing
information to reduce uncertainty about future events, information theory appears to
be an appropriate framework to evaluate forecasts. As we showed in our recent paper,10

Kullback-Leibler divergence, or relative entropy, can be used as a verification score and
has a number of desirable properties. Starting from an analogy with the Brier score,
we now introduce the divergence score and an insight-providing decomposition of it.
For a more elaborate description and some other related discussions, see (Weijs et al.,
2010)15

2.1 Classical decomposition of the Brier score

The Brier score was introduced by (Brier, 1950) as a verification score for probabilistic
forecasts. It is still the most widely used score for evaluating probabilistic forecasts of
binary events. A binary event has two possible outcomes, e.g. exceedence or non-
exceedence of a certain critical water level in a river. A probabilistic forecast for one20

such a binary event at time t can be represented by a probability mass function (PMF),
which in this case is a two element vector, denoted by f t. The bold notation indi-
cates a vector. For example, when a probabilistic flow forecast indicates that there
is 20% chance that the critical flow will be exceeded, the forecast can be written as
f t=(1−f ,f )T=(0.8,0.2)T , where the scalar f denotes the probability of exceedence.25
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After the event is observed, the observation can also be written as a PMF, this time
expressing the probabilities after the event has been observed. In case we assume
perfect observations, and we observed exceedence of the critical level, the observation
can be expressed as ot=(1−o,o)T=(0,1)T . In this paper, we assume perfect observa-
tions to allow for the decompositions we introduce, but in general, perfect observations5

are not a necessary assumption for the score to be meaningful. Given the preceeding
definitions, the Brier score can now be defined as:

BSt =2(ft−ot)
2 = (f t−ot)

2 := (f t−ot)
T (f t−ot). (1)

It must be noted that the Brier score is nowadays almost always defined as half this
value (Ahrens and Walser, 2008). To make notation easier, we use the original def-10

inition of Brier (see Eq. 1). For a series of forecasts, the Brier score is defined as
the average of Eq. (1) over all forecast instances. It can be interpreted as the mean
squared error (MSE) in probabilities.

Murphy (1973) showed that the Brier score for such a series can be decomposed
into three components: uncertainty, resolution and reliability:15

BS = RELBS−RESBS+UNCBS , (2)

BS =
1
N

K∑
k=1

nk (fk− ōk)2− 1
N

K∑
k=1

nk (ōk− ō)2+ ōT (1− ō). (3)

where N is the total number of forecasts and K the number of unique forecasts issued,
ō=

∑N
t=1ot/N the climatological (long term average) probability of occurrence of the

event, nk the number of forecasts within one category of unique forecasts, ōk the20

observed frequency, given forecasts of probability fk and 1 is a vector of ones of the
same size as ō.

The uncertainty term measures the inherent uncertainty in the climate. The uncer-
tainty reaches a maximum for equiprobable outcomes and is zero if the outcome is
always the same. The resolution and reliability terms in this decomposition can be25

seen as squared Euclidean distance measures between two probability distributions.
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The resolution term measures how much of the climatic uncertainty can be resolved by
the forecasts. This is expressed in the average distance of the conditional distributions
of the observations from the marginal distribution of the observations. The reliability
measures the average squared distance between the forecast distributions and the cor-
responding conditional distributions of observations. A perfect reliability of zero (a more5

accurate term would be unreliability) is attained when for all forecast probabilities, the
observed conditional frequency matches that probability. In this case the forecast is
said to be perfectly calibrated.

2.2 Information-theoretical equivalents: divergence score and decomposition

Information theory started with the paper of (Shannon, 1948), where he derived a mea-10

sure of uncertainty (entropy) from three basic requirements for such a measure. The
highly readable original paper is recommended for more background. The uncertainty
of the climate (knowledge of long term frequencies but absence of other information)
using this definition is

H(ō)=−
n∑

i=1

{[ō]i log[ō]i} . (4)15

where [ō]i denotes the i th element of vector ō. The logarithm has base 2, yielding
the measure H in the unit bits. A related measure is relative entropy, also known as
Kullback-Leibler divergence. This is a measure of the extra amount of uncertainty if one
distribution is assumed, while the true distribution is different, this is the divergence
from the true to the other distribution. In contrast to a distance like the Brier score,20

Kullback-Leibler divergence is not symmetric. The divergence depends on which of
the two distributions is considered the true one.
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We define the divergence score as the divergence from the observation PMF to the
forecast PMF:

DSt =DKL(ot ||f t)=
n∑

i=1

[ot]i log
(

[ot]i
[f t]i

)
. (5)

where n is the number of possible outcomes (2 in the binary case). For a series of N
forecasts and corresponding observations, the divergence score is5

DS=
1
N

N∑
t=1

DKL(ot ||f t). (6)

When replacing all quadratic distances in the Brier score decomposition by the ap-
propriate divergences and replacing the uncertainty component by the information-
theoretical definition of uncertainty, entropy, we obtain (see Table 1):

DS=
1
N

K∑
k=1

nkDKL
(
ōk ||fk

)
− 1
N

K∑
k=1

nkDKL
(
ōk ||ō

)
+H(ō) (7)10

In the appendix of (Weijs et al., 2010) it was shown that this equation holds, and
thus we have obtained an information-theoretical equivalent of the Brier score and its
decomposition, which extends also to multiple category forecasts.

2.3 Relation between the divergence and Brier scores

The components of the Brier score are second order approximations of the compo-15

nents of the divergence score (see Table 1). The uncertainty has the same location
of maximum and zero points. When scaled with its maximum value, the similarity be-
comes visible (see left figure in Table 1). The resolution (right figure in Table 1), can
reach a maximum equal to the uncertainty term. When scaled with the uncertainty,
again a similarity between the shapes of the the resolution components is visible. The20

reliability term, however, exhibits significant differences in the extremes. While the
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reliability term of the Brier score is bounded, the analogous term in the divergence
score can reach infinity. This happens when an outcome occurs that was given zero
probability in the forecast.

2.4 Interpretations of divergence score and decomposition

The new information-theoretical equivalents of the components of the Brier score allow5

some additional interpretations. One of the interpretations of measures in information-
theory starts from a definition of surprise. Surprise is something we feel when some-
thing unexpected happens. The lower the probability we assume something to have,
the more surprised we are when observing it. Rain in a desert is surprising, rain
in the Netherlands is less surprising and rain on the moon is a miracle yielding al-10

most unbounded surprise. When the surprise of observing outcome x is defined as
Sx=log(1/P (x)), surprise can be measured in bits like information and uncertainty. Ob-
serving something that was a certain fact yields no surprise, heads on a fair coin yield
one bit of surprise and observing a 1/1000 year flood in some year yields a surprise of
approximately 10 bits. The entropy-measure for uncertainty can now be interpreted as15

the expected surprise about the truth: H(X )=EX {Sx}, where EX denotes the expecta-
tion operator with respect to the distribution of random variable X .

In general, uncertainty can now be interpreted as expected surprise about the true
outcome. The fact that different expectations can be calculated according to different
subjective probability distributions, reflects that uncertainty can be both something ob-20

jective and subjective. The uncertainty a person thinks to have is the entropy of his
subjective probability distribution. Kullback-Leibler divergence can be seen as the ad-
ditional uncertainty one person estimates the other person to have compared to his
own:

DKL(P (X )||Q(X ))=EP (X ){SQ(x)−SP (x)} (8)25

Because forecast verification is done in hindsight, the observation that is made can
be used as a reference point to estimate the uncertainty in the forecast. The addi-
tional uncertainty (expected surprise about the truth), estimated from the viewpoint of
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the observation is the best available estimate of the remaining uncertainty about the
truth of the person having the forecast. Assuming perfect observations, the divergence
score measures remaining uncertainty about the truth. In Fig. 1 it is shown how the
components of the divergence score relate to this remaining uncertainty at different
levels of informedness. Interpreting the figure, resolution can be seen as the correct5

information, that can be subtracted from the climatological uncertainty or missing infor-
mation. The reliability term is added to the remaining uncertainty and represents the
wrong information due to biased probability estimates. The wrong information can be
reduced by calibration. It should be noted that the decomposition is only meaningful
when enough data is available to properly calculate all conditionals (Weijs et al., 2010).10

3 Deterministic forecasts are inconsistent

Can a forecaster be completely sure about something that in the end does not happen
and still get credit for his forecast? This does not appear natural, but it often turns
out to happen in practice. For example, a deterministic flow forecast of 200 m3/s is
considered quite good, when 210 m3/s is observed. Apparently, it is already expected15

that some error will occur and a forecast that is 10 m3/s off is considered to be not
that bad. Hydrological models are per definition simplifications of reality. Often, they
describe relations between macrostates, like averaged rainfall, mass of water in the
groundwater reservoir, and flow through a river cross-section. Similar to problems in
statistical thermodynamics, having limited information about what really goes on inside20

a hydrological system on a microscopical level, our forecasts on a macroscopical level
can never be perfect (Weijs, 2009; Grandy Jr., 2008). What can be said about the
real world on the basis of a model is therefore inherently erroneous to some extent, or
should be stated in terms of probabilities.

How then, should deterministic forecasts be evaluated? Literally taken, a determin-25

istic (point value) forecast states: “the outcome is x”. Implicitly, such a forecast asks to
be evaluated from a black and white view: the forecast is either wrong or right. The di-
vergence score also reflects this. If the forecast were right, the perfect score of 0 would
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be attained, if the forecast were wrong, however, a penalty of infinity would be given. If
one such a forecast is given, the forecaster can look for another career, because even
a future series of perfect forecasts can not average out the infinite penalty. The decom-
position shows that the reliability component is responsible (Table 1, middle figure).
Although the deterministic forecasts usually contain information about the observed5

outcomes, given that the resolution (correct information) is positive and removes some
of the uncertainty, this is completely annihilated by the reliability term (the wrong infor-
mation). The discrepancy between the information (reduction of uncertainty) that the
forecasts contain and the information conveyed by the messages that constitute the
forecasts is so large that the expected surprise about the truth of a person taking the10

forecast at face value goes to infinity. The fact that deterministic forecasts are still used
in society (and unfortunately sometimes even preferred), while they explode uncer-
tainty to infinity, seems to present a paradox. We propose two possible interpretations
that offer a solution to this paradox.

3.1 Deterministic forecasts are implicitly probabilistic15

(information interpretation)

Fortunately, in reality, almost no person using deterministic forecasts takes them at face
value. In fact, the forecast is implicitly recalibrated by the user, reducing the reliability
term for the internal probability estimates the user bases his actions on. This can
be seen as the user eliminating the wrong information from the forecast. The user20

can do the recalibration based on previous experience with the forecasts and common
sense. The user of the forecast can think “if the forecaster says the water level will be
10 cm under the embankment, he implicitly also forecasts a little that overtopping will
occur”. Note that the example of Grand Forks in (Krzysztofowicz, 2001) shows that
not all users do this. Mathematically this recalibration is equivalent to also attaching25

some probability to overtopping. However, it is not the task of a user to guess what the
forecaster wanted to say. Consistency requires that the forecaster communicates his
judgments to the user (Murphy, 1993).
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The forecaster may also present the deterministic forecast as being an expected
value or mean. This suggests an underlying probabilistic forecast. However, when
taking the information-theoretical viewpoint, communicating an expected value means
nothing without additional statements regarding the probability distribution. The prin-
ciple of maximum entropy (PME) (Jaynes, 1957) states that when making inferences5

based on incomplete information, the best estimate for the probabilities is the distri-
bution that is consistent with all information, but maximizes uncertainty. In this way,
the uncertainty is reduced exactly by the amount the information permits, but not
more. Maximizing entropy with known mean and variance, gives a Gaussian distri-
bution, maximizing uncertainty about the velocities of gas molecules with known total10

kinetic energy gives the Boltzmann distribution (Jaynes and Bretthorst, 2003; Cover
and Thomas, 2006). When PME is applied to expected value forecasts, however, the
maximum entropy forecast distribution that is consistent with the information given by
the forecaster is uniform between minus and plus infinity. It is the complete opposite
end of the spectrum compared to the previous literal interpretation of the deterministic15

forecast: from claiming total certainty to claiming total uncertainty.
In the case of streamflow forecasts, the user can still get a less nonsensical forecast

distribution by combining the information in the forecast with the common sense notion
that streamflows in rivers are nonnegative. This extra constraint turns the PME forecast
distribution for a known expected value into an exponential distribution (Cover and20

Thomas, 2006), see Eq. (9).

f (x;µ)=
1
µ

e− 1
µx , x≥0, and f (x;µ)=0, x < 0 (9)

This brings back the question who ought to specify these constraints, which in fact
constitute information. The fact that the user can reduce the maximum entropy by
adding this common sense constraint actually means that the forecaster failed to add25

this information.
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As we argued in the introduction, predictions only make sense when they are
testable, i.e. can be evaluated. One way to evaluate deterministic forecasts with in-
formation measures is to convert them to probabilistic forecasts by looking at the joint
distribution of forecasts and observations. The conditional distributions of observations
for each forecast value can then be seen as probabilistic forecast distributions. It is5

important to note however, that the probabilistic part of such a forecast is derived from
data that includes the observations. When such forecasts are evaluated, the predictive
performance is judged on the basis of an uncertainty model, that is derived from the
same data that is used for its evaluation.

Also without explicit conversion to a probabilistic forecast, the uncertainty model10

becomes explicit when a series of deterministic forecasts is evaluated. An penalty
(objective) function for a deterministic forecast can be interpreted as an uncertainty
(information) measure for a corresponding probabilistic forecast. For example, a de-
terministic forecast evaluated with RMSE implicitly defines Gaussian forecast pdf. An
important consequence of this insight is that the way to evaluate a deterministic model15

actually is the probabilistic part of model. The objective function (which is a likelihood
measure) should therefore be stated a priori, as it forms part of the model that is put to
the test against observations.

While this approach may under some conditions be acceptable for calibration to train
the error model, for evaluation of forecasts it is unacceptable, because it uses the data20

against which it is evaluated. A correct approach would be to explicitly formulate and
train an error model in the calibration, and use that model to make probabilistic predic-
tions for the evaluation period, that can subsequently be evaluated with the divergence
score. The error models are not restricted to Gaussian distributions, but can take more
flexible forms. Such an approach is taken in Schoups and Vrugt (2010).25

As a last consideration, we want to stress that even if an error model is properly
formulated and added to the deterministic “physical” part, the resulting model still rep-
resents a false dichotomy between true behaviour of the system and the error, as was
argued by Koutsoyiannis (2010). A more consistent approach would be to explicitly
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make the probabilistic part of the model an integrated part of the physical reality it is
supposed to simplify. Such approaches can lie in studying the time-evolution of chaotic
systems (Koutsoyiannis, 2010) or in applying the principle of maximum entropy in com-
bination with macroscopic constraints, as for example suggested by Weijs (2009) and
Koutsoyiannis (2005).5

Concluding, from the information-theoretical viewpoint several reasons come to light
why deterministic forecasts should in fact be considered to be implicitly probabilistic.
The problem with these forecasts is that they leave too much of the probabilistic inter-
pretation to the user. It might be considered ironic that the users who are claimed to
not be able to handle probabilistic forecasts and are for that reason provided with deter-10

ministic forecasts are the ones who have to rely most on their ability to subconsciously
make probability estimates based on the limited information in the deterministic fore-
cast.

3.2 Deterministic forecasts can still have value for decisions
(utility interpretation)15

A second, independent interpretation of deterministic forecasts that justifies their ex-
istence is their usefulness, even to users who do not make subconscious probability
estimates. Even though a reservoir operator might be infinitely surprised if he has taken
a deterministic inflow forecast of 200 m3/s at face-value and he finds out the inflow was
210 m3/s, his loss is not infinite. The operator might spill some water, but not all is lost.20

The difference between surprise and loss is due to the fact that most decision prob-
lems are not equal to placing stakes in a series of horse races. Such a horse race is the
classical example where information can be directly related to utility, see Kelly (1956)
and Cover and Thomas (2006) for more explanation. Kelly showed that when betting
on a series of horse races, where the accumulated winnings can be reinvested in the25

next bet, the stakes the gambler should put on each horse should be proportional to the
estimated winning probabilities. In a single instance of such a horse race, all money not
bet on the winning horse is lost, so the only probability that is important for the results
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is the one attached to the winning horse. In contrast, for decision problems like reser-
voir operation, optimally preparing for 200 m3/s automatically implies also preparing for
210 m3/s to some extent. This makes the loss function non-local (locality is discussed
in Sect. 4.1).

Another difference with the horse race is that the total amount of value at stake in5

hydrological decision making usually does not depend on the previous gains, while
the results for the horse race assume that the gambler invests all his previously accu-
mulated capital in the bets. The gambler therefore wants to maximize the product of
rates of return over the whole series of bets, while for a reservoir operator, each period
offers a new opportunity to gain something from the water, even though he spilled all10

his water in the previous month. This is comparable with a gambler whose wife allows
him to bet a fixed amount of money each week (Kelly, 1956) and then spends it all in
the bar on the same evening without possibility of reinvesting in the next bet. Assum-
ing a utility linear in the beer he buys with the winnings, the best decision is to bet all
money on the one horse with the best expected return. Again, one loss is not fatal for15

the whole series of bets. He just hopes for better luck next week. The evaluation of the
value of deterministic forecasts is therefore not as black and white as evaluation of the
information they contain.

The evaluation of deterministic forecasts in this interpretation is thus connected to
a decision problem. Decisions can be taken as if the forecasts are really certain, and20

still be of value. The loss functions for evaluating forecasts can be seen as functions
that somehow map the discrepancy between forecast value and observed value to
a loss of the decision based on the wrong forecast, compared to a perfect forecast.
In the utility interpretation, evaluating deterministic forecasts with mean squared error
implicitly defines a decision process in which the disutility is a quadratic function of the25

distance between forecast and observation. In that case, a series of forecasts that has
the smallest MSE has most utility or value for the user.
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4 Information versus utility as calibration objective

Value-based forecast evaluation is inevitably connected to a particular user with a de-
cision problem and therefore cannot be done without explicit consideration of the user
base of forecasts. Moreover, an obvious question that arises is whether it is desirable
to base the evaluation on the value to a particular user or group of users. In that case,5

the evaluation becomes an evaluation of decisions rather than of the forecasts them-
selves or of the hydrological model that produced them (see Fig. 3). This difference is
particularly important if the results of the evaluation are used in a learning or calibration
process. In that case, two effects can occur by using value instead of information as
a calibration objective:10

– The model learns from information that is not there (treated in Sect. 4.1).

– The model fails to learn from all information that is there (treated in Sect. 4.2).

4.1 Locality and philosophy of science

Locality is a property of scores for probabilistic forecasts. A score is said to be local
if the score only depends on the probability assigned to (a small region around) the15

event that occurred, and does not depend on how the probability is spread out over the
values that did not occur. In contrast to this, non-local scores do depend on how that
probability is spread out (see Fig. 2 for a comparison). Usually they are required to
be sensitive to distance, which means that probability attached to values far from the
observed value is punished more heavily than forecast probability that was assigned to20

values close to the observation. This concept of distance only plays a role in forecasts
of continuous and ordinal discrete predictands. For both these types of predictands,
an extension of the Brier score exists: the Ranked Probability Score (RPS) and the
continuous RPS (CRPS) (see Laio and Tamea, 2007 for description and references).
Both these scores are non-local, while the divergence score is local.25
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For most decision problems, expected utility is a non-local score: a reservoir operator
that attached most probability to values far from the true inflow is worse off than one
that used a forecast with most probability close to the true value, even if the probability
(density) attached to the true value was the same. Therefore, non-local scores are
sometimes considered to have more intuitive appeal than local scores.5

There is, however, a serious philosophical problem with non-local scores if used
in a learning process. In principle, the knowledge a model embodies comes from
observations or prior information (which in the end also comes from observation, see
Fig. 3). By calibrating a model, the information in the observations is merged with
the prior information, through a feedback of the objective function value to the search10

process. It is therefore a violation of scientific logic if the score that is intended to
evaluate the quality of forecasts depends on what is stated about things that are not
observed. Changes in the objective function would cause the model to learn something
from an evaluation of what is stated about a non-observed event. In an extreme case,
two series that forecast the same probabilities for all the events that were observed, can15

obtain different scores based on differences in the probabilities assigned to unobserved
events (Benedetti, 2010). A similar argument in the context of experimental design
was made by Bernardo (1979). If these non-local scores are used as objectives in
calibration or inference (see for example Gneiting et al., 2005), things are thus inferred
from non-observed outcomes, i.e. information that is not there.20

4.2 Utility as a data filter

The use of utility in calibration can, next to using non-existing information, also lead
to learning only from part of the information that is in the observations. In that sense,
the decision problem that specifies the utility acts like a filter on the information. The
information-theoretical data processing inequality tells us that this filter can only de-25

crease information (see Cover and Thomas, 2006). For example, when a binary evac-
uation decision is coupled to a conceptual rainfall-runoff model for flood forecasting,
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the calibration towards maximum utility of the system will train the hydrological model
to optimally distinguish flood-evacuation events. This implies that in the training, all
that the hydrological model sees from the continuous observed discharges is a binary
signal: flood or no flood. This constitutes at most one bit of information per observation
(in the unlikely case that a 50% of the observations is above the flood threshold, i.e.5

the climatic uncertainty is 1 bit), while the original signal contained far more information
(see Fig. 3). The hydrological model will therefore have far less information to learn
from. Given the fact that there is a balance between the available information for cali-
bration and the complexity that a model is allowed to have (see Schoups et al., 2008),
hydrological models that are trained on this kind of utility functions are likely to become10

overly complex relative to the data . They will surely achieve better utility results on the
calibration data (because there is less information to fit), but are likely to perform worse
on an independent validation dataset. The model that has been trained with maximum
information as an objective is likely to yield better results for the validation set, even
in terms of utility. Because it has the unfiltered information from the observations to15

learn from, it is less prone to overfitting: the complexity of a conceptual hydrological
model is better warranted by the full information. Training for optimal classification
of flood events would benefit from more parsimonious data-driven models that make
a mapping directly from predictors to decisions, but this complicates the use of prior
information on the workings of the hydrological system, which can be another valuable20

source of information to improve forecasts. Examples are constraints on mass balance
and energy limits for evaporation.

The third route of information to the model, the input observations, can also be af-
fected by the information filter. For example, if a binary decision problem (e.g. to be
or not to be in the flood zone tomorrow) is considered, the information from input ob-25

servations travels through the model and subsequently through the decision model,
which maps the model input to a binary signal (to be or not to be). The binary signal
is all that enters the evaluation and can be learned from the input observations. When
a model is evaluated based on a cost-loss model of a two action- two state of the world
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decision problem, the maximum amount of information that can be learned from each
input-output observation pair is thus 2 bits.

This framework shows some similarity with the ideas presented in (Gupta et al.,
2009, 1998, 2008). In those papers it is also argued that information can be lost the
evaluation. However, the important difference of this framework compared to those5

ideas is that we argue that information is lost by using measures other than information
(in other words, measures that do not reflect likelihood), while Gupta et al. (2008) argue
that information is lost because of the low dimensionality of the evaluation measure. In
our information-theoretical viewpoint, we can in principle learn all we need from the
observations through a single measure (a real number can contain infinitely many bits10

of information). This can only be achieved if the mapping of the information in prior
knowledge, input observation and output observations to the scoring rules reflecting
the likelihood of the model connecting these sources is reliable. In principle, this is
equivalent to endorsing the likelihood principle, which states that all information that
the data contains about a model is in the likelihood function (as argued by Robert15

(2007) p.14, Jaynes (1957), p.250 and Berger and Wolpert (1988).
The information-theoretical logarithmic scoring rules are the only scoring rules that

are both local and proper (proofs can be found in Bernardo, 1979 and Benedetti, 2010).
Where propriety is the requirement that the scoring rule can only be optimized when
the forecaster does not lie. Scoring rules that are not proper can be hedged, meaning20

that the expected score is maximized by forecasting probabilities that are not consistent
with the best estimates of the forecaster. A utility function that includes the importance
of the outcomes can be hedged by attaching more forecast probability to important
events. A model that is trained on such a measure is thus encouraged to “lie”. All utility
functions that are not linear functions of information violate either locality or propriety,25

which makes them doubtful objectives for calibration.
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5 Conclusions

The difficulties and debate about the evaluation of forecasts can be significantly clari-
fied using results from information theory. When information is seen as a measurable
quantity, like energy, a sort of “information intuition” develops, similar to the “energy
intuition” that is used to detect logical flaws in claims for perpetuum mobiles. Science5

is required to make testable predictions. Forecasts should therefore be stated in terms
that make it clear how to evaluate them. Deterministic and interval forecasts fail this
criterion. Probabilistic forecasts can be evaluated using information theory. The de-
composition of the divergence score that we presented can provide additional insight
in the interaction between uncertainty, correct information and wrong information.10

Starting from the observation that deterministic forecasts are still commonly used
and evaluated, but are worthless from an information-theoretical viewpoint, we draw
the conclusion that these forecasts are either implicitly probabilistic or should be viewed
in connection to a decision problem. In both interpretations, the evaluation depends on
external information that is not provided in the forecast. Deterministic forecasts leave15

too much interpretation to the user, if seen as implicit probabilistic forecasts or make
too many assumptions on the user if they are evaluated using another utility measure.

On the one hand, forecasting can be seen as a communication problem in which
uncertainty about the outcome of a random event is reduced by delivering an
informative message to a user. On the other hand, forecasting can be seen as an20

addition of value to a decision problem. Any measure that is not information only
becomes meaningful when it is interpreted in terms of utilities. When addressing fore-
cast value, it is important to see that in fact we are evaluating decisions based on
forecasts and not the correspondence between the observations and the forecasts
themselves.25

This is especially important in calibration, where a model has to learn from obser-
vations. When calibration objectives are used that are not information-measures, the
model either learns from information that is not there or uses only part of the infor-
mation in the observations, or both. Because the amount of available information is

4678

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4657/2010/hessd-7-4657-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4657/2010/hessd-7-4657-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4657–4685, 2010

Hydrological forecast
evaluation using

information theory

S. V. Weijs et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

related to optimal model complexity, hydrological models trained for user specific utili-
ties are more prone to overfitting, which might lead to worse results in an independent
validation test.
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Table 1. Comparison between the expressions and behaviour of the decompositions of the
Brier score and the divergence score for the case of binary events.
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ōk ||ō
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Fig. 1. The remaining uncertainty for different distributions in the forecasting process can be
measured by the average Kullback-Leibler divergence from the observations. These uncertain-
ties have some additive relations.
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Fig. 2. The RPS and CPRS scores measure the sum of squared differences in CDFs. Therefore
they depend on probabilities assigned to events that where not observed. The divergence score
only depends on the value of the PDF (the slope of the CDF) at the value of the observation. In
the example, forecast A has a better CPRS than forecast B, even though it assigned a higher
probability to what was observed.
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Fig. 3. There are three routes through which information can enter the model in a learning
process. When evaluating a model based on value, the decision model that is implicitly defined
by the loss function acts as a filter on the information in the observations. For example, all
that the model can see from the a training on a binary decision model is 2 bits of information
per input-output observation pair, which are contained in the sequence of costs fed back to the
model.
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