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Abstract

This study presents a stochastic, three-dimensional characterization of a heteroge-
neous hydraulic conductivity field within DOE’s Hanford 300 Area site, Washington,
by assimilating large-scale, constant-rate injection test data with small-scale, three-
dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first5

inverted the injection test data to estimate the transmissivity field, using zeroth-
order temporal moments of pressure buildup curves. We applied a newly devel-
oped Bayesian geostatistical inversion framework, the method of anchored distributions
(MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-
transmissivities at multiple locations. The unique aspects of MAD that make it suitable10

for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian
framework and to compute a nonparametric posterior distribution. After we combined
the distribution of transmissivities with depth-discrete relative-conductivity profile from
the EBF data, we inferred the three-dimensional geostatistical parameters of the log-
conductivity field, using the Bayesian model-based geostatistics. Such consistent use15

of the Bayesian approach throughout the procedure enabled us to systematically in-
corporate data uncertainty into the final posterior distribution. The method was tested
in a synthetic study and validated using the actual data that was not part of the esti-
mation. Results showed broader and skewed posterior distributions of geostatistical
parameters except for the mean, which suggests the importance of inferring the entire20

distribution to quantify the parameter uncertainty.

1 Introduction

Hydrogeological characterization plays a key role in various projects involving ground-
water flow and contaminant transport. A detailed three-dimensional (3-D) description
of spatial variability in subsurface hydraulic properties is imperative for predicting water25

and solute movement in the subsurface (Rubin, 2003). Recent focus on geochemical
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and microbiological reactions in field studies, for example, requires flow parameters
to be fully characterized a priori for testing their research hypotheses (Scheibe, 2001,
2003; Fienen et al., 2004).

One of the main challenges in hydrogeological characterization is to integrate
datasets of different types and scales. Typical field studies usually include two or more5

different complementary sources of information, which may include depth-discrete
small-scale data such as core analysis, slug tests and electromagnetic borehole
flowmeter (EBF) tests and large-scale data such as pumping tests and tracer tests.
With stochastic modeling of flow and transport becoming increasingly common, it is
important not only to combine best-fitted values from each dataset, but also to cor-10

rectly quantify and weigh errors and uncertainty associated with different datasets, and
to transfer the uncertainty to the final prediction (Maxwell et al., 1999; Hou and Rubin,
2005; De Barros et al., 2009).

To tackle this challenge, various researchers have applied Bayesian approaches to
the problem of subsurface characterization (Copty et al., 1993; Woodbery and Rubin,15

2000; Chen et al., 2001). Within a Bayesian framework, the probability density function
of a parameter vector can be updated sequentially to include more datasets in a con-
sistent manner. In addition, the resulting predictive distribution can properly account
for the parameter uncertainty inherent in estimating the parameter values from the
data (Diggle and Ribeiro, 2002). Two recent developments in particular have increased20

the potential of the Bayesian approach for subsurface characterization: (1) Bayesian
model-based geostatistics, and (2) the method of anchored distributions (MAD).

Bayesian model-based geostatistics, introduced by Kitanidis (1986) and Handcock
and Stein (1993), assumes a parametric model for a spatial stochastic process and
infers geostatistical structural parameters based on small-scale datasets or point mea-25

surements (Diggle and Ribeiro, 2006). While the traditional variogram approach deter-
mines best-fitted estimates of geostatistical structural parameters and their asymptotic
confidence interval, the Bayesian model-based approach yields a posterior distribution
of the parameters. Diggle and Ribeiro (2006) showed that correlation parameters such
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as variance and scale follow non-Gaussian and skewed distributions, which suggests
that the first two moments are not enough to characterize the distribution.

The method of anchored distributions (MAD) is a general Bayesian method for in-
verse modeling of spatial random fields that addresses complex patterns of spatial
variability, multiple sources and scales of data available for characterizing the fields,5

and the complex relationships between observed and target variables (Zhang and Ru-
bin, 2008a, b; Rubin et al., 2009). The central element of MAD is a new concept called
“anchors.” Anchors are devices for localization of large-scale data: they are used to
convert large-scale, indirect data into local distributions of the target variables. The
goal of the inversion is to determine the joint distribution of the anchors and struc-10

tural parameters, conditioned on all of the measurements. The structural parameters
describe large-scale trends of the target variable fields, whereas the anchors capture
local heterogeneities. Following the inversion, the joint distribution of anchors and
structural parameters can be directly used to generate random fields of the target vari-
able(s). Different from most of the other inversion methods that determine a single best15

estimate of the field and asymptotic uncertainty bounds (Kitanidis, 1995; Zhu and Yeh,
2005; Ramarao et al., 1995), MAD yields a posterior distribution of the parameters.

In this paper, we assimilate EBF tests and constant-rate injection tests for character-
izing a 3-D hydraulic conductivity K field at the Integrated Field Research Challenge
(IFRC) site in DOE’s Hanford 300 Area (http://ifchanford.pnl.gov). Since the EBF tests20

yield only relative K values along each of the EBF test wells, we need a local transmis-
sivity T value at each of the EBF test wells to convert the relative values to absolute
K values (Javandel and Witherspoon, 1969; Molz et al., 1994; Young et al., 1998;
Fienen et al., 2004). The local T values can be determined by inverting the large-scale
constant-rate injection tests. This assimilation requires us to quantify the uncertainty25

in T values based on the injection tests and to combine that uncertainty with the one
from the EBF data.

The particular difficulty in inverting injection-test or pumping-test data is the computa-
tional effort associated with a long time series. Li et al. (2004) and Zhu and Yeh (2005)
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have applied temporal moments of drawdowns to estimate T and storativity S fields.
The sandbox experiment by Liu et al. (2007) has shown that the moment approach can
successfully characterize a T field. The advantage of employing temporal moments is
that we can compute them using steady-state flow equations, which can reduce the
computational burden significantly. In addition, when the interest is limited to T , the5

zeroth-order temporal moment can eliminate the effects of the uncertainty in S, since it
does not depend on S (Zhu and Yeh, 2005).

In the following sections, we first describe the site and the experimental procedure.
We then present our approach, including the geostatistical inversion framework and the
inference of the 3-D geostatistical parameters. After presenting the inversion results in10

a synthetic study to demonstrate and verify our approach, we discuss the results using
the actual data at the site.

2 Site and experiment description

The Hanford 300 Area is located at the southern part of the Hanford Nuclear Reser-
vation one mile north of Richland, Washington. The IFRC site is located within the15

footprint of a former disposal facility for uranium-bearing liquid wastes known as the
South Process Pond, approximately 250 m west from the Columbia River. As is shown
in Fig. 1, the triangular well field consists of 25 wells fully screened through the satu-
rated portion of the Hanford formation, ten wells partially screened at different depths,
and one deep characterization well (Bjornstad et al., 2009).20

In this study, we focus on the saturated portion of the highly permeable and coarse-
grained Hanford formation, which is a shallow unconfined aquifer. The main lithology
is a poorly sorted mixture, dominated by gravel up to boulder size, with lesser amounts
of sand and silt (Bjornstad et al., 2009). It overlies the Ringold formation, the up-
per portion of which is a continuous low-permeability layer consisting of cohesive and25

compact, well-sorted fine sand to silty sand. The saturated thickness is variable over
the site, ranging from about 5 m to 8 m, with daily and seasonal fluctuations of the
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water table in response to changes in the river stage. The prior estimates of hydraulic
conductivity are 1000–100 000 m/day for the Hanford formation and 0.01–3.00 m/day
for the Ringold formation (Meyer et al., 2007).

Fourteen constant-rate injection tests were conducted, each of which had one injec-
tion well and 7 to 10 observation wells. All the wells used in the tests are fully screened5

over the saturated portion of the Hanford formation. The distance between the injection
and observation wells ranges between 8 and 60 m. The injection duration and rate are
approximately 20 minutes and 315–318 gpm (1.19–1.20 m3 min−1), respectively. The
preliminary analysis of the late-time curve data, using the Cooper-Jacob straight-line
method, has shown that most of the observation wells yield similar estimates for the10

T values in each test, which is considered to be the geometric mean of T , TG, over
the entire well field, as is mathematically proved by Sánchez-Villa et al. (1999). It sug-
gests that the zone-of-influence expands very rapidly and the conventional pumping
test analysis yields only an effective property, smoothing out the local heterogeneity at
the well field.15

The EBF test data were obtained at 19 fully screened wells, which yielded 283 depth-
discrete relative hydraulic conductivities with 0.3–0.6 m depth intervals. The pumping
rate was 1.04–1.55 gpm (3.94×10−3–3.94×10−3 m3 min−1), and kept constant during
the test at each well. The vertical profiles indicated that the hydraulic conductivity over
the central third of the Hanford formation was lower than its top and bottom thirds at20

many of the wells. Although the thickness and contact depths for this lower permeability
material vary across the site, this general pattern was observed to some extent at most
of the monitoring well locations.

The more detailed description of the site and data is available in Bjornstad et
al. (2009) and Rockhold et al. (2010).25
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3 Methodology

For the 3-D characterization, we employ a two-step approach. First, we invert the large-
scale injection tests to characterize the T field. We apply MAD to invert the zeroth-order
moments of pressure build-up curves at multiple observation wells. As a result, we
obtain a joint posterior distribution of T at the EBF test wells. Second, we combine this5

distribution with the EBF data for determining the absolute K values. Instead of a single
K value at each of the EBF data point, we obtain the distribution of K at each point.
Based on the distribution of the absolute K , we infer the 3-D geostatistical parameters,
using the Bayesian model-based geostatistics.

Compared to direct coupling of the EBF and pumping tests used in Li et al. (2008),10

this two-step approach has a significant computational advantage. This approach is
possible because we can model the flow process during the injection tests as 2-D
planar flow in the horizontal plane, due to the particular site conditions as the follow-
ing. The coarse-grained and highly permeable nature of the aquifer caused the elas-
tic response and drainage effect to occur very rapidly (less than 30 s after the injec-15

tion started), so that the radial flow regime dominated the pressure buildup responses
(Neuman, 1975). In addition, despite the large injection rate, the maximum pressure
buildup at the nearest observation wells was less than several centimeters, which is
much smaller than the aquifer thickness (5–8 m). Although the EBF tests suggested
vertical heterogeneity in the saturated zone, Dagan et al. (2009) recently showed that20

Dupuit’s assumption is still valid – when the aquifer thickness is not large compared
to the vertical integral scale, and the ratio between the vertical and horizontal integral
scale is large, which is the case at this site.
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3.1 Geostatistical inversion for transmissivity field

3.1.1 MAD framework

In this section, we summarize the Bayesian inversion framework, called (as indicated
above) method of anchored distributions (MAD), which we use to invert the injection
test data. This method was introduced by Zhang and Rubin (2008a, b) and Rubin et5

al. (2009) and is summarized here for completeness.
We denote a spatial random process by Y (x), where x is the space coordinate. We

further denote an entire field of Y by Ỹ , and denote a realization of the field by ỹ. The
field Ỹ is defined through the vector of model parameters {θ ,ϑ}. The θ part of this
vector, called the structural parameter vector, includes a set of parameters designed to10

capture the global features of Ỹ , such as the mean of the field and correlation struc-
tures. The ϑ component of this vector consists of the anchored distributions, or anchors
in short. Anchors are devices used to capture local features of Ỹ that cannot be cap-
tured by the global parameters θ . In their simplest form, an anchor would be error free
measurements of Y . Other forms of anchors include measurements coupled with error15

distributions and/or anchors that are obtained by inversion.
The data z is a vector of multiple observations of a physical process. The data can

be described by the following equation:

z=M
(
ỹ
)
+ε, (1)

where M is a known function, or a set of functions, numerical or analytical, of the20

spatial field, and ε is a vector of zero-mean errors. The goal of the inversion is, first,
to derive a posterior distribution of the model parameters conditioned on the data z,
p(θ ,ϑ|z). This distribution then allows us to generate multiple realizations of the field
Ỹ for prediction.

Using Bayes’ rule, we can define the posterior distribution of parameters as:25

p
(
θ,ϑ|z

)
∝p

(
z|θ,ϑ

)
p
(
ϑ|θ

)
p(θ ). (2)
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where p(θ ) is the prior distribution, p(ϑ|θ ) is the anchor distribution given a structural
parameter vector θ , and p(z|θ ,ϑ) is the likelihood of data z given a parameter set
{θ ,ϑ}.

We estimate the likelihood p(z|θ ,ϑ) using the Monte Carlo simulations. Since the
model parameters {θ ,ϑ} and the data z are connected through the field, we generate5

multiple conditional realizations of the field Ỹ for any given {θ ,ϑ}; with each realization,
the forward model provides a prediction of z in the form of z̃, according to Eq. (1). In
other words, z is viewed as a measured outcome from a random process, whereas z̃

is one of many possible realizations, given a particular parameter set of {θ ,ϑ}. The
ensemble of z̃ is used for estimating p(z|θ ,ϑ).10

Since increasing dimension of z increases the computational burden of the like-
lihood estimation significantly, we may divide the vector z into L segments as
z={z1,z2,...,zL}. We can decompose the likelihood into each segment as,

p
(
z|θ,ϑ

)
=p

(
z1,...,zL|θ ,ϑ

)
=p

(
zL|z1,...,zL−1,θ ,ϑ

)
p
(
zL−1|z1,...,zL−2,θ ,ϑ

)
....p

(
z2|z1,θ ,ϑ

)
p
(
z1|θ ,ϑ

)
15

≈
L∏

l=1

p
(
zl |θ ,ϑ

)
. (3)

In Eq. (3), we assume that the data segments z1, z2,. . . , zL are conditionally indepen-
dent for a given {θ ,ϑ}, since we consider that {θ ,ϑ} contains information equivalent
to the data. This equality strictly holds when the data segments are independent of
each other – for example, when the data locations are beyond the zone-of-influence or20

zone-of-correlation. It approximately holds when the data segments are only weakly
correlated, such as with different types of data at the same site. As Hou and Ru-
bin (2005) pointed out, assuming independence leads to higher entropy and makes
the estimation less informative.
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3.1.2 Specification of a 2-D geostatistical model

Here we specify the geostatistical model for the 2-D T field. Let Y (x) be natural-log
transmissivity, lnT (x), at the location x=(x1, x2) in the 2-D domain. We assume that a
vector Y , containing Y at multiple locations, follows a multivariate Gaussian distribution
with exponential covariance. We define a structural parameter vector as θ={µ,σ2,φ},5

including uniform mean µ, variance σ2, and integral scale φ, which are used at a geo-
logically similar site (i.e. unconsolidated glacial materials) (Rubin, 2003; McLaughlin et
al., 1993).

We define a vector ϑ(xϑ) to represent a set of anchors. Since the anchors are a
subset of the field, p(ϑ|θ ) is a multivariate Gaussian distribution with mean µ and co-10

variance σ2R(xϑ,xϑ), where R(xϑ,xϑ) is an auto-correlation matrix as a function of φ
and the locations of ϑ, xϑ. The distribution of Y conditioned on the structural parame-
ters and anchors p(y|θ ,ϑ) is a multivariate Gaussian distribution with conditional mean
µY |ϑ and conditional covariance σ2RY |ϑ , where the mean and covariance conditioned
on the anchors are defined as15

µY |ϑ =µ+R(x,xϑ)R(xϑ,xϑ)−1 (ϑ−µ),

RY |ϑ =R(x,x)−R(x,xϑ)R(xϑ,xϑ)−1R(xϑ,x) (4)

where R(x,x) is the auto-correlation matrix for Y , and R(x,xϑ) is the cross-correlation
matrix between Y and ϑ.

3.1.3 Specification of likelihood20

We consider the data z consisting of L injection tests (l=1, 2, . . . , L). We divide z

into L segments as z={z1,z2,...,zL}, where zl is the vector containing the zeroth-
order moments at multiple observation wells in the l -th injection test. The governing
equation and the temporal moment formulation are shown in Appendix A.

In order to determine the likelihood p(z|θ ,ϑ), we first compute the likelihood in each25

injection test p(zl |θ ,ϑ). Since we have observed that the zeroth-order moments are
2026
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approximately Gaussian, we use a multivariate Gaussian distribution for the likelihood
estimation. Although nonparametric density estimation is available, the Gaussian-
likelihood estimation is computationally advantageous as the dimension of the data
increases.

Using the ensemble of z̃l simulated on the multiple fields conditioned on each param-5

eter set {θ ,ϑ}, we calculate the mean and covariance to determine p(zl |θ ,ϑ) (Robert
and Casella, 1999). When we include the multiple injection tests in the inversion, we
multiply the likelihoods of multiple tests, according to Eq. (3), to obtain the likelihood for
the entire data p(z|θ ,ϑ). We have observed that the zeroth-order moments from the
different injection tests are not strongly correlated, so that we may use Eq. (3).10

3.1.4 Placement of anchors

The success of MAD depends on placement of the anchors from two reasons. First,
careful placement of anchors will maximize their ability to extract information from ob-
servations. Second, the computational burden is linked to the number of anchors, and
a smaller number would improve computational efficiency. Hence, we need to place15

anchors (1) at sensitive locations to the data, (2) to capture local features of the field,
and (3) according to the goal of the inversion. A detailed discussion is available in
Rubin et al. (2009). Here we discuss only the issues relevant to our inversion.

First, to find sensitive locations, we refer to the sensitivity analysis. Li et al. (2005)
has formulated the sensitivity of zeroth-order moments to a lnT value at a specific20

location, using the adjoint-state method (Sun, 1994). In their formulation, sensitivity is
high around observation well locations, which is consistent with findings by Castagna
and Bellin (2009) and Vasco et al. (2000).

Second, to capture heterogeneity, we would ideally have more than one anchor per
integral scale. Although the real integral scale is not known in advance, we may con-25

sider the minimum possible integral scale at the site. Anchors outside the well plot, far
from any of the observation wells, are not effective in resolving spatial heterogeneity,
so that we need fewer anchors outside the well plot.

2027
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Third, to achieve our goal, which is to obtain the lnT values at the EBF well locations,
we need anchors at all EBF well locations. All the EBF wells are used as observation
wells during the injection tests, so that we do not need additional anchors for this
purpose.

3.2 3-D geostatistical model for hydraulic conductivity field5

The 2-D inversion of the injection tests yielded a joint distribution of lnT at the EBF
well locations. Since we placed anchors at all those locations, we can use the anchor
distribution directly. Let us denote the lnT values at the EBF well location by a vector
ϑEBF, which is a subset of ϑ. Marginalizing the other parameters leads to the posterior
distribution of ϑEBF conditioned on the injection test data z as p(ϑEBF|z).10

Let K (x1, x2, x3) and k(x1, x2, x3) be the absolute and relative K values at the
location x=(x1, x2, x3) in the 3-D domain, respectively. Based on Javandel and With-
erspoon (1969), we have the correlation between the absolute and relative K values
as K (x1, x2, x3)= T (x1, x2)k(x1, x2, x3) /b(x1, x2) (Moltz et al., 1994; Fienen et al.,
2004), where b(x1, x2) is the aquifer thickness at the horizontal location (x1, x2). We15

can determine the natural log-conductivity u=lnK at (x1, x2, x3) by

u(x1,x2,x3)=ϑEBF(x1,x2)− lnb(x1,x2)+ lnk(x1,x2,x3). (5)

We use a N-vector k containing all the relative conductivity values from the EBF data
at N locations, and a N-vector u containing all the lnK values at the same locations
as k. Equation (5) allows us to combine k and p(ϑEBF|z) into p(u|k,z), which is the20

distribution of u conditioned on both the injection test data and the EBF data.
We construct a 3-D geostatistical model, assuming that u(x) follows a multivariate

Gaussian distribution with mean β and covariance (η2R(x,x)+ ν2I), where η2 is the
variance of variability in lnK , R(x, x) is the auto-correlation matrix for u(x) as a func-
tion of the locations x, the horizontal integral scale λh and the vertical integral scale25

λv , I is the identity matrix of order N, and ν2 is the nugget, which represents the EBF
measurement errors. The structural parameter vector of the 3-D geostatistical model

2028

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/2017/2010/hessd-7-2017-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/2017/2010/hessd-7-2017-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 2017–2052, 2010

Bayesian approach
for three-dimensional

aquifer
characterization

H. Murakami et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

is {β,η2,λh,λv ,ν
2}. Our goal here is to obtain a joint posterior distribution of the param-

eters conditioned on both data {k,z} through u:

p
(
β,η2,λh,λv ,ν

2|k,z
)
=
∫
p
(
β,η2,λh,λv ,ν

2|u
)
p
(
u|k,z

)
du. (6)

For the prior distribution of the parameters, we assume the Jeffreys prior for the mean
and variance (Jeffreys, 1946), which is the least informative prior for those two param-5

eters. The prior distribution of all the structural parameters is defined as

p
(
β,η2,λh,λv ,ν

2
)
∝ 1

η2
π
(
λh,λv ,ν

2
)
. (7)

For the rest of the prior distribution π(λh,λv ,ν
2), we use an independent uniform dis-

tribution for each of {λh,λv ,ν
2} bounded by each set of the minimum and maximum

possible values. Following Diggle and Ribeiro (Chapter 6, 2006), we obtain an analyti-10

cal expression for p(β,η2,λh,λv ,ν
2|u) (Appendix B).

3.3 Implementation

3.3.1 Organization of constant-rate injection test data

To demonstrate our approach, we used four out of the fourteen constant-rate injection
tests at the site, the locations of which are well balanced within the IFRC site. Figure 215

shows the configuration of the injection and observation wells for each of the four tests.
For each test, we calculated the zeroth-order moments at multiple observation wells

by integrating the pressure buildup curves. Since the well field is located near the
Columbia River, the water table changes according to the river stage fluctuation. Since
the change was mostly linear within 20 min after the injection starts, we removed the20

ambient head contribution by linear interpolation. We determined the standard devia-
tion of measurement error based on the resolution of the instrument, 0.003 ft (0.09 cm)
by integrating it over the injection duration.
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3.3.2 Prior distribution for MAD inversion

For the prior distribution of the 2-D structural parameters θ , we used three independent
uniform distributions bounded by the minimum and maximum values, as are shown in
Table 1. The prior distributions of each parameter sufficiently cover possible values
from the historical data at the site (Meyer et al., 2007) or literature values for simi-5

lar geological formations (Rubin, 2003). The uniform distributions are considered to
be less informative than Gaussian distributions, which have been commonly used in
the Bayesian geostatistical inversion (Li et al., 2005). Three thousand sets of θ are
generated from p(θ ) using a quasi Monte-Carlo sampling method (Krommer and Ue-
berhuber, 1998).10

As is shown in Fig. 3, we placed 44 anchors at all the well locations inside the well
plot and at sparse locations outside the well plot, following the discussion in Sect. 3.1.4.
For each set of θ , we generated 12 sets of anchors ϑ from p(ϑ|θ ), so that the number
of prior parameter sets {θ ,ϑ} is 36 000. We have observed that those numbers are
sufficient to obtain convergence both in the prior and posterior distributions.15

3.3.3 Forward simulation in MAD

Figure 3 shows the computational domain used for the forward simulations. For sim-
ulating the zeroth-order temporal moments on multiple random fields, we followed the
approach by Firmani et al. (2008), since the mathematical expression for the zeroth-
order moments is the same as the one for steady-state flow toward a well.20

Firmani et al. (2008) determined the grid and domain sizes according to the integral
scale. Although the integral scale is unknown in our framework, we have the minimum
or maximum possible integral scale (φmin and φmax), which are the upper and lower
bounds of the uniform prior distribution. We used these two values so that any possible
integral scale can satisfy the requirement for the domain and grid sizes.25

The computational grid size is uniform equal to 0.2φmin in both x1 and x2 direc-
tions during the field generation. During the flow simulations, the grid blocks near the
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injection well are divided into non-uniform grid from 0.04φmin at the injection well loca-
tion to 0.2φmin at a distance of 0.8φmin, satisfying the condition that the ratio between
the neighboring block size should not exceed 1.5 (Firmani et al., 2008). We determined
the domain size such that the observation wells were 2φmax away from the boundaries
to reduce the boundary effect. During the flow simulation, we added another buffer5

zone with width φmax and uniform T equal to TG between the field and the boundaries
for further reducing the boundary effect. We intended to satisfy 3φmax between any
observation wells and the boundaries, based on the theory developed by Rubin and
Dagan (1988).

We used the SGSIM program from GSLIB (Deutsch and Journel, 1992) to generate10

spatially correlated Gaussian random fields conditioned on each set of {θ ,ϑ}. We
then simulated zeroth-order moments on each field, using a finite-element method with
linear elements. We used 250 realizations of random fields and moments for each
{θ ,ϑ} to calculate the likelihood p(z|θ , ϑ). The 9 000 000 forward simulations took
60 000 computational hours in total. It was divided into several batches, and used15

up to 9000 cores on the Franklin supercomputer at the National Energy Research
Scientific Computing Center (Berkeley, USA), each core of which is a 2.3 GHz single
AMD Opteron processor.

3.3.4 3-D geostatistical model

After calculating p(u|k,z) from the relative K values and lnT values at the EBF well20

locations, we generated a thousand sets of u from p(u|k,z). For each set of u, we
computed a posterior distribution p(β,η2,λh,λv ,ν

2|u), based on the uniform prior distri-
bution of λh, λv and ν2 bounded by the values shown in Table 2. We then integrate the
distribution numerically to determine p(β,η2,λh,λv ,ν

2|k,z).
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4 Results and discussion

We first tested the MAD and numerical setting in a synthetic study for inverting the
injection test data, and then we applied it to the actual data at the Hanford site.

4.1 Synthetic study

We generated a synthetic reference lnT field with a geostatistical parameter set5

{µ,σ2,φ}={−1.8,1.5,20}, shown in Fig. 4. We obtained maximum likelihood estimates
of the true parameters as {−1.76,1.46,20.0}, with near-exhaustive sampling (one out
of every five points) (GeoR package by Ribeiro and Diggle, 2001). We then calcu-
lated the zeroth-order moments on the reference field and superposed a zero-mean
independent Gaussian measurement error, which has the same variance as the actual10

data from the study site.
Our inversion process is based on the same sets of injection and observation wells

as the actual experiments conducted at the IFRC site (Fig. 3). We also combined the
different number of injection tests in the inversion: one injection test (injection at Well
2-18), two tests (injection at Well 2-09 and 2-34), three tests (injection at Well 2-09,15

2-24, and 3-24), and four tests (injection at Well 2-09, 2-18, 2-24, and 3-24). They are
compared to show the effect of additional information from the multiple tests.

Figure 5 shows the marginal posterior distributions of the geostatistical structural
parameters {µ,σ2,φ} based on the various number of tests, with their corresponding
true values. While the mean has a symmetric Gaussian-like distribution, the variance20

and scale has broad and skewed distributions. The results are improved with increas-
ing number of tests up to three tests, i.e. the posterior distributions become narrower
and biases are reduced. The improvement by additional tests is more significant for
the variance and scale, which suggests that the estimation of variance and scale re-
quires more observations. The improvement, however, is not significant from three to25

four tests, which would suggest that the effect of increasing number of tests could be
saturated due to the measurement errors and redundancy of information in the data.
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To examine the effect of anchors and evaluate the random fields generated based on
the posterior distributions, we generated 200 000 fields from the posterior distribution
of parameters (5000 posterior sample parameter sets with 40 fields per parameter set),
and compared the ensemble with the true field. Two cases are studied: one based on
a single test (injection at Well 2-18) and the other based on three tests (injection at5

Well 2-09, 2-24, 3-24).
Figure 6 shows the mean and 98% confidence interval of the predicted lnT fields

along the centerline of the well field as shown in Fig. 4 (Line A–B). The mean field
along the line follows a general trend of the true field, especially so with more tests
assimilated. If there were no anchors, the mean field would be a flat line at the global10

mean. Therefore the deviation from such a straight line is attributed to anchors that
capture local heterogeneity. The uncertainty bounds are found to be tighter near the
center, where there are more observation wells and more anchors. Increasing the
number of tests not only reduces the uncertainty, but also reduces the bias by moving
the mean field closer to the true field.15

4.2 IFRC data analysis

After we gained confidence from the synthetic study, we applied the same scheme
to the data from the IFRC site. Since the true values are unknown in this case, we
validated the posterior distribution by predicting a subset of the data and comparing it
to the actual data. The data used for validation was not used for inversion.20

Figure 7 shows the marginal posterior distributions of the three structural parameters
for the lnT field at the IFRC site. The three plots show a similar feature as the synthetic
study in Fig. 5 such as a Gaussian-like distribution for the mean, broad and skewed
distributions for the variance and scale, and the effect of increasing the number of
injection tests in the inversion.25

For the first validation, we generated 200 000 fields (5000 posterior sample param-
eter sets with 40 fields per parameter set) based on one test (injection at Well 2-09),
two tests (injection at Well 2-09 and 3-24) and three tests (injection at Well 2-09, 2-24
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and 3-24). We then predicted the zeroth-order temporal moments in the injection test
at Well 2-18, which was not the part of the estimation. Figure 8 shows the marginal
predictive distributions of the observed moments at two observation wells, based on
one, two and three tests, compared with the actual data. The true value is contained
within the range of values defining the predictive distributions, and the combination of5

the three tests improves the prediction by narrowing the distributions.
As another validation, we obtained the maximum a posteriori (MAP) estimate of

TG=exp(µ) in Fig. 7, which is 0.52 m2 s−1. We compared this value with TG estimated
from the Cooper-Jacob analysis (Sánchez-Villa et al., 1999), in which we fitted the
late-time pressure-buildup curves at multiple observation wells in the injection test at10

Well 2-18. The 95% confidence bound of TG was 0.38–0.57 m2 s−1. As we expected,
our estimate of TG corresponded to the estimates based on conventional analysis for a
large-scale injection test.

Figure 9 shows the marginal distribution for the 3-D geostatistical structural parame-
ters conditioned on the EBF data and injection test data. We can see that the marginal15

posterior distributions of the structural parameters are skewed except for the mean,
which suggests that the entire distribution is necessary to quantify the parameter un-
certainty.

We also compared the distributions based on the different number of tests included in
the injection test inversion. As it turned out, increasing the number of injection tests did20

not reduce the parameter uncertainty in the 3-D structural parameters as significantly
as in the 2-D parameters. This is because the uncertainty and sparseness of the EBF
data obscures additional information of the increasing number of injection tests in the
3-D spatial inference. The horizontal scale especially has broad distribution, due to the
relatively insufficient number of horizontal lags among the EBF wells.25
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5 Summary

In this paper, we presented a Bayesian approach for characterizing a 3-D K field by as-
similating the EBF and constant-rate injection tests. We employed a two-step approach
– first inverting the constant-rate injection test data for obtaining the local T values at
the EBF well locations, and then converting the EBF data to local K values for the 3-D5

characterization.
For the injection test inversion, we used MAD, which is a newly developed Bayesian

geostatistical inversion framework. This method enables us to obtain an entire posterior
distribution for parameters, rather than best-fitted values, so that we properly quantify
parameter uncertainty. Using MAD, we inverted zeroth-order moments of pressure10

buildups at multiple observation wells, which can eliminate uncertainty in a storage
coefficient, as well as significantly reduce computational cost.

In a synthetic study, we first showed that MAD could successfully infer the geostatis-
tical parameters and predict the lnT field. As we included more tests, we could further
reduce the uncertainty, and better capture the local heterogeneity.15

By applying the method to the actual data, we obtained the posterior distribution of
geostatistical structural parameters and the anchor values of the lnT field for the Han-
ford 300 Area IFRC site. We validated the result using the predictive distribution of the
zeroth-moments in the injection test that were not part of the inversion. In addition, the
MAP estimate of the mean lnT coincided with the TG value obtained from the Cooper-20

Jacob analysis, which confirmed our method’s consistency with conventional pumping
test analysis.

We then combined the relative K values from the EBF data with the distribution of
lnT at EBF wells so that we obtain the distribution of the depth-discrete absolute K in
the 3-D domain. The uncertainty in T is consistently carried on into the K values as a25

probability distribution. We thus constructed a 3-D geostatistical model for the K field
using the model-based Bayesian geostatistical approach. The resulting distribution
showed a skewed distribution except for the mean, which may not be captured by other
optimization-based approaches.
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Appendix A

Temporal moments

According to Li et al. (2004) and Zhu and Yeh (2005), the k-th-order temporal moment
mk(x) for a pressure-buildup curve s(x,t) is defined by5

mk (x)=
∫ ∞

0
tks(x,t)dt. (A1)

In this study, we use only the zero-order moment m0(x) for the inversion to characterize
the T field, which can exclude uncertainty in the storage coefficient and avoid an alias
effect of the storage-coefficient uncertainty to the T field. Under the constant injection
condition, we obtain m0(x) from the equation:10

∇· (T∇m0)+τQδ
(
x−xp

)
=0, (A2)

with the boundary condition at the Drichlet boundary Γdri as,

m0 =0, at ΓDri, (A3)

where T (x) is the depth-integrated T value, τ is the injection duration, Q is the constant
injection rate and xp is the injection well location. The Drichlet boundary condition was15

imposed at the nearest observation well location, where the m0 value is known, in the
same manner that Firmani et al. (2006) imposed a boundary condition at the injection
well location. Note that Eq. (A2) is the same as the one for determining hydraulic head
under steady-state flow with a constant injection rate τQ.
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Appendix B

Bayesian model-based geostatistics for 3-D structural parameters

According to Diggle and Ribeiro (Chapter 6, 2006), we calculate the posterior distri-
butions of the 3-D geostatistical structural parameters conditioned on u(x). First, the5

scales λh and λv and nugget variance ν2 depend only on u as

p
(
λh,λv ,ν

2|u
)
∝π

(
λh,λv ,ν

2
)
|Vβ̂ |

1
2 |
(

R+ν2I
)
|− 1

2

(
S2

)−N−1
2
, (B1)

where each term is defined as the follows:

Vβ̃ =
[

1T
(

R+ν2I
)−1

1
]−1

,

β̂= Vβ̃1T
(

R+ν2I
)−1

u,10

S2 =
u
T
(

R+ν2I
)−1

u− β̂T V −1
β̃

β̂

N−1
, (B2)

where N is the dimension of u, R=R(x,x) is the auto-correlation matrix for u, 1 is the
N-vector with all the elements equal to one, and I is the identity matrix. The variance
η2 follows an inverse-scaled χ2 distribution χ2

Scl with (N−1) degrees of freedom and a
scale parameter equal to S2:15

p
(
η2|λh,λv ,ν2,u

)
∼ χ2

Scl

(
N−1,S2

)
. (B3)

The mean follows a normal distribution with mean β̂ and variance η2Vβ̂:

p
(
β|η2,λh,λv ,ν

2,u
)
∼N

(
β̂,η2Vβ̂

)
. (B4)

We multiply Eqs. (B1), (B3), (B4), and the prior distribution to determine
p(β,η2,λh,λv ,ν

2|u) in Eq. (6).20
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Table 1. The lower and upper bounds of the prior distribution for the structural parameters of
the 2-D transmissivity field.

Minimum Maximum Reference

Mean µ, m2 s−1 (lnT ) −4.82* 2.17* Meyer et al. (2007)
Variance, σ2 0.5 3.0 Rubin (2003), Table 2.1 and Table 2.2
Scale, φ, m 8 30 Rubin (2003), Table 2.1 and Table 2.2

* The upper bound and lower bounds of K multiplied by the average aquifer thickness 7.62 m.
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Table 2. The lower and upper bounds of the prior distribution for the horizontal scale, vertical
scale and nugget variance of the 3-D hydraulic conductivity field.

Minimum Maximum Reference

Horizontal scale, λh, m 8 50 Rubin (2003), Table 2.1 and Table 2.2
Vertical scale, λv , m 0.5 10 * saturated thickness <10 m
Nugget variance, ν2 10−3 0.25 * less than 50% in standard deviation
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Fig. 1. Site map of the IFRC site (The coordinate system follows the convention used at the
Hanford site).
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Fig. 2. Configuration of injection and observation wells in each test used in this paper. The
reference point of local coordinates is at (594 164 m, 115 976 m) in the Hanford coordinates.
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Fig. 3. Anchor locations in the domain for the constant-rate injection test inversion. The refer-
ence point of local coordinates is at (594 164 m, 115 976 m) in the Hanford coordinates.
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Fig. 5. Marginal posterior distributions of the structural parameters (mean, variance and scale)
in the synthetic study, with their corresponding true values. The ones based on the different
number of tests are compared.
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Fig. 6. Comparison among the reference field, the mean field and the 98% confidence interval
of the generated fields, along the center line of the IFRC well field (Line A-B in Fig. 4), for the
inversion based on (a) one test (injection at Well 2-18) and (b) three tests (injection at Wells
2-09, 2-24 and 3-24).
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Fig. 7. Marginal posterior distributions of the structural parameters (mean, variance and scale)
for the Hanford IFRC site data.
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Fig. 8. Comparison between the zeroth-order moments observed at Well 2-09 and 3-24 in the
injection test at Well 2-18, and predictive posterior distributions from the inversion, including
the different number of injection test.
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Fig. 9. Marginal posterior distribution of 3-D geostatistical structural parameters of K values at
the Hanford IFRC site, based on the different number of injection test.
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