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Abstract

This paper investigates the impacts of land-use patterns on watershed hydrology and
characterizes the nature of this relationship. The approach combines a spatially ex-
plicit, process-based hydrological simulation model, a lan ;lnoptimization model,
the Integrated Hydrological and Land-Use Optimization (IHL odel, and an exten-
sive GIS database. Numerical experiments are corﬁ%xtj to assess changes in the
peak discharge rate under various spatial land-use a ements, and to delineate the
optimal land distribution that minimizes the peak discharge. The area of application is
a catchment of the Old Woman Creek watershed in the southwestern coastal area of
Lake Erie, OH. The global optimality of the delineated land pattern at a 30-m resolu-
tion is evaluated using a combinatorial statistical method. A large number of solutions
has been generated from clearly different initial solutions, and these solutions turn out
to be very close to each other, strongly supporting the case for a convex relationship
between peak discharge and land-use pattern. The Weibull distribution is used to gen-
erate a point estimate of the global optimal value and its confidence interval. The peak
discharge function Ether examined in light of the underlying physics used in the

simulation model.

1 Introduction

Understanding watershed hydrology processes and their linkages to land cover
changes is important for controlling nonpoint source (NPS) water pollutants, which
are produced by land-using activities (Novotny, 2003) and carried into waterwayq4py

ormwatel{sjunoff: Effective management of NPS pollution calls for efforts to identify
pollution sources and pathways, and to minimize production of pollutants and their
delivery to waterways. Complex watershed processes have been modeled mathemat-
ically or empirically, leading to computer simulation models that can provide key infor-
mation in better understanding the interactions among the various physical systems in
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the watershed. Such models are important to predict changes in the watershed sys-
tem, due to land-use or management practice changes (Beven, 1989; Grayson et al.,
1992), and have been widely utilized to develop area-wide Best Management Prac-
tices (BMP) or predict the hydrological effects of future land-use and climate changes
(Quilbé et al., 2008). However, these models cannot explicitly link pollution sources
and yields, and consider necessarily a limited rt%r of scenarios, which cannot lead
to the optimal selection and location of BMPs. 3~

Some recent studies (Srivastava et al., 2002; Nicklow and Muleta, 2001; Muleta and
Nicklow, 2002; Seppelt and Voinov, 2002; Kaur et al., 2004) have attempted to over-
come the limitation of a scenario-based approach by integrating optimization methods
into simulation models, but have failed to explicitly relate pollution sources and yields
at a high level of geographical disaggregation. Yeo et al. (2004) have
developed the Integrated H Egical and Land-Use Optimization (IHLUO) model to
delineate resolution (3 and-use patterns that minimize the peak discharge
flow. Builmgopon a spatially explicit hydrological model, the IHLUO model identifies
critical pollution sources and pathways, while accounting for the physical heterogeneity
of and the spatial dynamics across the watershed. The IHLUO model has been applied
to a catchment of the Old Woman Creek (OWC) watershed in the southwestern coastal
area of Lake Iﬂ H), and numerical results describing the emergent properties of
the optimal lan e patterns under various storm sizes have been reported. Yeo et
al. (2007) have also integrated the IHLUO model into a hierarchical land-use optimiza-
tion scheme, where the allocations at the higher levels (subwatersheds, catchments)
for larger areas are implemented via quadratic programming, with peak runoff functions
estimated using simulation-generated pseudo data. This earlier research has demon-
strated the importance of the spatial configuration of land use in controlling peak storm
water runoff, with the optimal land pattern reducing the peak discharge rate at the wa-
tershed outlet by more than 40% under a 1-year storm, as compared to the existing
land-use pattern.

The purpose of this research is to further investigate (1) the properties of the optimal
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solution, in particular to assess its global optimality, and (2) the functional relationship
between the spatial distribution of land uses and the peak runoff flow to support the
case for global optimality. Systems analysis approaches such as spatial optimization
methods have been efficient in selecting types and placement of BMPs, but without en-
suring the global optimality of the obtained solution. These problems involve the simu-
lation of highly nonlinear dynamics across the landscape (with no assumption of equi-
librium) and of physical processes that cannot be expressed with analytical functions.
Therefore, the obtained solution cannot be evaluated using the standard mathemati-
cal conditions for global optimality, and the quality of a solution has been addressed
by merely demonstrating algorithmic convergence of the solution. Assurance of the
global optimality of the nonlinear problem solution is critical to provide confidence in
decision making and to further extend integrated optimization approaches to water-
shed systems. This requires understanding the nature of the relationship between the
watershed system and the decision variables.

This paper presents an innovative combination method that uses a numerical pro-
cedure and the Weibull distribution to assess the convergence of a solution toward the
global optimum. ThLV: 1liits obtained from the IHLUO model suggests that the func-
tional relationship between the spatial distribution of land uses and the peak runoff flow
is convex, an important implication in hydrology. Examining the underlying physics of
the hydrological processes used in the simulation model provides additional support for
convexity and global optimality. The hydrological feedbacks from various land patterns
are analyzed at a 30-m resolution. A 1-year design storm is selected, because land
management alone, without any other constructive BMP, is effective only under a small-
size storm (see the pilot study in Yeo et al., 2004 to analyze optimal land allocations
under different storm sizes).

The remainder of this paper is organized as follows. Section 2 describes the mod-
eling methodology. A brief discussion of the spatially explicit hydrologic model and the
IHLUO model is presented in Sects. 2.1 and 2.2, and the statistical basis for assessing
the global optimality of the obtained solution using the Weibull distribution is discussed
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in Sect. 2.3. The results of a numerical application on a small catchment in the OWC
watershed are reported and analyzed in light of the underlying physics of the hydrolog-
ical model in Sect. 3. The findings and limitations of this research are summarized in
Sect. 4.

2 Simulation-optimization methodology
2.1 A spatially explicit hydrological model

The relationship f(X) between a land-use pattern (X) and the resulting peak discharge
rate at the watershed outlet is explored through a spatially explicit hydrological model.
Since such a relationship is very difficult to derive from field studies, a process-based
computer moﬁ%ideveloped to simulate this relationship, by modifying the SCS curve
number (CN)Sym<wiod. The CN method is chosen, because (1) the land-water rela-
tionship is directly expressed in terms of hydrologic soil groups and land use/cover
conditions (McCuen, 1982; USDA, 1986; Bingner and Theurer, 2001), and (2) it meets
computing resources requirement for hydrologic simulations and optimization. Due to
its simplicity and accuracy, it has been widely utilized and embedded into various wa-
tershed models for hydrology, flood analysis, and water quality modeling (Garen and
Moore, 2005), including Soil and Water Assessment Tools (SWAT) (Arnold et al., 1998),
AGricultural Non-Point Source Pollution Model (AGNPS) (Bingner and Theurer, 2001;
Young et al., 1989), and Erosion Productivity Impact Calculator or Environmental Policy
Integrated Climate (EPIC) (Williams et al., 1984; Williams and Meinardus, 2004).

The conventional CN method yields lumped effects by taking weighted averages of
the modeling parameters. To account for the impacts of the spatial variability in land-
use changes, the modeling parameters are assigned to each cell (30 m) without any
spatial aggregation or averaging. The volume of runoff (Q) is computed as:

_ (P-0.25)
- P+08S "’

(1)
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where P is the precipitation, and S is the moisture retention, estimated from the runoff
curve number (CN), with:

_ 1
3_254[C ] )

The quantities P, Q, and S are measured in millimeters [mm]. Note that groundwater
flows are not modeled, and the antecedent soil moisture condition is considered by us-
ing the default es% >pn of the SCS method (USDA, 1986), setting 1,=0.2S (I, =initial
abstraction, in incnes). Details are provided in McCuen (1982), USDA (1986), and
Bingner and Theurer (2001).

Runoff flows are accumulated following the flow paths determined by topography.
The flow routing direction is determined by the D-8 method (i.e., eight flow directions),
which assigns the runoff on a given cell to the lowest-elevation cell among the eight
surrounding cells (O’Callaghan and Mark, 1984). The runoff process is analyzed at the
flow cell level, then at the flow path level, thep e catchment/watershed level. The
runoff over a flow path is obtained by summing= he storm runoffs occurring at all the
cells along the flow path. The total runoff volume at the watershed outlet is obtained by
summing up the runoffs occurring along all the flow paths within the watershed (Olivera,
1996).

A similar approach is applied to estimate the time of concentration, 7, (i.e., the
longest hydraulic distance to the watershed outlet). Rather than computing 7, from
the predefined longest geographical distance from the watershed outlet, the simulation
model calculates it by keeping track of the flow time for every pathway to better account
for the spatial variability in land configuration. The travel time of a flow path to the wa-
tershed outlet is calculated by summing up the travel times for all cells along the path.
The maximum travel time across all paths is selected as the time of conpantration. The
travel time for each cell is determined according to its flow type: overlaty- 4 v, shallow
concentrated flow, or channel flow (USDA, 1986). Surface roughness, channel shapes,
flow patterns, and slopes are the main % affecting time of concentration and flow
time. Land use mainly affects surface ness (i.e., Manning’s n coefficient), and,
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therefore, runoff flow velocity and travel time. Overland flow is estimated using Man-
ning’s kinematic solution, and channel flow is calculated with Manning’s equation. The
velocity from a shallow concentrated flow cell is calculated with the empirical and ex-
plicit formula developed by USDA (1986), and Bingner and Theurer (2001). Using field
observations, the shallow concentrated flow cell velocity is expressed as a function of
watercourse slope and type of channel. See TR-55 for details of this method (USDA,
1986).

After calculating the time of concentration and the total amount of runoff, the peak
runoff rate is determined using the extended TR-55 procedure (Bingner and Theurer,
2001), with:

Q,=278-10"%P,,D, -

a,+(cpTo) +(e,-T?) ] -

1+(byT,) +(d, - TE) +(f, - T)

1]t

where Q, is the peak discharge [m3/s], D, the area of the spatial unit [ha], Pz%
24 h effective rainfall over the total drainage area [mm], 7, theti 2 of concentration
[n] it is our standard for hour, and the coefficients, a,, b,, ¢,, dm=p-and f,, are deter-
mined by the ratio of initial abstraction (l,) to 24-h precipitation (7). See Bingner and
Theurer (2001) for the values of these coefficients. See Yeo et al. (2004) for further
description of the hydrological model.

2.2 Integrated Hydrological and Land-Use Optimization (IHLUO) model

An optimization method is integrated with the spatially explicit hydrological model to
delineate the land-use pattern that minimizes the peak storm runoff at the watershed
outlet, under given land-use constraints, with:

Min f (X) =Peak Runoff Rate (4)
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The estimator 2 for the location parameter a is used as point estimator for the global op-
timum (X*). Its confidence interval with a significance level of 100(1 —e'H)% is (Golden
and Alt, 1979; Dergis, 1985):

h e OF h\ . q4_pn-R
Pr{xm—bsx sx(1)}~1 e . (11)

However, the interval calculated by this a is too large. It was tightened by Los
and Lardinois (1982), using a real number’S, with:

®(a+b/S)=1-exp[-(1/5)]. (12)
Then, the confidence interval is given as:

Pr {x(”

1)—5/55)?*th }=1—exp(—F?/S°)_ (13)

1

If the confidence level (1-a) is expressed as

1-exp(-R/S°) =1-a, (14)
the real number S is

S=(-R/Ina)"/¢. (15)

Estimating the global optimum value and its confidence interval can then be used to
assess convergence toward the global optimum.

3 Numerical application
3.1 Data

The methodology is applied to a small catchment in the Old Women Creek watershed

(Ohio). Due to the large computing requirements of the IHLUO model and the need

to generate many independent local optima for statistical assessment, the numerical
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application is performed on a smalment, with a few land-use categories, a simple
drainage network, and simple spatial distribyti j-,Of land uses and soil types.

This catchment is overlaid by a grid of 173 2h cells, with land-use/cover classified
into three categories-agriculture, conservation, and urban. The catchment is predom-
inantly agricultural (78%), conservation land uses (grass/woods) represent 12.6% of
the area, urban land use makes up 1.5%, and the remainder represents water (8%).
Roads make up most of the urban land (25 cells), except for one cell of built-up struc-
tures. See Yeo et al. (2004) for further descriptions of the OWC and data sources
and processing. The land-use, soil, and topography structures of the catchment are
illustrated in Fig. 1.

The hydrolo3 odel is a single-event distributed system. The simulation is run
with 1-year sto .88 mm) event, determined using daily precipitation data available
on site (OWC watershed) and the Extreme Value Type | probability distribution function
(Chow et al. 1989). Since the data are only available in daily steps, it is assumed that
the precipitation pattern follows a SCS Il rainfall time distribution (USDA, 1986). The
Bulletin 17B method (IACWD, 1982) was used to calibrate the simulation model with
1-, 2-, 5- and 10-year flood frequency analysis at the 95% confidence level. See Yeo
et al. (2004) for further discussions on model implementation and validation.

3.2 Statistical assessment of global optimality

Five hundred land-use maps have been generated by randomly assigning land-use
types to the 1567 cells of this catchment, that are neither road nor water. The
total amounts of land use are kept constant across these maps: 22urban cells,
1307 agricultural cells, and 237 conservatio. These totals correspond to the opti-
mal land allocation obtained with the hierarcHKical optimization model developed by Yeo
et al. (2007). Starting with population and other forecasts for the whole watershed and
the year 2020 (see Yeo and Guldmann, 2006), this model allocates land use first at
the subwatershed, and next at the catchment level, using quadratic programming. The
resulting aggregate land allocation for this catchment is different from the current one,
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with 2.7% urban, 7gricultural, and 13.7% conservation land. The IHLUO model
is then applied to these 500 land use allocations at the 30-m cell level, and the result-
ing optimal allocations that minimize peak stormwater runoff at the catchment outlet
are further analyzed statistically. Nine identical local solutions were eliminated in order
to satisfy the assumptions of the Fisher-Tippett theorem, which requires independence
of the observations in the sample (Los and Lardinois, 1982; Dergis 1985).

In order to illustrate the range of the 491 initial solutions, the catchment is divided into
three sub-regions, as illustrated in Fig. 2, and statistics for the numbers of agricultural,
conservation, and urban cells allocated to each sub-region are reported in Table 1.
These allocations vary significantly within each sub-region, pointing to a wide range
of initial solutions. This range is mirrored by the range of the corresponding peak
discharge rates, which vary from 0.25 m®/sto 0.5m%/s (Fig.(=Jz|n contrast, the optimal
allocations generated by the IHLUO model display little vatiability, with much smaller
standard deviations and coefficients of variations (Table 1). The corresponding peak
discharges vary within the very narrow range of [0.254073-0.254298] m>/s (Fig. 3B).

Figure 4 displays five maps corresponding to the optimal allocations for the 1-, 25-,
50-, 75-, and 100 percentiles of the peak runoff flow, and the five initial land allocations
leading to these optimal allocations. The optimal maps are very close to each other,
but significantly different from the initial aIIocatioan_: 5ld to generate them. At the
optimum, most of the urban land is allocated to uplanuareas, near the upland boundary
of the catchment, away from the waterways and roads, and at low density. Urban land
is buffered by conservation land, in order to offset its impacts on runoff volume and
traveling time to the stream. Denser conservation land is allocated near the catchment
outlet along the waterways, and at the edge of the catchment, where the s steep,
but is avoided in areas with low infiltration capacity (i.e., soil type C or i%:t,reasing
the traveling time of runoff flows, but reducing the runoff volume.

These optimal peak runoff values are obtained at convergence, that is, when the sum
of the squared differences between the land allocations of two consecutive iterations in

D
il
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discussed earlier in Sect. 2, the main components of the hydrological simulation, the
calculations of the total runoff volume and traveling times, are involved in estimating
the peak discharge. How the land-use variables affect these two components and
the whole hydrological system is further examined in the following sections to provide
additional support for the convexity of the objective function, though no formal proof.

3.3.1 Estimation of the runoff volume

As described in Eq. (1), the CN method is used to estimate the volume of runoff (Q)
as a function of precipitation (P) and the moisture retention (S). While precipitation is
exogenous to the simulation model, the parameter (S) is solely a function of the curve
number (Eq. 2), which is endogenous, as it depends upon land cover and soil type. Let
x;; be land use / in cell /, and ¢, the curve number for land use /. Since soil types do

not vary across the|iatershe =vI curve number (cn;) for cell / is:
2

Cn,' = ZC/X,'/ (16)
/

where > x;,=1.

/
Therefore, the parameter S; and the runoff volume Q; of cell / are functions of the

vector of the land-use variables, X,;=(X;q,. .. X;;,..X;.) , with:

S; = F(X)) (17)

Q; = G(X)) (18)
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The runoff volume @, along the —1]ath p, to the watershed outlet is estimated by
summing the runoff volumes in all ¢ells’/ in the path, with:

P,-+0.2(%—1>]2
' 1) ] . (19)

o] < ||
Q= 3 0= T 6)- 3 |G| - > [ (
a P+0.8

100

iep, iep, iep iep,
;0/)(//

P is the amount of precipitation in cell /. The routing path is determined by the D-
8 method, which allows the flow to move to the lowest point among the neighboring
cells. Equation (20) is identical to Egs. (1-2), but applies to the runoff volume along the
flow path, instead of to a single cell. Although the total runoff is expressed analytically
as a function of the land-use variables, it is difficult to characterize the convexity of
the function presented in Eq. (20), because of the term F(X;). A numerical analysis
has been conducted to better understand this function. With the given land all—= é;n
and soil distribution (Fig. 1), the CN values (3 c,x;,) vary in the range of [77~wz[T0r
/

the study catchment. The runoff volume (Q,_ ) generated for these CN values was
computed. The results, presented in Fig. 6, show a monotonously increasing and
slightly convex relationship between Q,,_ and CN. As CN is a linear function of the X’s,
Q,, is a convex function of the X;’ s.

3.3.2 Estimation of the runoff travel time

The travel time of the stormwater runoff is also estimated by summing up the flow time
of each cell along a path. As discussed in Sect. 2.1., the most influential parameters
for flow time are land uses and topography. The overland flow is a function of Man-
ning’s roughness coefficient, flow length, and slope, the shallowly concentrated flow
is determined by slope, and the channel flow is computed with Manning’s roughness
coefficient, channel length and area, and slope. Manning’s roughness coefficient, a pa-
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rameter for surface friction and resistance, is a function of land-cover, and topography
determines the flow direction, slopes, and drainage patterns.

Rather than estimating the time of concentration from the geographically most distant
location, the hydrological model keeps track of all flow paths to the watershed outlet,
and assigns a specific flow type (i.e., sheet flow, shallowly concentrated flow, and open
channel flow) to each cell on each path. This is necessary to account for the impacts
of site-specific land-use changes, as surface cover affects the Manning’s roughness
coefficient used in flow time estimation. Then, the flow time is explicitly calculated for
each cell /, and the total flow time over path p, is estimated by the sum of the travel
times over all the consecutive flow segments along the flow path. Then, the time of
concentration 7, is determined by choosing the flow path with the maximum travel time.
Since flow path and type are fixed by watershed topography and geography, according
to the D-8 method and the TR-55 method (USDA, 1986), the time component of the
hydrological model is necessarily a function of the land-use variables vector X:

To = H(X) (20)
3.3.3 Estimation of the peak discharge

The peak discharge rate at the watershed outlet (Eq. 4) is estimated using the extended
TR-55 method (Bingner and Theurer, 2002), which requires the following inputs: the
runoff volume, the time of concentration, and the unit peak regression coefficients, a—f.
These coefficients are determined by the rainfall ;tion and the ratio /,/P,,. The
initial abstraction (/, ;) of cell / is estimated as 20% 6f the moisture retention S; (Eq. 2),
which is itself dependent upon the land uses in cell / (USDA, 1986), with:

1000

/,;=02.-5,=0.2
o : 2 CiXxy

-10 | =y(X)). (21)
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The initial abstraction for the watershed is then estimated as the average value of /, ;:
la/P2s= D 1a;/P2a= 2 y(X))/Pas=Y (X). (22)
i i

The constants (a—f) are derived from a look-up table, and Fig. 7 presents the changes
in their values as function of the ratio /,/P,,, for Type Il rainfall. Except for coefficient
a, these curves are strongly nonlinear. Once the values of parameters a—f are deter-
mined, the peak discharge rate is computed by:

Np,

T T2
a,+(c, Ty)+(e,-T5) =25.102 z Qp,L(H(X), Y (X)) (23)
1

1+ (b, -To) +(d, -T2+ (F,- T2)

Q,=25-10"2Py,D, -

where Y(X) represents the ratio /,/P,, that determines the regression coefficients a—f

(Eq. 28), H(X) represents the time of concentration 7, (Eq. 22), and Np, s the number

of all possible paths. The right-hand side of Eq. (24) is essentially identical to Eq. (4),
N

Pa
as the total runoff at the watershed outlet ( > Qp,) is equal to the product of the total
1

drainage area by the effective rainfall (P4D,), which is the amount of precipitation
that is neither retained by the land surface nor infiltrated into the soils. Equation (23)

relates two components, the total runoff volume and the time of concentration, to the
Np,
peak runoff. As the runoff volume (3 Qp,) has been shown to be convex (Sect. 3.3.1),
1

Eq. (24) is further analyzed by focusing on the component, L(H(X), Y (X)).

The function L(H(X), Y (X)) is computed with selected values for T, and the 1,/P,,
ratio for the study area. Numerical results are presented in Fig. 8 for 1,/P,,=(0.00,
0.25, 0.50, 0.75) and T, in the range [0-2 h], which covers all possible T, values in the
500 initial land-use patterns. The relatis presented in Fig. 8 are either convex or
linear. However, the convexity of Eq. (2a7Tannot be guaranteed, as the multiplication
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Np,
of two convex functions, L(H(X), Y (X)) and > Qp,, cannot be mathematically proven
1

to be convex.

4 Conclusions

This paper has investigated and characterized the relationship between land-use pat-
terns and watershed hydrology. The IHLUO model has been used to delineate optimal
land patterns that minimize the peak discharge rate at the watershed outlet. As the
relationship between land use and peak discharge is highly nonlinear, the global opti-
mality of a local optimum cannot be guaranteed a priori. A large number of solutions
has been generated from clearly different initial solutions, and these solutiont::;;lled
out to be very close to each other, strongly supporting the case for a convex tew

ship between peak discharge and land-use pattern. The obtained solutions can be
viewed as the solutions achieved with a given convergence criterion, and the Weibull
distribution has been used to generate a point estimate of the global optimum and its
confidence interval.

The convexity ogl objective function has been further investigated by examining
the underlying phywics-of the hydrological model in terms of land-use variables and by
performing numerical evaluations of its main components. The presented mathemat-
ical arrangements of conceptual hydrological model provide a unique way to assess
the impacts of land use changes across the multiple hydrologic processes of water-

shed system. %ﬁs

The numerical résurts strongly support, though do not fully prove, the case for con-
vexity. This finding allows the application of the IHLUO model to much larger water-
sheds, with many more decision variables, assuring that the obtained solution is reliably
the global optimum. It should be noted, however, that the conclusion on the convexity
of the land-water relationship may only be valid for the study area, as geographical
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characteristics (e.g., topography, soil type) can affect the structure of this relationship.
Despite this limitation, this research has proposed an innovative approach to char-
acterize and understand the spatial relationship between land-use pattern and peak
discharge. The proposed method can be adapted into other optimization integrated
models to develop watershed BMPs and used to assess the closeness of the obtained
solution to the global optimum.
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Fig. 1. Characteristics of the study area.
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Sub-Region 1
Total no. of cells: 356

Variable® no. of cells: 356

Sub-Region 2
Total no. of cells: 616

Variable® no. of cells: 546

Sub-Region 3
Total no. of cells: 760

Variable* no. of cells: 668
* Non-water and non-road

Sub-Region 3

=

Fig. 2. Sub-regions in the OWC catchment.
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(A} 1 Percentile Qp (B) 25 Percentile Qp {C) 50 Percentile Qp (D) 75 Percentile Qp (E) 100 Percentile Qp

tandUse: [ voan [ agrcumre [0 conservation [ stream - . A
(A) Initial Land Patterns

[4) 1 Percentile Qp (B} 25 Percentile Qp (C) 50 Percentile Qp (T) 75 Percentie Qp (E) 100 Percentile Gp

LandUse: [ towuro [0 ved Urb [ HighUro [ LowContowUry [T Med Conited Urb [ LowCon [__] Med Con [ Hiish Con

l:l Catchment - Stream EI|—D|Z—DI4 . A
(B) Optimal Land Patterns

Fig. 4. Initial and optimal land use maps. Note: The optimal land maps (4B) are generated
using three land use categories for illustration purpose only: urban (Urb), Agriculture (Ag), and
Conservation (Con). Only the dominant land use category is codedch cell, except in the
case where two land categories are in the same density group. Thre€ density groups are used:
Low=0-30%, Med (medium)=30-60%, High=60—100%.
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Fig. 7. Regression coefficients for peak discharge (Bingner and Theurer, 2002).
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Fig. 8. Numerical assessment of L(H(X), Y (X)) under type Ilgan
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