

1 **Frozen soil parameterization in a distributed biosphere**
2 **hydrological model**

3
4 **L. Wang¹, T. Koike¹, K. Yang², R. Jin³, H. Li³**

5 [1] {Dept. of Civil Engineering, the University of Tokyo, Tokyo, Japan}

6 [2] {Lab. of Tibetan Environment Changes and Land Surface Processes, Institute of
7 Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China}

8 [3] {Cold and Arid Regions Environmental and Engineering Research Institute, Chinese
9 Academy of Sciences, Lanzhou, China}

10 Correspondence to: L. Wang (wang@hydra.t.u-tokyo.ac.jp)

11
12 **Abstract**

13 In this study, a frozen soil parameterization has been modified and incorporated into a
14 distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen
15 scheme was then rigorously evaluated in a small cold area, the Binngou watershed,
16 against the in-situ observations from the WATER (Watershed Allied Telemetry
17 Experimental Research). First, by using the original WEB-DHM without the frozen
18 scheme, the land surface parameters and two van Genuchten parameters were optimized
19 using the observed surface radiation fluxes and the soil moistures at upper layers (5, 10
20 and 20 cm depths) at the DY station in July. Second, by using the WEB-DHM with the
21 frozen scheme, two frozen soil parameters were calibrated using the observed soil
22 temperature at 5 cm depth at the DY station from 21 November 2007 to 20 April 2008;
23 while the other soil hydraulic parameters were optimized by the calibration of the
24 discharges at the basin outlet in July and August that covers the annual largest flood peak
25 in 2008. With these calibrated parameters, the WEB-DHM with the frozen scheme was
26 then used for a yearlong validation from 21 November 2007 to 20 November 2008.
27 Results showed that the WEB-DHM with the frozen scheme has given much better
28 performance than the WEB-DHM without the frozen scheme, in the simulations of soil
29 moisture profile at the **cold regions catchment** and the discharges at the basin outlet in the
30 yearlong simulation.

31

32 **1 Introduction**

33 Frozen soil (comprising permafrost and seasonally-frozen soil) process is critically
34 important in the land surface hydrology of cold regions, since the freeze-thaw cycle
35 significantly modulates the soil hydraulic and thermal characteristics that directly affect
36 the water and energy cycles in the soil-vegetation-atmosphere transfer (SVAT) system.

37 At present, the improved modeling of the frozen soil process in a land surface scheme has
38 been recognized an indispensable task for more reliable estimates of soil moisture and
39 temperature profiles, particularly in the winter of Northern Hemisphere. The Project for
40 Intercomparison of Land surface Parameterization Schemes phase 2(d) (PILPS 2(d)) has
41 shown that the models with a frozen soil parameterization generally simulated realistic
42 soil temperature during winter than those without a frozen scheme (Luo et al., 2003). Up
43 to now, many studies have made efforts on improving the frozen soil parameterization in
44 land surface modeling (e.g., [Bonan et al. 1996](#); Slater et al., 1998; Koren et al., 1999;
45 Smirnova et al., 2000; Li and Koike, 2003; [Poutou et al. 2004](#); Woo et al., 2004; Niu and
46 Yang, 2006; Zhang et al., 2007; Nicolsky et al., 2007; Luo et al., 2009).

47 By contrast, the frozen soil process is often inadequately represented or even neglected in
48 most distributed hydrological models for basin-scale simulations, with only very few
49 exceptions (e.g., Cherkauer and Lettenmaier; 1999; Zhang et al., 2000; [Stocker-Mittaz et](#)
50 [al., 2002](#); Tian et al., 2006; Mou et al., 2008; [Ye et al., 2009](#)). In fact, the representations
51 of the frozen soil process can be indispensable in distributed hydrological modeling for
52 the understanding of the water and energy cycles in some Northern-Hemisphere river
53 basins, because many large rivers in Northern Hemisphere (e.g., the Yellow River (see
54 Tang et al., 2008) and the Heihe River (see Gao et al., 2008)) originate from high and
55 cold mountain regions. As a result, the hydrological simulations in the upper cold
56 subbasins of these river basins with a spatially-distributed manner become crucial for
57 improving integrated water resources management.

58 This study aims at improving the performance of a distributed biosphere hydrological
59 model (WEB-DHM; Wang et al., 2009a, 2009b) in the simulations of the frozen soil
60 process, which has been formulated in a previous study (Li and Koike, 2003). This frozen

61 soil scheme will be modified and incorporated into the WEB-DHM for better descriptions
62 of the frozen soil process. By using yearlong continuous observations (soil moisture, soil
63 temperature, and discharge) from the cold region hydrology experiment of WATER
64 (Watershed Allied Telemetry Experimental Research; Li et al., 2008, 2009), the newly-
65 developed WEB-DHM with the revised frozen scheme has been rigorously evaluated in a
66 small cold river basin (Binggou) at the upper area of the Heihe River.

67

68 **2 Model description**

69 The WEB-DHM (Water and Energy Budget-based Distributed Hydrological Model) was
70 a distributed biosphere hydrological model, which can give consistent descriptions of
71 water, energy and CO₂ fluxes at a basin scale (See Figure 1). It can efficiently simulate
72 hydrological processes of large-scale river basins while incorporating subgrid topography
73 (see Wang et al., 2009a).

74 In the study, a new version of the WEB-DHM has been developed by modifying and
75 incorporating a frozen soil parameterization (Li and Koike, 2003). First, the original
76 WEB-DHM is briefly reviewed in sections 2.1. Details about the hydrological submodel
77 were discussed in Wang et al. (2009a); while the formulations of the land surface
78 submodel can be found in Sellers et al. (1996a). Second, the frozen soil parameterization
79 in WEB-DHM is presented in detail.

80 **2.1 Review of the original WEB-DHM**

81 **2.1.1 General model structure**

82 As illustrated in Figure 1, the general model structure can be described as follows:

83 i. A digital elevation model (DEM) is used to define the target basin, which is then
84 divided into sub-basins (see Figure 1a). Within a given sub-basin, a number of
85 flow intervals are specified to represent time lags and the accumulating processes
86 in the river network. Each flow interval includes several model grids (see Figure
87 1b).

88 ii. For each model grid with one combination of land use type and soil type, the land
89 surface submodel independently calculates turbulent fluxes between the
90 atmosphere and land surface (see Figures 1b and 1d). The vertical distributions of
91 water for all the model grids, such as ground interception storage and soil moisture
92 profile, can be obtained through this biophysical process.

93 iii. Each model grid is subdivided into a number of geometrically symmetrical
94 hillslopes (see Figure 1c). A hillslope with unit length is called a basic
95 hydrological unit (BHU) of the WEB-DHM. For each BHU, the hydrological
96 submodel is used to simulate lateral water redistributions and calculate runoff
97 comprised of overland, lateral subsurface and groundwater flows (see Figures 1c
98 and 1d). Overland flow is described by Manning's equation, and lateral subsurface
99 flow and groundwater discharge are simulated using Darcy's law (Wang et al.,
100 2009a). The runoff for a model grid is the total response of all BHUs within it.

101 iv. For simplicity, the streams located in one flow interval are combined into a single
102 virtual channel. All the flow intervals are linked by the river network generated
103 from the DEM. All runoff from the model grids in the given flow interval is
104 accumulated into the virtual channel and led to the outlet of the river basin. The
105 flow routing of the entire river network in the basin is modeled using the kinematic wave
106 approach.

107 **2.1.2 Soil model**

108 Two different soil subdivision schemes are used in describing land surface processes and
109 hydrological processes.

110 In the calculation of land surface processes, the three-layer soil structure for the
111 unsaturated zone is the same as that in SiB2. The depth of the first layer (D_1) is defined as
112 5 cm, while the root depth (D_1+D_2) could be defined according to vegetation type by
113 SiB2 default. The thickness of the deep soil zone (D_3) changes with fluctuation of the
114 water table and is equal to the depth of the groundwater level minus the thickness of the
115 upper two layers.

116 In the simulation of soil water flow, a multiple-sublayer soil structure is employed to

117 describe the unsaturated zone. In the model, the non-uniform vertical distribution is
 118 represented using an assumption of exponentially decreasing hydraulic conductivity with
 119 increasing soil depth given by $k_z = k_{surface} * \exp(-f * z)$ (Beven, 1982; Cabral et al., 1992;
 120 Robinson and Sivapalan, 1996), where $k_{surface}$ and k_z are hydraulic conductivities at the
 121 soil surface and depth z , and f is a decay factor. The surface layer with a depth D_1 is kept
 122 as the first layer. The root zone and deep soil zone are uniformly subdivided into several
 123 sublayers. As shown in Figure 2, the multiple-sublayer structure is employed to calculate
 124 vertical interlayer flows and lateral runoff. The vertical interlayer flows in the unsaturated
 125 zone are described using a one-dimensional Richards equation (see Wang et al., 2009a).
 126 In this soil model, the van Genuchten equation (van Genuchten, 1980) is used as the soil
 127 hydraulic function.

128 2.2 Frozen soil parameterization

129 2.2.1 Soil hydraulic properties

130 Total volumetric water content of the j th soil layer (θ_j ; $\text{m}^3 \text{ m}^{-3}$) is defined as

$$131 \quad \theta_j = \theta_{liq,j} + \theta_{ice,j} \frac{\rho_{ice}}{\rho_{liq}}. \quad (1)$$

132 Where, $\theta_{liq,j}$ and $\theta_{ice,j}$ are the liquid water content and the ice content ($\text{m}^3 \text{ m}^{-3}$) of the
 133 j th soil layer; ρ_{ice} and ρ_{liq} are the density (kg m^{-3}) of ice and liquid water, respectively.

134 For the j th soil layer, the unfrozen water content ($\theta_{liq,j}$) is assumed as a simple power
 135 function of soil temperature ($T_{soil,j}$) (see Nakano et al., 1982; Romanovsky and
 136 Osterkamp, 2000; Li and Koike, 2003)

$$137 \quad \theta_{liq,j} = a(T_f - T_{soil,j})^b, \quad (2)$$

138 where, a and b are two empirical coefficients associated with soil type. Then the
 139 changing rate of liquid soil moisture (or ice) to soil temperature can be derived as

$$140 \quad \frac{\partial \theta_{liq,j}}{\partial T_{soil,j}} = -\frac{\rho_{ice}}{\rho_{liq}} \frac{\partial \theta_{ice,j}}{\partial T_{soil,j}} = (-ab)(T_f - T_{soil,j})^{b-1} \quad . \quad (3)$$

141 The soil hydraulic conductivity K_j and soil matric potential ψ_j at the j th soil layer in the
 142 unsaturated zone are described using a modified version of the van Genuchten's equation
 143 (van Genuchten, 1980):

$$144 \quad K_j = f_{ice,j} K_{sat,j} \left(\frac{\theta_{liq,j} - \theta_r}{\theta_s - \theta_r} \right)^{1/2} \left[1 - \left(1 - \left(\frac{\theta_{liq,j} - \theta_r}{\theta_s - \theta_r} \right)^{-1/m} \right)^m \right]^2, \quad (4)$$

$$145 \quad \psi_j = \frac{1}{\alpha} \left[\left(\frac{\theta_{liq,j} - \theta_r}{(\theta_s - \theta_{ice,j}) - \theta_r} \right)^{-1/m} - 1 \right]^{1/n}. \quad (5)$$

146 Where, θ_s is porosity and θ_r is residual water content; α , n are empirical parameters
 147 in van Genuchten's equation with $m = 1 - 1/n$; the hydraulic conductivity reduction factor
 148 for the j th soil layer ($f_{ice,j}$) is defined as a function of soil temperature at that layer

$$149 \quad f_{ice,j} = \exp(-10 * (T_f - T_{soil,j})) \text{ and } 0.05 \leq f_{ice,j} \leq 1; \quad (6)$$

150 and $K_{sat,j}$ is the saturated hydraulic conductivity at depth z (defined as the location of
 151 the center of the j th soil layer), which is measured downward in a direction normal to the
 152 soil surface (m). $K_{sat,j}$ is represented using the assumption of an exponential increase in
 153 hydraulic conductivity with increasing soil depth (that is the decay factor $f < 0$).

154 Similar to K_j , the groundwater hydraulic conductivity K_G is also formulated
 155 considering the frozen soil effect

$$156 \quad K_G = f_{ice,G} K_{G0}. \quad (7)$$

157 Where, the reduction factor $f_{ice,G}$ ($= \exp(-10 * (T_f - T_B))$ and $0.05 \leq f_{ice,G} \leq 1$) is
 158 expressed as a function of the temperature of the bottom soil layer (T_B); K_{G0} is the
 159 groundwater hydraulic conductivity without considering frozen soil (m s^{-1}).

160 2.2.2 Soil thermal properties

161 For the soil temperatures at the ground surface and the deep soil, the force-restore model
 162 (Deardorff, 1977) of the heat balance in the soil surface is kept, but the effective heat
 163 capacities of the soil surface and the snow-free soil are modified to represent the latent
 164 heat of fusion or the change of soil thermal conductivity

$$165 C_g \frac{\partial T_g}{\partial t} = Rn_g - H_g - \lambda E_g - \frac{2\pi C_d}{\tau_d} (T_g - T_d) - \xi_{gs}, \quad (8)$$

$$166 C_d \frac{\partial T_d}{\partial t} = \frac{1}{2(365\pi)^{1/2}} (Rn_g - H_g - \lambda E_g), \quad (9)$$

167 where, C_g and C_d are the effective heat capacity ($\text{J m}^{-2}\text{K}^{-1}$) for the soil surface and the
 168 snow-free soil; T_g and T_d are the temperatures for the soil surface and the deep soil,
 169 respectively (K); Rn_g is the absorbed net radiation by soil surface (W m^{-2}); H_g is the
 170 sensible heat flux from soil surface (W m^{-2}); E_g is the bare soil evaporation rate
 171 ($\text{kg m}^{-2}\text{s}^{-1}$); λ is the latent heat of vaporization (J kg^{-1}); τ_d is daylength (s); ξ_{gs} is the
 172 energy transfer due to phase changes in snow on ground (W m^{-2}).

173 The soil thermal conductivity ($H_{s,new}$; $\text{W m}^{-1} \text{K}^{-1}$) is calculated following Li and Cheng
 174 (1995)

$$175 H_s = \left[\frac{1.5 * (1 - \theta_s) + 1.3\theta_1}{0.75 + 0.65\theta_s - 0.4\theta_1} \right] 0.4186, \quad (10)$$

$$176 H_{s,new} = \begin{cases} H_s + (H_{s,max} - H_s) * \theta_{ice,1} * (\rho_{ice}/\rho_{liq}) / (\theta_1 - \theta_{liq,min}) & T_g \leq T_f \\ H_s & T_g > T_f \end{cases}. \quad (11)$$

177 Where, H_s is soil thermal conductivity without considering frozen soil; $H_{s,max}$ is the
 178 maximum heat conductivity after freezing; $\theta_{liq,min}$ is the minimum liquid water content
 179 after freezing. In the study, $\theta_{liq,min} = 0.05$; while $H_{s,max} = 2.5$ considering the existence
 180 of gravels in the soil.

181 The new equations of C_d and C_g are described as follows

182
$$C_d = 0.5 \left(\frac{H_{s,new} C_{soil} * 86400}{\pi} \right)^{1/2} . \quad (12)$$

183
$$C_g = \begin{cases} d_s \left(C_{soil} + \rho_{liq} L_f \frac{\partial \theta_{liq,1}}{\partial T_g} \right) + \min[0.05, (M_{gw} + M_{gs})] C_w & T_g < T_f - 0.01 \\ d_s C_{soil} + \min[0.05, (M_{gw} + M_{gs})] C_w & T_f - 0.01 \leq T_g \leq T_f \\ C_d + \min[0.05, (M_{gw} + M_{gs})] C_w & T_g > T_f \end{cases} , \quad (13)$$

184 where d_s is the effective depth (m) that feels the diurnal change of temperature (Stull,
 185 1988); C_{soil} is the volumetric heat capacity of soil ($\text{J m}^{-3}\text{K}^{-1}$) and
 186 $C_{soil} = (0.5 * (1 - \theta_s) + \theta_{liq,1} + 0.175 * \theta_{ice,1}) * 4.186 * 10^6$; the $\rho_{liq} L_f (\partial \theta_{liq,1} / \partial T_g)$
 187 represents the apparent heat capacity of soil freezing in the surface soil layer, and
 188 $\partial \theta_{liq,1} / \partial T_g = (-ab)(T_f - T_g)^{b-1}$; M_{gw} is the soil interception of liquid water store (m);
 189 C_w is the volumetric heat capacity of water ($\text{J m}^{-3}\text{K}^{-1}$). It should be mentioned that when
 190 the soil surface temperature is just below the freezing point, the phase changing rate
 191 $\partial \theta_{liq,1} / \partial T_g$ reaches its maximum value, making the effective heat capacity a very large
 192 value and therefore hampering the heat transfer. In order to solve this problem,
 193 $C_g = d_s C_{soil} + \min[0.05, (M_{gw} + M_{gs})] C_w$ is set for the transition zone from $T_f - 0.01$ to
 194 T_f in this study.

195 The depth of seasonal frost penetration is determined by the soil temperature profile,
 196 which is solved with Stefan solution (Yershov, 1990). The Stefan solution assumes a
 197 linear soil temperature profile in the frozen soil column, and for simplicity the soil
 198 temperature at 5 cm (T_{soil,D_l}) is assumed as

199
$$T_{soil,D_l} = \eta T_g + (1 - \eta) T_d . \quad (14)$$

200 Where, η is an empirical factor and $\eta = 0.5$ is used in this study.

201 The frost and thaw depths (ζ_f and ζ_t) is simulated following Li and Cheng (1995), and
 202 can be expressed in equations of the approximation Stefan solution (The Institute of

203 Geocryology, 1974; Li and Koike, 2003) as follows.

204
$$\zeta_f = \sqrt{\frac{2\kappa_f \tau_h \sum_{i=1}^t (T_f - T_{soil,D_i})}{L_f \rho_f \theta}}, \quad (15)$$

205
$$\zeta_t = \sqrt{\frac{2\kappa_t \tau_h \sum_{i=1}^t (T_{soil,D_i} - T_f)}{L_f \rho_f \theta}}, \quad (16)$$

206 where, κ_f , and κ_t are the thermal conductivity of freezing and thawing soils ($\text{W m}^{-1} \text{K}^{-1}$),
207 respectively; τ_h is the time length (s) and $\tau_h = 3600$ s in the study.

208 After determining the position of freezing front, the sublayer soil temperature in the root
209 zone and deep soil are estimated by a simple function of frost depth.

210 If $z \leq \zeta_f$, the soil temperature at a given depth z is

211
$$T_{soil,z} = T_f + (T_{soil,D_i} - T_f) \left(1 - \frac{z}{\zeta_f}\right); \quad (17)$$

212 If $z > \zeta_f$, the soil temperature at a given depth z is

213
$$T_{soil,z} = T_f + (T_d - T_f) \left(\frac{z - \zeta_f}{D_s - \zeta_f}\right), \quad (18)$$

214 where D_s is the top soil depth (see Figure 2).

215

216 3 Datasets for the study area

217 The cold region hydrology experiment is one of key experiments within the Watershed
218 Allied Telemetry Experimental Research (WATER; Li et al., 2008, 2009). The Binggou
219 watershed (Figure 3), located at $100^{\circ}12' - 100^{\circ}18'E$ and $38^{\circ}1' - 38^{\circ}4'N$, is one of the three
220 foci experimental areas where cold region hydrology experiments were carried out within
221 the framework of the WATER.

222 The Binggou watershed, located in the upper reaches of the Heihe River Basin (Figure 3),
223 is a high mountain drainage system with an area of 30.48 km^2 . The elevation is from

224 about 3440 to 4400 m (Figure 3). The watershed has the obvious vertical-zonality natural
225 landscape (Yang et al., 1992). In the altitude from 3440 to 4000 m, there is mainly alpine
226 meadow; while in the altitude from 3440 to 3700 m, the shrubs and the fish-scale shape
227 sod coexist. In the region above 4000 m, there is mainly the non-vegetation's alpine
228 desert, and the exposed decency rock debris quite grows having high water-permeability.
229 The longterm mean annual temperature is about -5.8 °C in the mean altitude (3900 m) of
230 the watershed (Yang et al., 1992). In the watershed, the permafrost distributes at the
231 region higher than 4000 m, with the air temperature lower than 0 °C in 9 months
232 (September to next May); while the discontinuous permafrost dominates the region lower
233 than 4000 m, with the air temperature lower than 0 °C in 7 months (October to next
234 April) (Yang et al., 1993). The longterm mean annual precipitation is about 686 mm, with
235 about 74% rainfall and 26% snowfall (Zhang and Yang, 1991). The snowfall prevails
236 from October to April; the rainfall concentrates on July and August; while sleet occurs in
237 May, June and September (Yang et al., 1992). The mean depth of the seasonable
238 snowpack is about 0.5 m, with a maximum of 0.8-1.0 m (Yang et al., 1993).
239 The datasets of the Binggou Watershed, as used in WEB-DHM, are as described below.
240 DEM and land use were provided by the WATER project (Li et al., 2008, 2009). The
241 model simulation adopted a grid size of 250 m, and the subgrid topography was described
242 by a 50 m resolution DEM. The land uses have been reclassified to 3 SiB2 categories
243 (Agriculture/C3 grassland, Dwarf trees and shrubs, and broadleaf shrubs with bare soil).
244 In the Dadongshu-Yakou (DY) station (with the elevation of 4146.8m; see Figure 3),
245 surface meteorological variables, as well as soil moisture and soil temperature profiles
246 were measured (with soil moisture and temperature sensors) continuously at the 10-
247 minute interval from 21 November 2007 to 20 November 2008. The precipitation,
248 relative humidity, air temperature, and wind speed, as well as air pressure, downward
249 longwave and shortwave radiation, obtained from the station were summated into the
250 hourly time series and taken as the forcing data for the whole watershed because the basin
251 is small and distributed data is not available. The surface air temperature inputs were
252 modified with a lapse rate of 6.5 K km^{-1} , considering the elevation differences between
253 the model grids and the DY station. However, the altitudinal effect on relative humidity
254 was assumed negligible. At the basin outlet, the Binggou stream gauge was newly built in

255 2008 and discharge data has been obtained from 17 January to 20 November 2008 for
256 model evaluation, with the frequency of several times a day. The method of discharge
257 measurements is briefly described as follows. First, a rectangle cross section was built
258 using concrete at the selected point. Second, the water depth (which was used to derive
259 the area of the cross section) and the flow velocity at the cross section were measured by
260 the local staff several times a day (not hourly). Third, the flow velocity and the area of the
261 cross-section were used to calculate the discharge at the cross-section.

262 The dynamic vegetation parameters are Leaf Area Index (LAI) and the Fraction of
263 Photosynthetically Active Radiation (FPAR) absorbed by the green vegetation canopy,
264 and can be obtained from satellite data. Global LAI and FPAR MOD15_BU 1 km data
265 sets (Myneni et al., 1997) were used in this study. These are 8-daily composites of
266 MOD15A2 products and were obtained using the Warehouse Inventory Search Tool
267 (WIST) of NASA.

268 All simulations were carried out with 250 m spatial resolution and hourly time step.

269

270 **4 Model evaluations at the Binggou watershed**

271 For the Binggou watershed, the hydrological processes are not only controlled by the
272 hydro-meteorological conditions of the land surface, but also by the underlying frozen
273 soil. The spring snowmelt occupies about 30% of the annual runoff; while the residual
274 comes from rainfall and groundwater (Zhang and Yang, 1991). In the lower area of the
275 watershed, soil starts thawing around April and stops by August; while in the upper
276 regions, soil starts thawing around late May. In the watershed, the thickness of the active
277 frozen soil layer is about 1.0-1.5 m in the lower regions, and is greater than 3.0 m in the
278 upper mountain regions (Yang et al., 1993).

279 In the early spring (April to May), with the increase of air temperature, snowmelt occurs
280 from the lower regions to the mountain areas. However, during this period (April to May),
281 the air temperature exceeds 0 °C only at noon, but drops to below 0 °C at night.
282 Consequently, much of the snowmelt water freezes again at night before its departure
283 from snowpack. Therefore, the snowmelt runoff in the early spring is small (around 15%
284 of annual runoff; Zhang and Yang, 1991). From May to June (late spring), the air

285 temperature increases to above 0 °C stably, and the snowmelt runoff becomes very large
286 (greater than 25% of annual runoff; Zhang and Yang, 1991). This is also attributed to the
287 little permeability of the underlying seasonal frozen soil layers which have thawed only
288 in upper soil layers (Kane and Stein, 1983). In summer, snow and seasonal frozen soil
289 layers disappear, and thus rainfall becomes the major source for river discharges. But the
290 permanent frozen soil layers still exist, which prohibit the water infiltration to deeper
291 layers. Heavy rainfall events in summer will usually result in severe flash floods in this
292 watershed, along with landslides and debris flows (Yang et al., 1993).

293 **4.1 Model calibration**

294 The vegetation static parameters including morphological, optical and physiological
295 properties were initially defined following Sellers et al. (1996b). In the summer 2008, by
296 using the WEB-DHM without the frozen scheme, the land surface parameters were
297 optimized using the observed radiation fluxes at the DY station in July; and then the two
298 van Genuchten parameters (α and n) were optimally obtained by the calibration of the
299 July soil moistures at upper layers (5, 10 and 20 cm depths) at the DY station. In the cold
300 season from 21 November 2007 to 20 April 2008, by using the WEB-DHM with the
301 frozen scheme, the parameters (a and b) used in the frozen soil scheme were optimized
302 through matching the simulated and observed soil temperatures at 5 cm depth (T_{soil,D_1}).
303 Third, by using the WEB-DHM with the frozen scheme, the other soil hydraulic
304 parameters were optimally obtained by the calibration of the discharges at the basin outlet
305 in July and August that covers the annual largest flood peak in 2008.

306 **4.1.1 Parameters optimized through the WEB-DHM without the frozen 307 scheme**

308 First, the land surface parameters were optimized using the observed surface radiation
309 fluxes at the DY station in July. For the DY station, land is covered by the SiB2 biome 9
310 (“Agriculture/C3 grassland”). The canopy cover fraction, the height of canopy top, and
311 the height of canopy bottom, as well as the root depth (Dr), the top soil depth (Ds), and
312 the ground roughness length (z_s) have been designed as 0.2, 0.05 m, 0.005 m, 0.25 m,
313 1.25 m, and 0.001 m according to the field obervations in Li et al. (2009). The soil

314 reflectance to visible radiation for the SiB2 biome 9 was optimized as 0.15 using
315 observed upward shortwave radiation in July 2008; while the surface emissivity has been
316 kept as 1.0 following Seller et al. (1996b). Other time-invariant vegetation parameters
317 were set following Sellers et al. (1996b). Soil hydraulic properties have been kept equal
318 to values derived from FAO (2003) during the calibration of land surface parameters.

319 Second, the two van Genuchten parameters (α and n) were optimized by using the
320 measured soil moistures at upper layers at the DY station. The porosity and the residual
321 soil moisture were set as 0.585 and 0.017 according to the yearlong soil moisture
322 measurements from 21 November 2007 to 20 November 2008 in the DY station. The van
323 Genuchten parameters α and n regulate the soil hydraulic function which controls the
324 soil water transport. They were optimized as 0.1 and 2.1 respectively, by comparing the
325 simulated and observed soil moistures at the upper soil layers (5, 10, and 20 cm) in July
326 2008 at the DY station; while keeping the original values of $K_{surface}$ obtained from FAO
327 (2003).

328 4.1.2 Parameters optimized through the WEB-DHM with the frozen 329 scheme

330 First, at the DY station, the frozen soil parameters (a and b) are optimized through
331 matching the simulated and observed T_{soil,D_1} in the cold season (from 21 November 2007
332 to 20 April 2008); while d_s is set as 0.6 m, according to the measured winter soil
333 temperature profiles at the DY station (Li et al., 2009).

334 Second, at the basin-scale, the other soil hydraulic parameters were further optimized to
335 obtain good reproduction of the flood event that occurred at the Binggou stream gauge
336 during the summer (July and August) of 2008. These parameters include the saturated
337 hydraulic conductivity for soil surface $K_{surface}$, the soil anisotropy ratio $anik$, the
338 groundwater hydraulic conductivity for groundwater K_{G0} , and the hydraulic conductivity
339 decay factor f . The optimization was done using a trial and error method by matching
340 the simulated and observed flood peaks and tails. It should be mentioned that the
341 assumption of an exponential increase in hydraulic conductivity with increasing soil

342 depth is used in the WEB-DHM with the frozen scheme ($f < 0$).

343 The basin-averaged values of the land surface and soil hydraulic parameters, as well as
344 the frozen soil parameters used in the Binggou watershed are listed in Table 1.

345 4.1.3 Calibration results

346 The bias error (*BIAS*) and root mean squared error (*RMSE*) are used as evaluation
347 criterion for the simulated results, where *BIAS* and *RMSE* are defined as

$$348 BIAS = \sum_{i=1}^N (x_{si} - x_{oi}) / N, \quad (19)$$

$$349 RMSE = \sqrt{\sum_{i=1}^N (x_{si} - x_{oi})^2 / N}, \quad (20)$$

350 where x_{oi} is the observation, x_{si} is the simulation, and N is the total number of time
351 series for comparison.

352 Figure 4 shows the simulated and observed hourly upward solar radiation from 1 to 31
353 July 2008 at DY station with the *BIAS* and the *RMSE*, by using the WEB-DHM without
354 the frozen scheme. The observed soil moisture and temperature profiles were used to
355 initialize the model at the first hour of 1 July 2008; while the initial water table depth was
356 assumed as same as the initial depth of the unsaturated zone ($D_s = 1.25$ m). After the
357 calibration of the soil reflectance to visible radiation, the diurnal cycles of the upward
358 solar radiation is well represented by the calibrated WEB-DHM without the frozen
359 scheme. The *BIAS* and *RMSE* for the simulated upward shortwave radiation at the DY
360 station are -3.8 W m^{-2} and 32.6 W m^{-2} , respectively. It should be mentioned that the
361 measurements of upward longwave radiation in the station were found erroneous for all
362 periods, and was not used for model evaluation in the study.

363 Figure 5 illustrates the hourly evolutions of precipitation and the simulated and observed
364 hourly volumetric liquid soil moisture at 5, 10, 20, 40, 80, and 120 cm in July 2008 at the
365 DY station, by using the WEB-DHM without the frozen scheme. Reasonable responses
366 of soil moisture at the upper layers (5, 10, and 20 cm) to the rainfall events are
367 reproduced with high accuracies (Figures 5b-5d). The *BIAS* for the simulated soil
368 moistures at 5, 10, and 20 cm are -0.003 , 0.011 , and -0.012 ; while their *RMSE* values are
369 0.031 , 0.029 and 0.030 , respectively. The soil moisture at 120 cm is also accurately

370 simulated by the WEB-DHM **without** the frozen scheme (see Figure 5g), since the soil at
371 this depth was still in frozen in July at the station. The *RMSE* values for the simulated soil
372 moisture at 40 and 80 cm (particularly 80 cm) are relatively large, which can be attributed
373 to the thawing activity. It reveals that even in the summer simulations at the DY station, a
374 frozen soil scheme is essential.

375 Figure 6a gives the hourly simulated and observed soil temperature at 5 cm in the DY
376 station from 21 December 2007 to 20 April 2008, by using the WEB-DHM **with** the
377 frozen scheme. After the calibration of frozen soil parameters (*a* and *b*), the soil
378 temperature at 5 cm in the cold seasons is well reproduced, with the *BIAS* and *RMSE*
379 values equal to 0.84 K and 1.68 K, respectively.

380 Figure 6b plots the calibrated hourly hydrograph from July to August 2008 at the
381 Binggou gauge, by using the WEB-DHM **with** the frozen scheme. Here, the WEB-DHM
382 with the frozen scheme was initialized from a previous simulation starting from 21
383 November 2007. It is shown that after calibration, in general the model reproduces both
384 the peak and base flows **well**. The difference of timing and magnitudes between the
385 observed and simulated peak flows is possibly attributed to the sparse density of the
386 meteorological sites used in the study (only the DY station). It should be mentioned that
387 the discharges at the Binggou gauge were measured discontinuously and irregularly, and
388 thereby the evaluation criterions (e.g., the Nash-Sutcliffe model efficiency coefficient
389 (Nash and Sutcliffe, 1970) and the bias error **are not estimated**.

390 4.2 Model validation

391 The calibrated WEB-DHM **with** the frozen scheme was then used for a yearlong
392 simulation from 21 November 2007 to 20 November 2008, to check its performance.

393 4.2.1 Thaw depth at the DY station from 1 May to 31 August 2008

394 Figure 7 displays the hourly observed (interpolated from the observations of soil
395 temperature profile) and simulated thaw depth at the DY station, from 1 May to 31
396 August 2008, by using the WEB-DHM with the frozen scheme. It is shown that in
397 general the model estimates the thaw depth with an acceptable accuracy, with the *BIAS*

398 and *RMSE* values equal to -0.15 m and 0.20 m, respectively.

399 4.2.2 Soil temperature at the DY station from 21 November 2007 to 20
400 November 2008

401 Figure 8a gives the hourly observed and simulated T_{soil,D_1} from 21 November 2007 to 20
402 November 2008 at the DY station, by using the WEB-DHM with the frozen scheme.
403 Figure 8b plots the hourly simulated T_d by the WEB-DHM with the frozen scheme,
404 comparing to the average of soil temperatures at 20, 40, and 80 cm. In general, the WEB-
405 DHM with the frozen scheme well reproduces the yearlong T_{soil,D_1} and T_d , with the *BIAS*
406 of -0.20 K and -0.50 K, and the *RMSE* of 2.56 K and 1.47 K for T_{soil,D_1} and T_d ,
407 respectively.

408 4.2.3 Snow depth at the DY station from 21 November 2007 to 20
409 November 2008

410 Figure 9 compares the hourly snow depth at the DY station from 21 November 2007 to
411 20 November 2008, simulated by the WEB-DHM without and with the frozen scheme.
412 Here, the snow depth is assumed as five times of the snow-water equivalent, and the large
413 fluctuations of the observed snow depth at the station were caused by the strong wind
414 blowing. It is obvious that the WEB-DHM with the frozen scheme predicts the snow
415 depth much better than the WEB-DHM without the frozen scheme.

416 4.2.4 Soil moisture at the DY station from 21 November 2007 to 20
417 November 2008

418 Figure 10 draws the hourly volumetric liquid soil moisture averaged at surface layer (0-5
419 cm), root zone (5-25 cm), and deep soil layer (25-125 cm) at the DY station from 21
420 November 2007 to 20 November 2008, simulated by the WEB-DHM without and with
421 the frozen scheme. Results showed that the WEB-DHM with the frozen scheme generally
422 gives more realistic yearlong (in particular the thawing periods) soil moisture profile than
423 those simulated by the WEB-DHM without the frozen scheme. For the soil moisture at
424 surface layer (0-5 cm), root zone (5-25 cm), and deep soil layer (25-125 cm), the results

425 by the WEB-DHM with the frozen scheme obtains the *RMSE* of 0.068, 0.043, and 0.088,
426 respectively; while the ones by the WEB-DHM without the frozen scheme gets the *RMSE*
427 of 0.109, 0.068, and 0.086, respectively. The overestimation of soil moisture at deep soil
428 layer (25-125 cm), from May to July 2008 by the WEB-DHM with the frozen scheme is
429 possibly attributed to the large gravels distributed in deep soil layers. Without considering
430 the large gravels, the excessive recharges to the deep soil layer from the unconfined
431 aquifer may have been simulated with the WEB-DHM with the frozen scheme. The
432 noises in the simulated liquid soil moistures are caused by the changes of the soil
433 temperatures from below freezing to above freezing.

434 **4.2.5 Discharges at the Binggou gauge from 17 January to 20 November**
435 **2008**

436 By using the measured streamflows from 17 January to 20 November 2008, the simulated
437 longterm (including cold seasons) hourly discharges at Binggou gauge are further
438 evaluated.

439 Figure 11 displays the hourly hydrographs simulated by the WEB-DHM without and with
440 the frozen scheme at the Binggou gauge from 17 January to 20 November 2008. Results
441 show that the streamflows simulated by the WEB-DHM with the frozen scheme agree
442 fairly well with the observations; while those calculated by the WEB-DHM without the
443 frozen scheme have large difference from the observations, with the overestimation of
444 baseflows (January-April), the underestimation of snowmelt flows (April-May), and the
445 overestimation of peak flows (July-August). The improved simulation results by the
446 WEB-DHM with the frozen scheme can be attributed to the following reasons:

447 (1) The consideration of reduction factor of the groundwater hydraulic conductivity
448 ($f_{ice,G}$) largely improves the model's performance from January to April (also see
449 Figure 12). Figure 12b demonstrates the logarithmic hourly hydrographs simulated
450 by using the WEB-DHM with the frozen scheme at the Binggou gauge from 17
451 January to 20 November 2008, which further confirms the good performance of
452 the new system in simulating base flows. Without the treatments of the frozen soil
453 effect on the groundwater hydraulic conductivity, excessive baseflows have been

454 obtained from January to April 2008 (see Figure 12a).

455 (2) In the spring season (April-May), more snowmelt runoff calculated by the WEB-
456 DHM with the frozen scheme is due to the treatments of the hydraulic conductivity
457 reduction for each soil layer ($f_{ice,j}$) as a function of soil temperature, which has
458 resulted in less infiltration during the snow melting.

459 (3) The poorer flood peaks obtained by the WEB-DHM without the frozen scheme, are
460 possibly caused by the overestimation of the soil hydraulic conductivities at the
461 deep soil layer and the unconfined aquifer during the thawing process.

462

463 5 Concluding remarks

464 In this study, the distributed biosphere hydrological model WEB-DHM was improved by
465 incorporating a frozen soil parameterization. The WEB-DHM with the frozen scheme
466 was then applied to the Binggou watershed for evaluation using the in-situ observations
467 from WATER.

468 After calibrating land surface parameters, soil hydraulic parameters, and frozen soil
469 parameters, the WEB-DHM with the frozen scheme was then used for a yearlong
470 validation from 21 November 2007 to 20 November 2008, to check the model's
471 applicability in the continuous simulation. Results show that the WEB-DHM with the
472 frozen scheme has given much better performance than the WEB-DHM without the
473 frozen scheme, in the simulations of soil moisture profile at the DY station and the
474 discharges (base and peak flows as well as snowmelt runoff) at the basin outlet in the
475 yearlong simulation.

476 In the literatures regarding to the frozen soil parameterization in land surface modeling,
477 there are mainly three ways to simulate the ice content or the unfrozen water content
478 within the soil. These methods estimate the ice content depending on the heat available
479 (e.g., Slater et al., 1998; Takata and Kimoto, 2000; Dai et al., 2003), or using the freezing
480 point depression equation (e.g., Koren et al., 1999; Smirnova et al., 2000; Niu and Yang,
481 2006; Zhang et al., 2007), or relying on empirical equations (Pauwels and Wood, 1999;
482 Li and Koike, 2003). The empirical equations-based frozen soil parameterization by Li

483 and Koike (2003) is used in the study, to improve the original WEB-DHM for simulating
484 frozen soil dynamics, largely due to its simple structure and low computation costs.
485 Furthermore, the study by Li and Koike (2003) has shown the good compatibility
486 between the empirical frozen soil parameterization and SiB2; while the original WEB-
487 DHM uses a hydrologically-improved SiB2 (Wang et al., 2009c) as its land surface
488 submodel. Although the method in the study estimates the ice content based on empirical
489 equations, the calibrated WEB-DHM with the frozen scheme has demonstrated
490 acceptable accuracies in simulating point-scale frozen soil dynamics and basin-scale
491 integrated streamflows. Meanwhile, the frozen scheme using empirical equations also
492 results in difficulty in achieving an optimal set of the frozen soil parameters a and b , as
493 the new model (the WEB-DHM with the frozen scheme) is very sensitive to the two
494 parameters (particularly b) in simulating the soil temperature and moisture profiles.

495 Different from Li and Koike (2003) that formulated frozen soil process in a 1-D land
496 surface model (SiB2), this study has modified and incorporated the frozen soil scheme
497 into a distributed biosphere hydrological model (WEB-DHM). The newly-developed
498 WEB-DHM with the frozen scheme has made it possible to simulate the basin-scale cold-
499 region land surface hydrological processes in a spatially-distributed manner while
500 considering the topographically-driven lateral flows. It can be used as a model operator in
501 the catchment-scale land surface hydrological data assimilation system in cold regions, to
502 improve modelling of soil moisture and the surface energy budget as well as streamflows.

503

504

505 **Acknowledgements**

506 This study was funded by grants from Japan Aerospace Exploration Agency. Parts of this
507 work were also supported by grants from the Ministry of Education, Culture, Sports,
508 Science and Technology of Japan. The data used in the paper are provided by the Chinese
509 Academy of Sciences Action Plan for West Development Program (grant number:
510 KZCX2-XB2-09) and Chinese State Key Basic Research Project (grant number:
511 2007CB714400). The fifth author (Dr. H. Li) was supported by National Natural Science
512 Foundation of China (grant number: 40671040).

Symbol	Definition
C_d	effective heat capacity for the snow-free soil ($\text{J m}^{-2}\text{K}^{-1}$)
C_g	effective heat capacity for the soil surface ($\text{J m}^{-2}\text{K}^{-1}$)
C_{soil}	volumetric heat capacity of soil ($\text{J m}^{-3}\text{K}^{-1}$)
C_w	volumetric heat capacity of water ($\text{J m}^{-3}\text{K}^{-1}$)
d_s	effective depth that feels the diurnal change of temperature (m)
E_g	bare soil evaporation rate ($\text{kg m}^{-2}\text{s}^{-1}$)
f	hydraulic conductivity decay factor
$f_{ice,G}$	reduction factor for the groundwater hydraulic conductivity
$f_{ice,j}$	hydraulic conductivity reduction factor for the j th soil layer
H_g	sensible heat flux from soil surface (W m^{-2})
H_s	soil thermal conductivity without considering frozen soil
$H_{s,new}$	soil thermal conductivity considering frozen soil
K_G	groundwater hydraulic conductivity (m s^{-1})
K_{G0}	constant groundwater hydraulic conductivity without considering frozen soil effect (m s^{-1})
K_j	soil hydraulic conductivity at the j th soil layer (m s^{-1})
$K_{sat,j}$	saturated hydraulic conductivity for the j th soil layer (m s^{-1})
$K_{surface}$	saturated conductivity at the soil surface (m s^{-1})
L_f	latent heat of fusion (J kg^{-1})
M_{gw}	soil interception of liquid store (m)
M_{gs}	snow-ice stored on the ground (m)
n	empirical parameter in van Genuchten's equation
Rn_g	absorbed net radiation by soil surface (W m^{-2})
T_B	temperature of the bottom soil layer (K)
T_d	temperature of the deep soil (K)
T_f	freezing point of water (K)
T_g	soil surface temperature (K)
T_{soil,D_l}	soil temperature at 5 cm (K)
$T_{soil,j}$	soil temperature at the j th soil layer (K)
$T_{soil,z}$	soil temperature at a given depth z (K)

Greek letters

α	empirical parameters in van Genuchten's equation
ζ_f	frost depth (m)

ζ_t	thaw depth (m)
$\theta_{ice,j}$	ice content of the j th soil layer ($\text{m}^3 \text{ m}^{-3}$)
θ_j	total volumetric water content of the j th soil layer ($\text{m}^3 \text{ m}^{-3}$)
$\theta_{liq,j}$	liquid water content of the j th soil layer ($\text{m}^3 \text{ m}^{-3}$)
θ_r	residual soil water content ($\text{m}^3 \text{ m}^{-3}$)
θ_s	porosity ($\text{m}^3 \text{ m}^{-3}$)
λ	latent heat of vaporization (J kg^{-1})
ξ_{gs}	energy transfer due to phase changes in snow on ground (W m^{-2})
ρ_{ice}	density of ice (kg m^{-3})
ρ_{liq}	density of liquid water (kg m^{-3})
ψ_j	soil matric potential at the j th soil layer

514

515

516 **Reference**

517 Beven, K. J.: On subsurface storm flow: an analysis of response times, *Hydrol. Sci. J.*, 4,
 518 505-519, 1982.

519 Bonan, G.: A land surface model (LSM version 1.0) for ecological, hydrological, and
 520 atmospheric studies: technical description and user's guide, NCAR Technical Note 417,
 521 NCAR, Boulder Co., USA, 1996.

522 Cabral, M. C., Garrote, L., Bras, R. L., and Entekhabi, D.: A kinematic model of
 523 infiltration and runoff generation in layered and sloped soils, *Adv. Water Resour.*, 15,
 524 311-324, 1992.

525 Cherkauer, K. A., and Lettenmaier, D. P.: Hydrologic effects on frozen soils in the upper
 526 Mississippi River basin, *J. Geophys. Res.*, 104(D16), 19599-19610, 1999.

527 Dai, Y., Zeng, X., Dickinson, R. E., et al.: The Common Land Model, *Bull. Amer.*
 528 *Meteor. Soc.*, 84, 1013-1023, 2003.

529 Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture, with
 530 inclusion of a layer of vegetation, *J. Geophys. Res.*, 83, 1889-1903, 1977.

531 FAO: Digital soil map of the world and derived soil properties, Land and Water Digital
532 Media Series Rev. 1, United Nations Food and Agriculture Organization, CD-ROM,
533 2003.

534 Gao, Y., Chen F., Barlage, M., et al.: Enhancement of land surface information and its
535 impact on atmospheric modeling in the Heihe River Basin, northwest China, *J. Geophys.*
536 *Res.*, 113, D20S90, doi:10.1029/2008JD010359, 2008.

537 Kane, D. L., and Stein, J.: Water Movement Into Seasonally Frozen Soils, *Water Resour.*
538 *Res.*, 19(6), 1547–1557, 1983.

539 Koren, V., Schaake, J., Mitchell, K., Duan, Q., Chen, F., and Baker, J.: A
540 parameterization of snowpack and frozen ground intended for NCEP weather and climate
541 models, *J. Geophys. Res.*, 104(D16), 19569-19585, 1999.

542 Li, S. and Cheng, G.: Problem of Heat and Moisture Transfer in Freezing and Thawing
543 Soils. Lanzhou Univ. Press, Lanzhou, China. 203 pp, 1995.

544 Li, X., and Koike, T.: Frozen soil parameterization in SiB2 and its validation with
545 GAME-Tibet observations, *Cold Reg. Sci. Technol.*, 36, 165-182, 2003.

546 Li, X., Ma, M. G., Wang, J., Liu, Q., Che, T., Hu, Z. Y., Xiao, Q., Liu, Q. H., Su, P. X.,
547 Chu, R. Z., Jin, R., Wang, W. Z. and Ran, Y. H.: Simultaneous remote sensing and
548 ground-based experiment in the Heihe River Basin: Scientific objectives and experiment
549 design, *Advance in Earth Sciences*, 23, 897-914, 2008.

550 Li, X., Li, X. W., Li, Z. Y., Ma, M. G., Wang, J., Xiao, Q., Liu, Q., Che, T., Chen, E. X.,
551 Yan, G. J., Hu, Z. Y., Zhang, L. X., Chu, R. Z., Su, P. X., Liu, Q. H., Liu, S. M., Wang, J.
552 D., Niu, Z., Chen, Y., Jin, R., Wang, W. Z., Ran, Y. H., Xin, X. Z. and Ren, H. Z.:
553 Watershed Allied Telemetry Experimental Research, *J. Geophys. Res.*, 114, D22103,
554 doi:10.1029/2008JD011590, 2009.

555 Luo, L., Robock, A., Vinnikov, K. Y., et al.: Effects of frozen soil on soil temperature,
556 spring infiltration, and runoff: results from the PILPS 2(d) experiments at Valdai, Russia,
557 *J. Hydrometeorol.*, 4, 334-351, 2003.

558 Luo, S., Lü, S., and Zhang, Y.: Development and validation of the frozen soil
559 parameterization scheme in Common Land Model, *Cold Reg. Sci. Technol.*, 55, 130-140,
560 2009.

561 Myneni, R. B., Nemani, R. R., and Running, S. W.: Algorithm for the estimation of
562 global land cover, LAI and FPAR based on radiative transfer models, *IEEE T. Geosci.*
563 *Remote*, 35, 1380-1393, 1997.

564 Mou, L., Tian, F., Hu, H., and Sivapalan, M.: Extension of the Representative Elementary
565 Watershed approach for cold regions: constitutive relationships and an application,
566 *Hydrol. Earth Syst. Sci.*, 12, 565-585, 2008.

567 Nakano, Y., Tice, A. R., and Oliphant, J. L.: Transport of water in frozen soil: I.
568 Experiment determination of soil water diffusivity under isothermal condition, *Adv.*
569 *Water. Resour.*, 5, 221-226, 1982.

570 Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I -
571 A discussion of principles, *J. Hydrol.*, 10(3), 282–290, 1970.

572 Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence, D. M.: Improved
573 modeling of permafrost dynamics in a GCM land-surface scheme, *Geophys. Res. Lett.*,
574 34, L08501, doi:10.1029/2007GL029525, 2007.

575 Niu, G., and Yang, Z.: Effects of frozen soil on snowmelt runoff and soil water storage at
576 a continental scale, *J. Hydrometeorol.*, 7, 937-952, 2006.

577 Pauwels, V. R. N., and Wood, E. F.: A soil-vegetation-atmosphere transfer scheme for
578 the modeling of water and energy balance processes in high latitudes. 1. Model
579 improvements, *J. Geophys. Res.*, 104, 27811-27822, 1999.

580 Poutou, E., Krinner, G., Genthon, C., and de Noblet-Ducondré, N.: Role of soil freezing
581 in future boreal climate change, *Clim. Dyn.*, 23, 621-639, 2004.

582 Robinson, J. S., and Sivapalan, M.: Instantaneous response functions of overland flow
583 and subsurface stormflow for catchment models, *Hydrol. Process.*, 10, 845-862, 1996.

584 Romanovsky, V. E., and Osterkamp, T. E.: Effects of unfrozen water on heat and mass
585 transport processes in the active layer and permafrost, *Permafrost Periglac. Process.*, 11,
586 219-239, 2000.

587 Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A.,
588 Zhang, C., Collelo, G. D., Bounoua, L.: A revised land surface parameterization (SiB2)
589 for atmospheric GCMs, Part I: Model Formulation, *J. Climate*, 9, 676-705, 1996a.

590 Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J.,
591 Randall, D. A.: A revised land surface parameterization (SiB2) for atmospheric GCMs,
592 Part II: The generation of global fields of terrestrial biosphysical parameters from satellite
593 data, *J. Climate*, 9, 706-737, 1996b.

594 Slater, A. G., Pitman, A. J., and Desborough, C. E.: Simulation of freeze-thaw cycles in a
595 general circulation model land surface scheme, *J. Geophys. Res.*, 103(D10), 11303-
596 11312, 1998.

597 Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kim, D: Parameterization of cold-
598 season processes in the MAPS land-surface scheme, 105(D3), 4077-4086, 2000.

599 Stocker-Mittaz, C., Hoelzle, M., and Haeberli, W.: Permafrost distribution modeling
600 based on energy-balance data: a first step, *Permafrost Periglacial Processes*, 13, 271–282,
601 2002.

602 Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
603 Publishers, Netherlands, 1988.

604 Takata, K., and Kimoto, M.: A numerical study on the impact of soil freezing on the
605 continental-scale seasonal cycle, *J. Meteor. Soc. Japan*, 78, 199-221, 2000.

606 Tang, Q., Oki, T., Kanae, S., Hu, H.: Hydrological cycles change in the Yellow River
607 Basin during the last half of the twentieth century, *J. Climate*, 21, 1790-1806, 2008.

608 Tian, F., Hu, H., Lei, Z., and Sivapalan, M.: Extension of the Representative Elementary
609 Watershed approach for cold regions via explicit treatment of energy related processes,
610 *Hydrol. Earth Syst. Sci.*, 10, 619-644, 2006.

611 The Institute of Geocryology, Siberia Branch, Academy of Soviet Union, 1974. General
612 Geocryology. Translated by Guo, D., Liu, T., and Zhang, W., 1988. Sciences Press of
613 China, Beijing, 318 pp.

614 van Genuchten, M. T.: A closed form equation for predicting the hydraulic conductivity
615 of unsaturated soils, *Soil Sci. Soc. Am. J.*, 44, 892-898, 1980.

616 Wang, L., Koike, T., Yang, K., Jackson, T., Bindlish, R., Yang, D.: Development of a
617 distributed biosphere hydrological model and its evaluation with the Southern Great
618 Plains Experiments (SGP97 and SGP99), *J. Geophys. Res.*, 114, D08107,
619 doi:10.1029/2008JD010800, 2009a.

620 Wang, L., Koike, T., Yang, K., Yeh, P. J. F.: Assessment of a distributed biosphere
621 hydrological model against streamflow and MODIS land surface temperature in the upper
622 Tone River Basin, *J. Hydrol.*, 377, 21-34, 2009b.

623 Wang, L., Koike, T., Yang, D., and Yang, K.: Improving the hydrology of the Simple
624 Biosphere Model 2 and its evaluation within the framework of a distributed hydrological
625 model, *Hydrol. Sci. J.*, 54(6), 989-1006, 2009c.

626 Woo, M., Arain, M. A., Mollinga, M. and Yi, S.: A two-directional freeze and thaw
627 algorithm for hydrologic and land surface modelling, *Geophys. Res. Lett.*, 31, L12501,
628 doi:10.1029/2004GL019475, 2004.

629 Yang, Z., Yang, Z., and Zhang, X.: Runoff and its generation model of cold region in
630 Binggou Basin of Qilian Mountain, *Memoirs of Lanzhou Institute of Glaciology and*
631 *geocryology, Chinese Academy of Sciences*, 7, 91-99, 1992. [In Chinese]

632 Yang, Z., Yang, Z., Liang, F., and Wang, Q.: Permafrost hydrological processes in
633 Binggou Basin of Qilian Mountains, *Journal of Glaciology and Geocryology*, 15(2), 235-
634 241, 1993. [In Chinese]

635 Ye, B. S., Yang, D. Q., Zhang, Z. L. and Kane, D.: Variation of hydrological regime with
636 permafrost coverage over Lena Basin in Siberia, *J. Geophys. Res.*, 114, D07102,
637 doi:10.1029/2008JD010537, 2009.

638 Yershov, E. D.: General geocryology, Cambridge University press, 1990.

639 Zhang, X., Sun, S., and Xue, Y.: Development and testing of a frozen soil
640 parameterization for cold region studies, *J. Hydrometeorol.*, 8, 690-701, doi:
641 10.1175/JHM605.1, 2007.

642 Zhang, Z., Kane, D. L., and Hinzman, L. D.: Development and application of a spatially-
643 distributed Arctic hydrological and thermal process model (ARHYTHM), *Hydrol.*
644 *Process.*, 14, 1017-1044, 2000.

645 Zhang, X., and Yang, Z.: The primary analysis of water balance in in Binggou Basin of
646 Qilian Mountains, *Journal of Glaciology and Geocryology*, 13(1), 35-42, 1991. [In
647 Chinese]

Table 1. Basin-averaged values of the parameters used in the Binggou watershed

Symbol	Parameters	Unit	Value	Source
Land surface parameters				
z_2	Height of canopy top	m	0.05	Li et al. (2009)
z_1	Height of canopy bottom	m	0.005	Li et al. (2009)
V	Canopy cover fraction		0.3	Li et al. (2009)
$\alpha_{s,V}$	Soil reflectance to visible radiation		0.12	Optimization
z_s	Ground roughness length	m	0.001	Li et al. (2009)
D_r	Root depth (D_1+D_2)	m	0.25	Li et al. (2009)
D_s	Top soil depth ($D_1+D_2+D_3$)	m	1.25	Li et al. (2009)
Soil hydraulic parameters				
θ_s	Porosity		0.585	Li et al. (2009)
θ_r	Residual soil water content		0.017	Li et al. (2009)
$K_{surface}$	Saturated hydraulic conductivity for soil surface	mm/h	4.4	Optimization
f	Hydraulic conductivity decay factor		-1.84	Optimization
α	van Genuchten parameter		0.1	Optimization
n	van Genuchten parameter		2.1	Optimization
$anik$	Hydraulic conductivity anisotropy ratio		22.4	Optimization
K_{G0}	Hydraulic conductivity for groundwater	mm/h	1.0	Optimization
Frozen soil parameters				
d_s	Effective depth that feels the diurnal change of temperature	m	0.6	Li et al. (2009)
a	empirical coefficient		0.0616	Optimization
b	empirical coefficient		-0.5133	Optimization

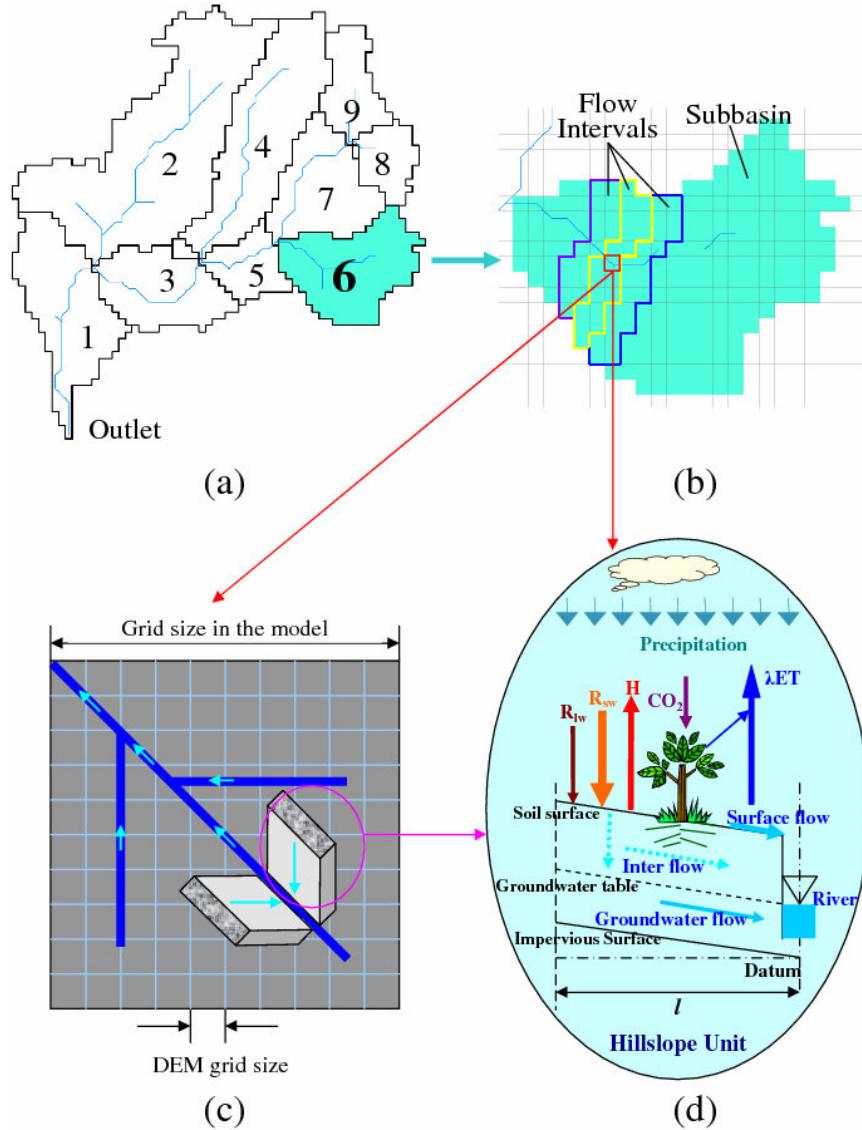
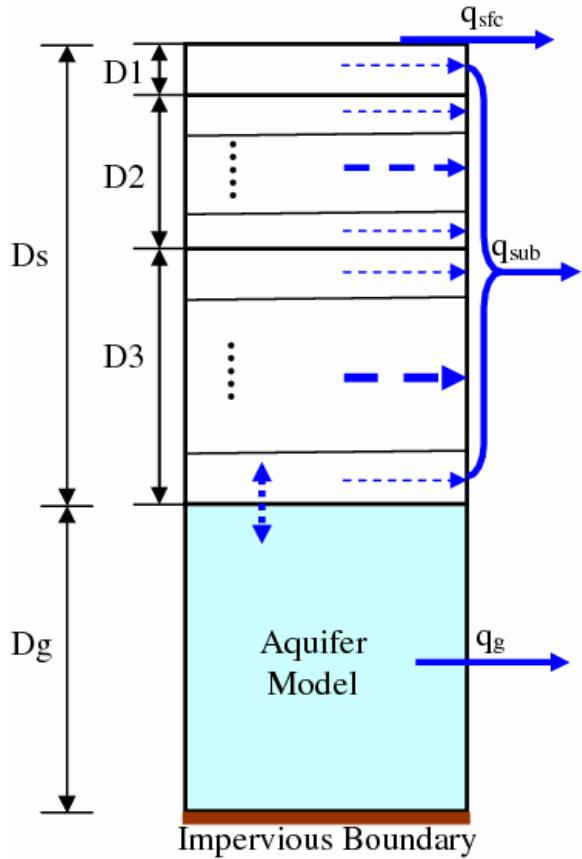
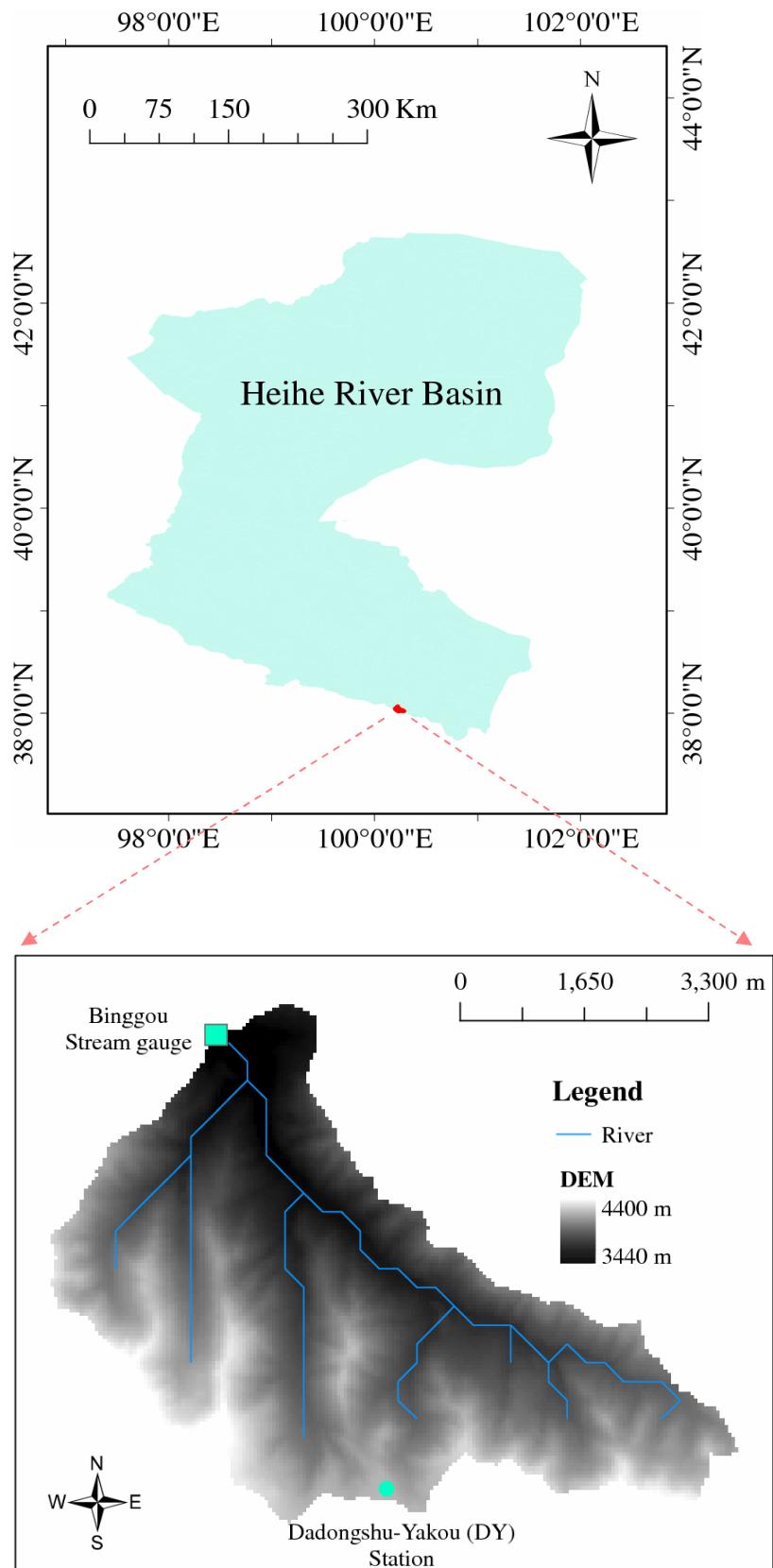
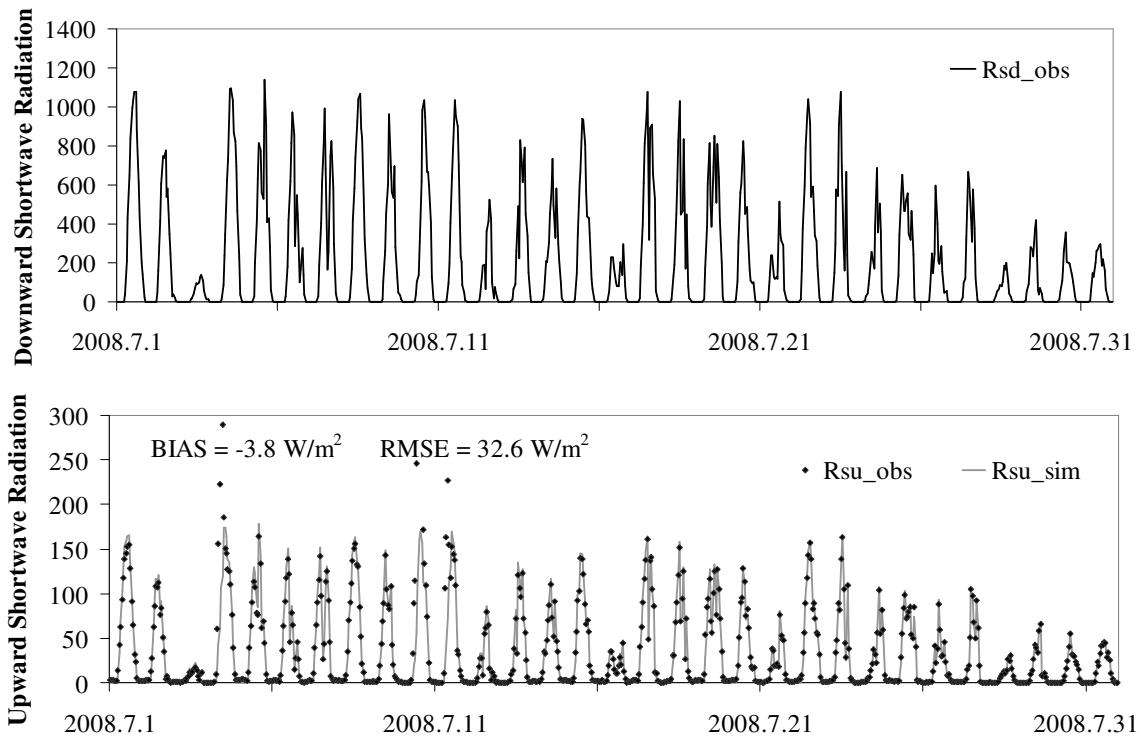
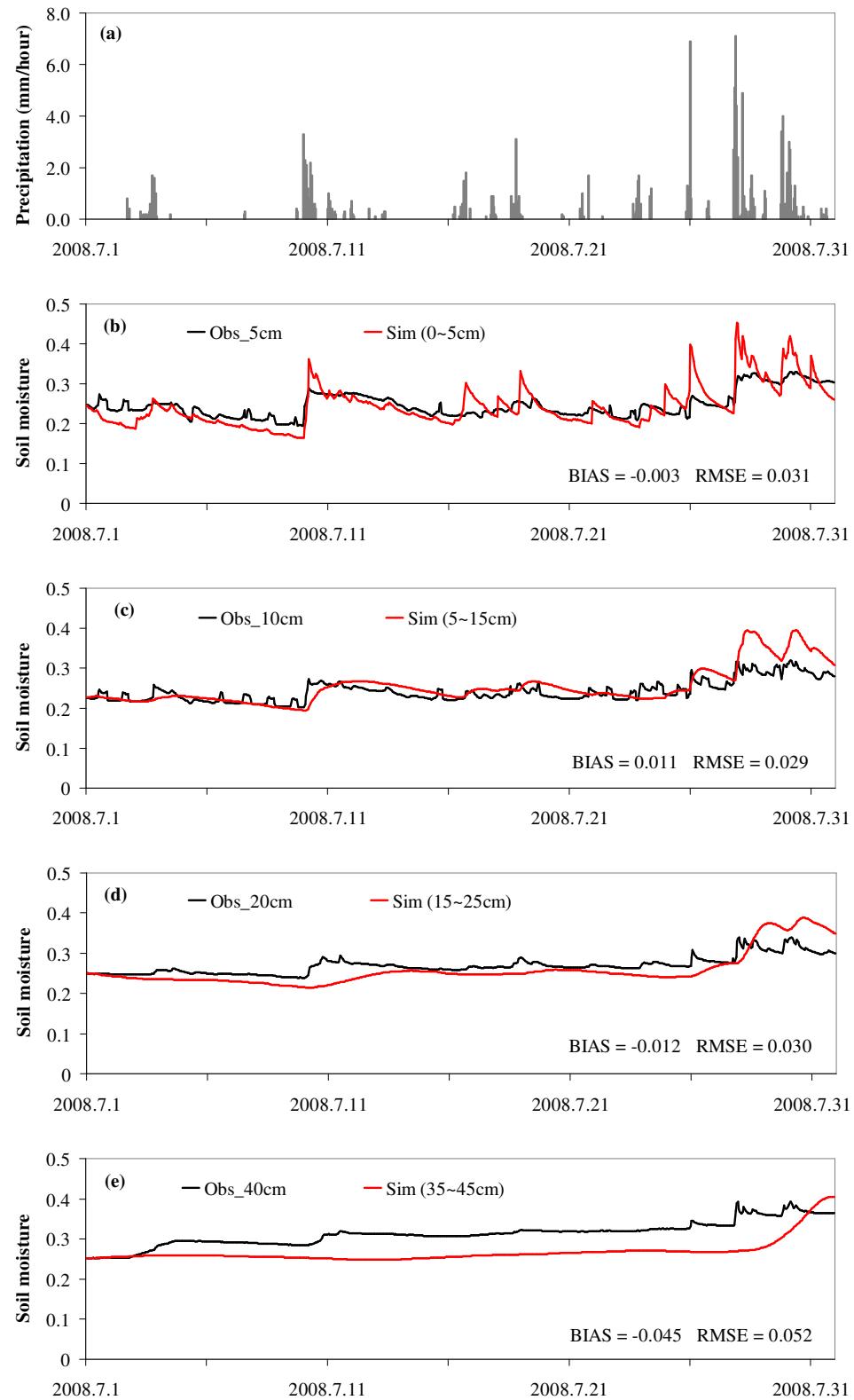


Figure 1. Overall structure of WEB-DHM: (a) division from basin to sub-basins, (b) subdivision from sub-basin to flow intervals comprising several model grids, (c) discretization from a model grid to a number of geometrically symmetrical hillslopes, and (d) description of the water moisture transfer from atmosphere to river. Where R_{sw} and R_{lw} are downward solar radiation and longwave radiation, respectively, H is the sensible heat flux, and λ is the latent heat of vaporization. Here, the land surface submodel is used to describe the transfer of the turbulent fluxes (energy, water, and CO₂) between atmosphere and ground surface for each model grid; while the hydrological submodel simulates both surface and subsurface runoff using grid-hillslope discretization, and then simulates flow routing in the river network.


Figure 2. Soil model of the WEB-DHM. Two different soil subdivision schemes are used for describing land surface and hydrological processes, respectively. The three-layer soil structure used in SiB2 is retained to represent the unsaturated zone in the calculations of land surface processes. The unsaturated zone is divided into multiple sublayers when simulating water flows within it and water exchanges with groundwater aquifer.

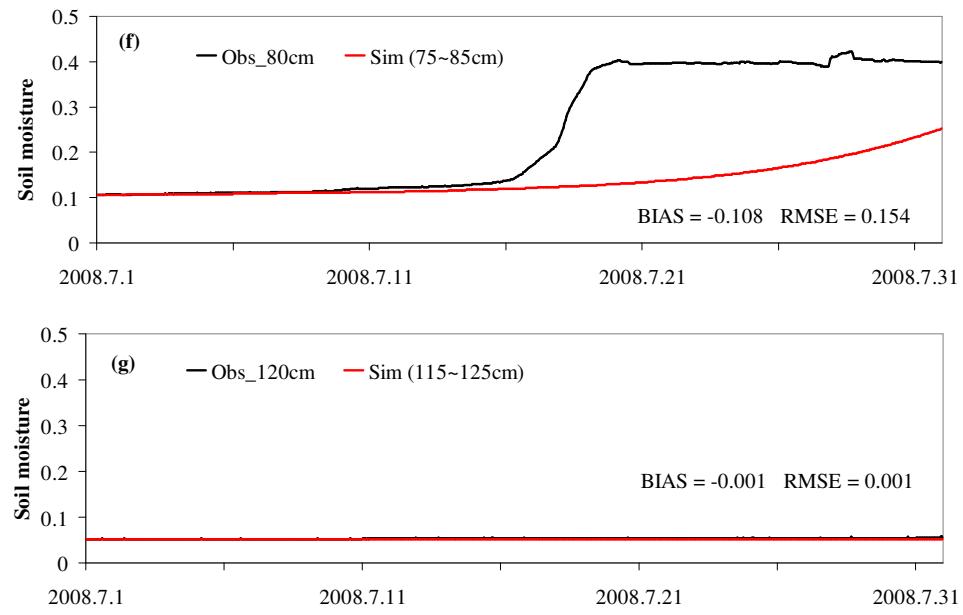


Figure 3. The Binggou watershed.

Figure 4. Simulated and observed hourly upward shortwave radiation (unit: W/m²) at the DY station in July 2008, by using the WEB-DHM [without](#) the frozen scheme.

Figure 5. Hourly precipitation (a), and the simulated and observed hourly volumetric liquid soil moisture at 5, 10, 20, 40, 80, and 120 cm (b-g) at the DY station in July 2008, by using the WEB-DHM without the frozen scheme.

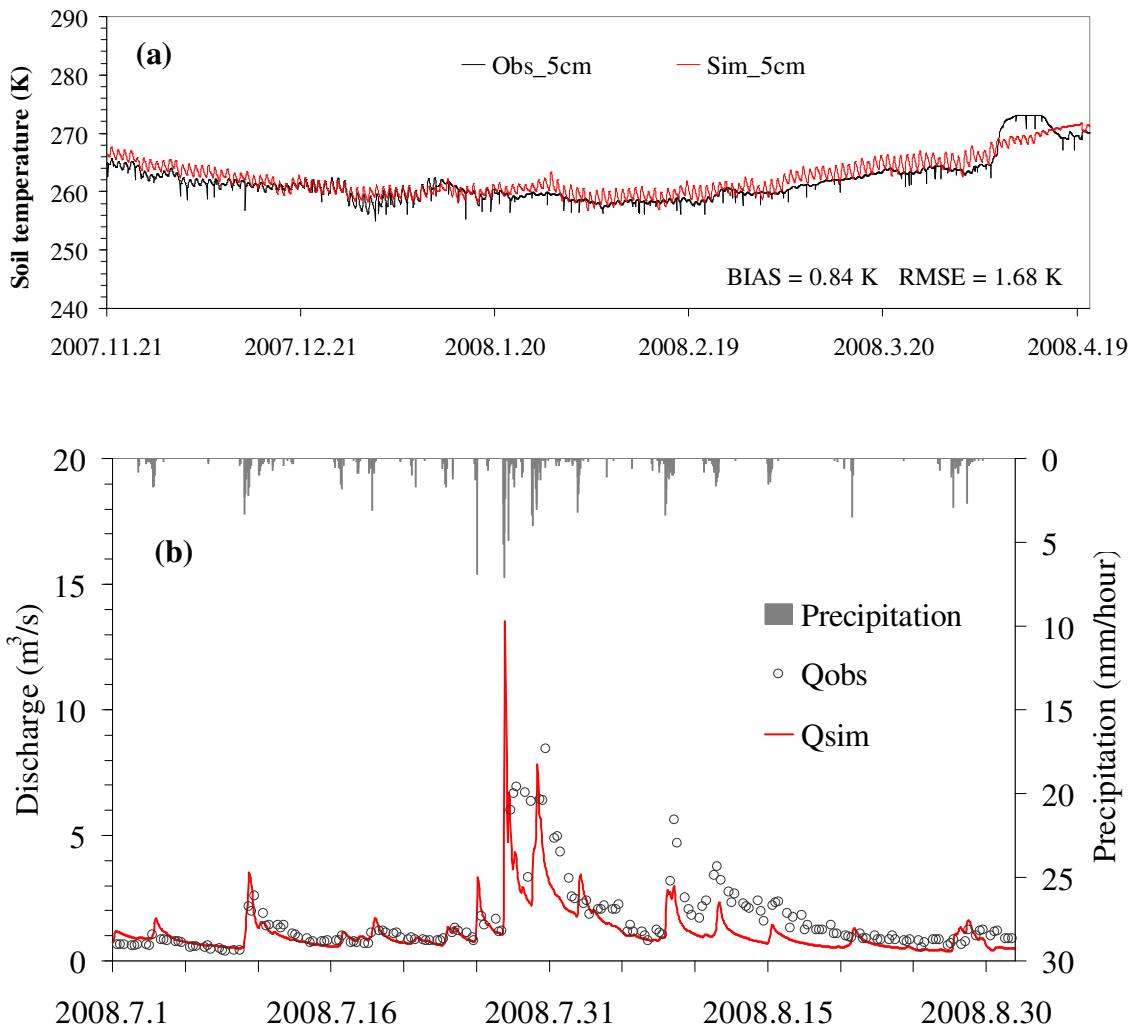


Figure 6. The hourly simulated and observed soil temperature at 5 cm in the DY station from 21 December 2007 to 20 April 2008 (a), and the calibrated hydrograph at the Binggou gauge in July and August 2008 (b), by using the WEB-DHM with the frozen scheme.

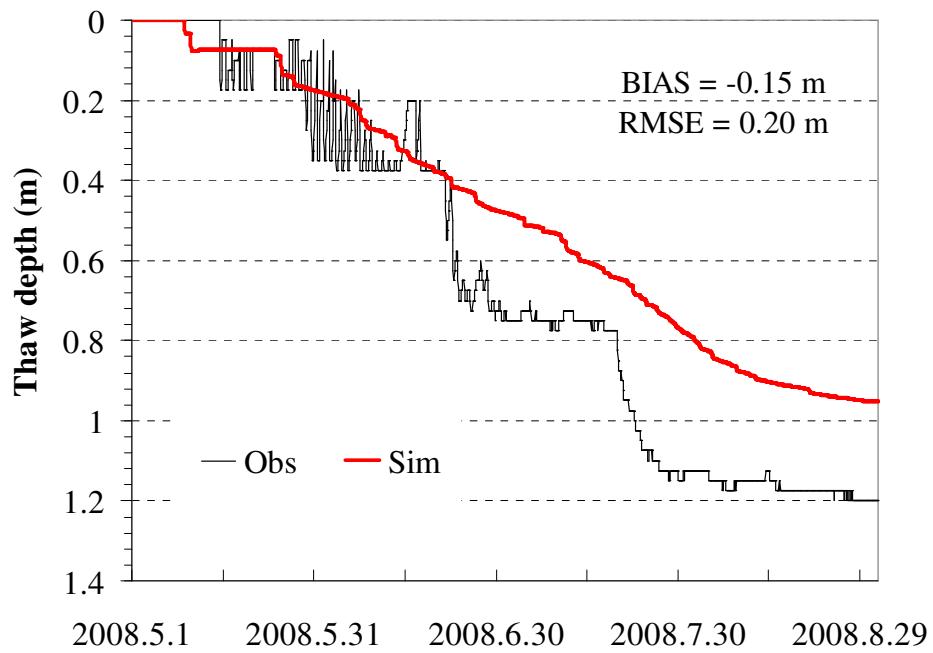


Figure 7. Hourly observed (interpolated from the observations of soil temperature profile) and simulated thaw depth at the DY station, from 1 May to 31 August 2008, by using the WEB-DHM with the frozen scheme.

Figure 8. Hourly observed and simulated temperature at 5 cm T_{5cm} (a) and temperature of deep soil T_d (b) at the DY station, from 21 November 2007 to 20 November 2008 by using the WEB-DHM with the frozen scheme.

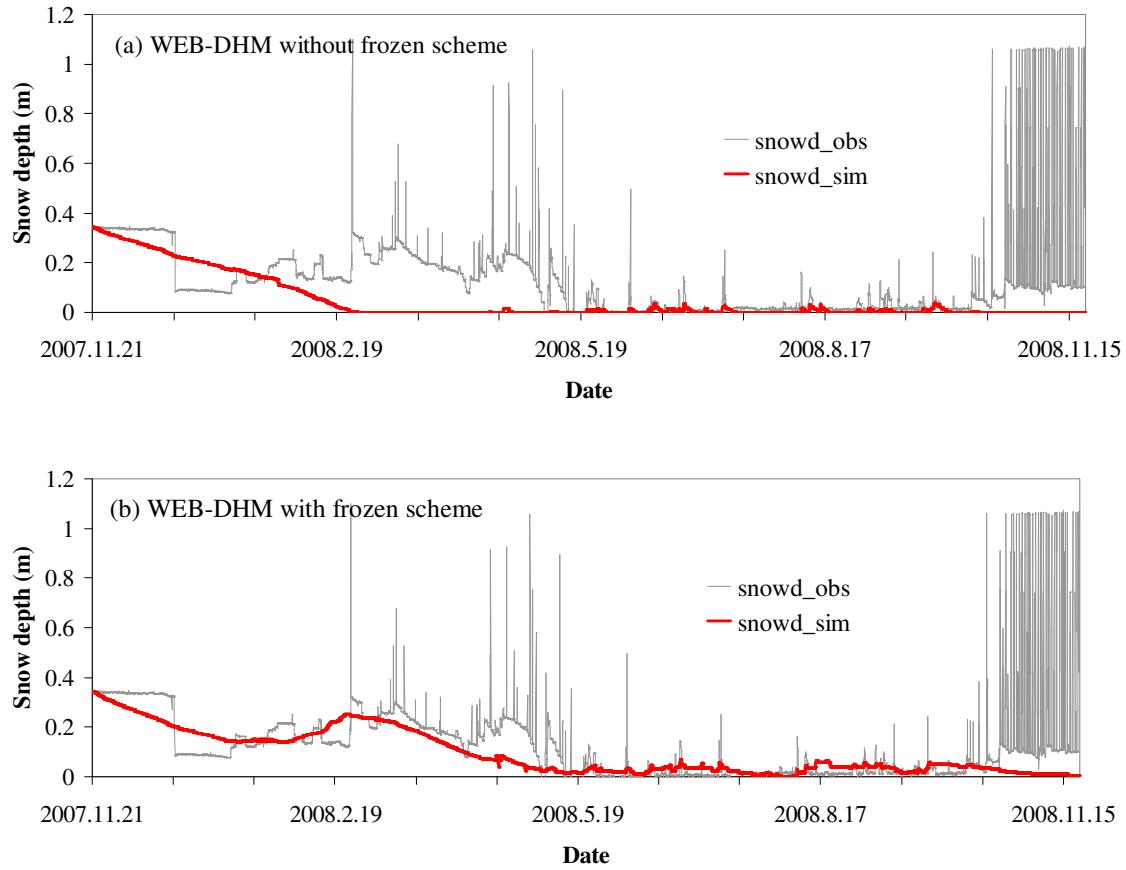


Figure 9. Hourly snow depth at the DY station from 21 November 2007 to 20 November 2008, simulated by the WEB-DHM without and with the frozen scheme. Here, the snow depth is assumed as five times of the snow-water equivalent, and the large fluctuations of the observed snow depth at the station were caused by strong wind blowing.

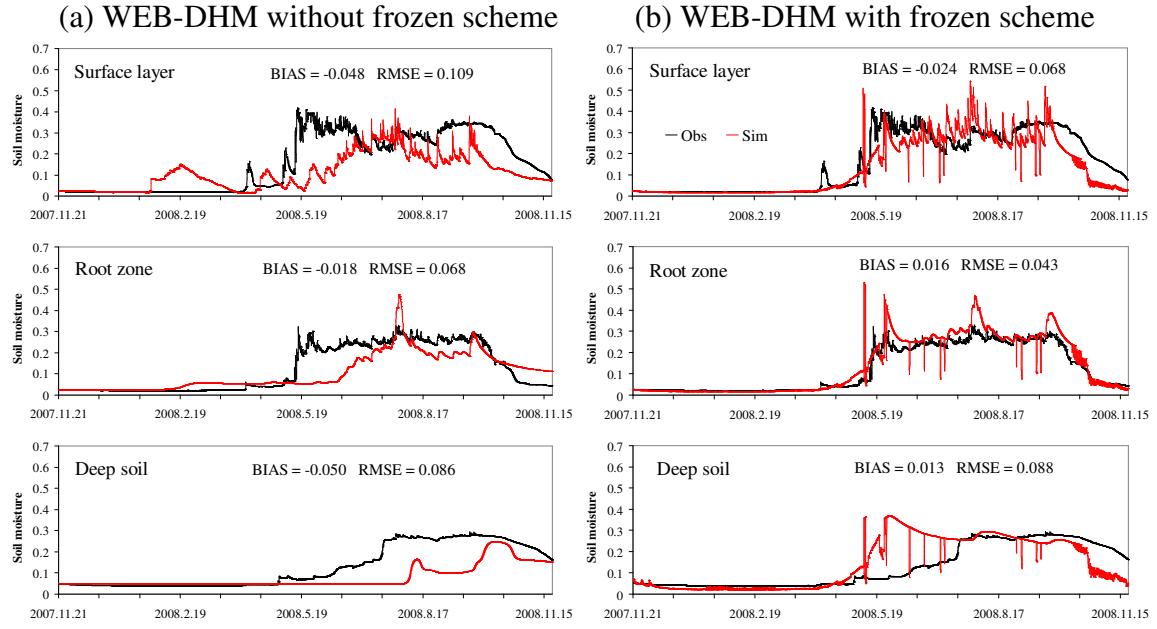
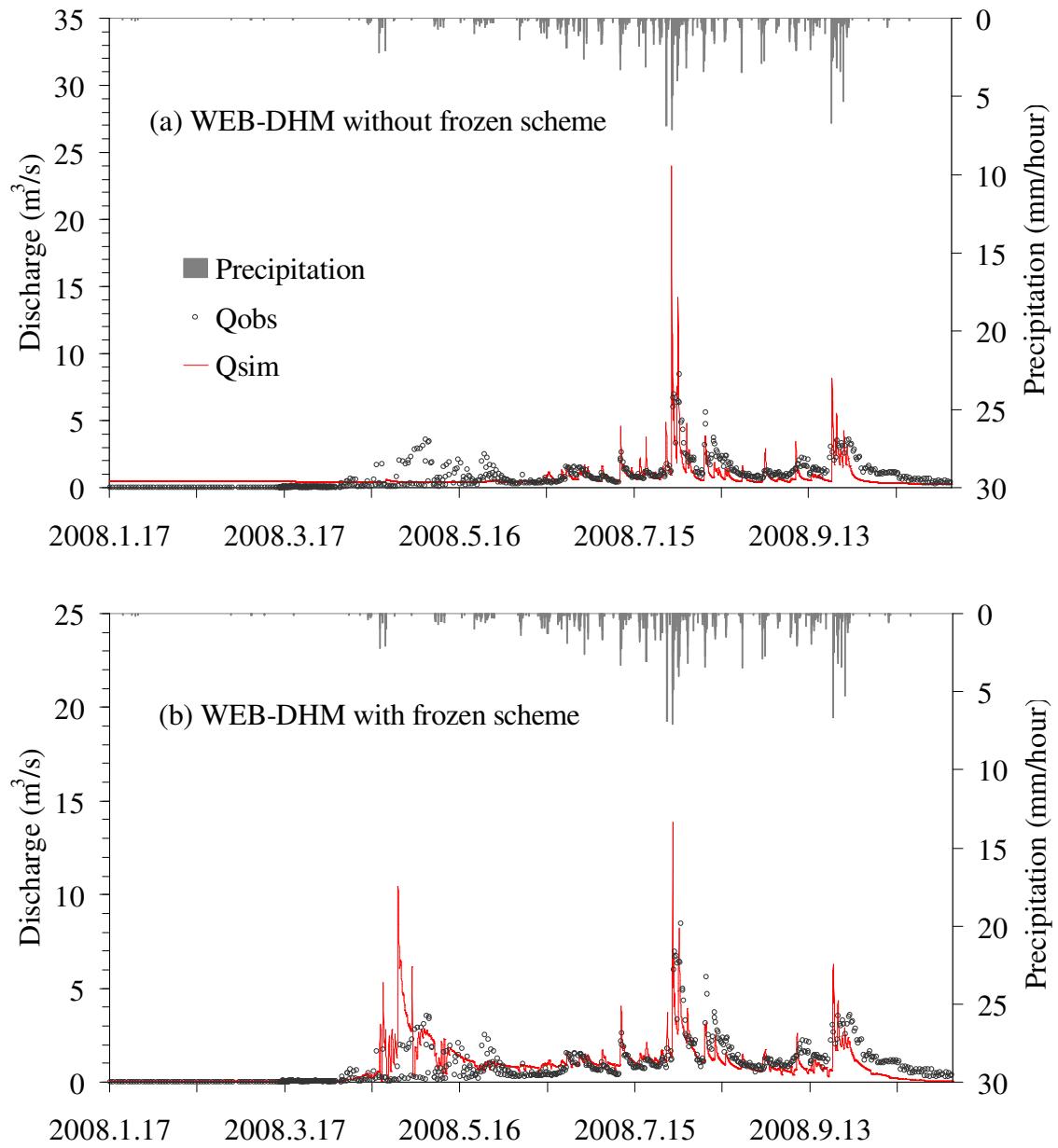
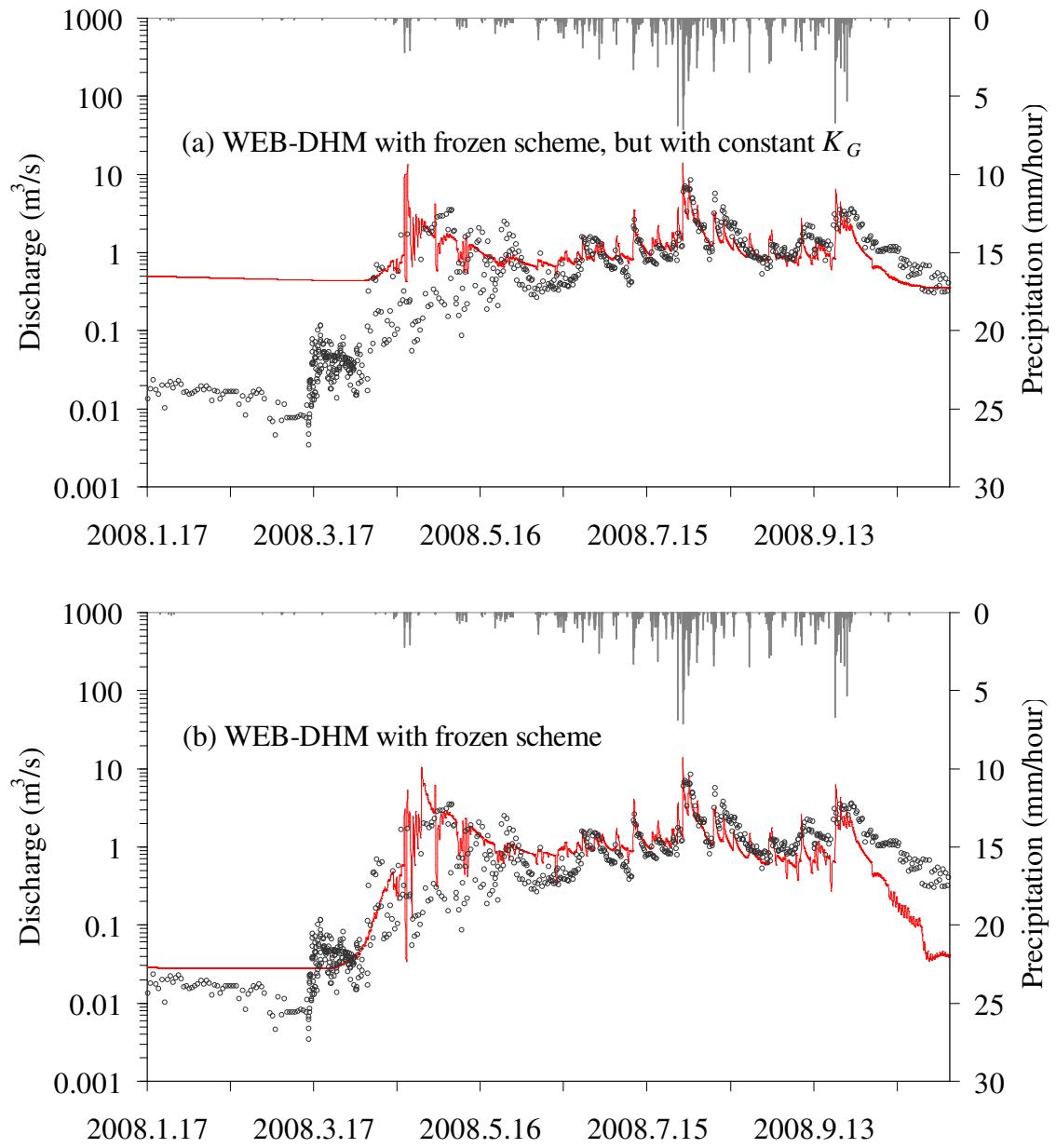




Figure 10. Hourly volumetric liquid soil moisture averaged at surface layer (0-5 cm), root zone (5-25 cm), and deep soil layer (25-125 cm) at the DY station from 21 November 2007 to 20 November 2008, simulated by the WEB-DHM without and with the frozen scheme.

Figure 11. Linear hourly hydrographs simulated by the WEB-DHM without and with the frozen scheme at the Binggou gauge from 17 January to 20 November 2008.

Figure 12. Logarithmic hourly hydrographs simulated by using the WEB-DHM with the frozen scheme, neglecting (a) and considering (b) the frozen soil effect on the groundwater hydraulic conductivity at the Binggou gauge from 17 January to 20 November 2008.