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Abstract 

The travel time of subsurface flow in complex hillslopes (hillslopes with different plan shape 

and profile curvature) is an important parameter in predicting the subsurface flow in 

catchments. This time depends on the hillslopes geometry (plan shape and profile curvature), 

soil properties and climate conditions. The saturation capacity of hillslopes affect the travel 

time of subsurface flow. The saturation capacity, and subsurface travel time of compound 

hillslopes depend on  parameters such as soil depth, porosity, soil hydraulic conductivity, plan 

shape (convergent, parallel or divergent), hillslope length,  profile curvature(concave, straight 

or convex) and recharge rate to the groundwater table. An equation for calculating subsurface 

travel time for all complex hillslopes was presented. This equation is a function of the 

saturation zone length (SZL) on the surface. Saturation zone length of the complex hillslopes 

was calculated numerically by using the hillslope-storage kinematic wave equation for 

subsurface flow, so an analytical equation was presented for calculating the saturation zone 

length of the straight hillslopes and all plan shapes geometries. Based on our results, the 

convergent hillslopes become saturated very soon and they showed longer SZL with shorter 

travel time compared to the parallel and divergent ones. The subsurface average flow rate in 

convergent hillslopes is much less than the divergent ones in the steady state conditions.  

Concerning to subsurface travel time , convex hillslopes have more travel time in comparison 

to straight and concave hillslopes. The convex hillslopes exhibit more average flow rate than 

concave hillslopes and their saturation capacity is very low. Finally, the effects of recharge 



 
rate variations, average bedrock slope and soil depth on saturation zone extension were 

investigated.  
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1 Introduction 

Subsurface flow is percolating water that encounters an impending horizon in shallow soil, 

where the water is diverted horizontally and reaches the stream channel. Due to the high 

permeability of topsoil and generally greater potential gradients in these upper sloping 

horizons, water following a topsoil path reaches the stream channel much quicker than the 

groundwater flow does. Some of this water arrives at the channel soon enough to contribute to 

the storm hydrograph and is classified as subsurface storm flow. The dynamic interaction 

between the saturated-unsaturated subsurface flow and surface flow has been examined by 

many researchers (Freeze and Harlan, 1969; Freeze, 1971, 1972a, 1972b; Beven, 1982) 

through numerical simulations. The dynamics of water in a catchment and particularly at the 

surface/subsurface interface is still poorly understood. For simulating surface and subsurface 

flow in catchments, the changing of the saturated and unsaturated area by spatial and temporal 

rainfall distributions during storms is very important.  

In the past, the Geomorphological Instantaneous Unit Hydrograph (GIUH) was used for 

simulating surface runoff (Rodriguez-Iturbe, 1979; Gupta et al., 1980; Rodriguez-Iturbe et al., 

1982; Chutha and Dooge, 1990; Lee and Yen, 1997, 2005; Olivera and Maidment, 1999). 

Recently, the GIUH model has been applied to consider both the surface and subsurface flow 

processes (Lee and Chang, 2005). This method is based on travel time probability 

distributions for runoff in surface flow and subsurface flow regions and channels. Travel time 

is defined as the average time required for water particles to travel from the top of the 

hillslope via the subsurface hillslope layers to the outlet. Henderson and Wooding (1964) 

simulated the surface and subsurface flow by using kinematic-wave approximation. The 

Henderson and Wooding equations showed that the travel time of the subsurface flow is 

proportional to the soil porosity and inversely proportional to the slope and hydraulic 

conductivity. Yet, their method cannot describe the effects of recharge rate, plan shape of 

hillslope(divergent, parallel, convergent) , profile curvature (convex, planer and concave) and 

soil depth on subsurface travel time. The effect of the mentioned parameters on the surface 

travel time has been proved in past researches (Henderson, 1966; Eagleson, 1970; Overton 

and Meadows, 1976; Singh, 1882; Agiralioglu, 1985 and Akan, 1993). 



 
In a simple hillslope experiencing a uniform net recharge, the analytical derivation of the 

response time behavior involves solving the one or two dimensional transient flow partial 

differential equation for hillslopes, popularly known as the Boussinesq equation (Boussinesq, 

1877). 

A general analytical solution to this non-linear equation has never been achieved. A number 

of researchers have solved simplified forms of this equation analytically, mostly for steady-

state and for various special cases. Verhoest and Troch (2000), Troch et al. (2002) and Troch 

et al. (2004) developed analytical solutions for the Boussinesq equation using linearization 

and the method of characteristics, respectively. Huyck et al.(2005) developed an analytical 

solution to the linearized Boussinesq equation for realistic aquifer shapes and temporally 

variable recharge rates.   

Troch et al. (2003) and Hilberts et al. (2004) demonstrated that (numerical) solutions of the 

1D hillslope-storage Boussinesq (hsB) equation account explicitly for plan shape (by means 

of the hillslope width function) and profile curvature (local bedrock slope angle and hillslope 

soil depth function) of the hillslope. To investigate the key role of geometric characteristics of 

hillslopes (plan shape and profile curvature) on shallow landslides, Talebi et al. (2008a) 

presented a steady-state analytical hillslope stability model based on kinematic wave 

subsurface storage dynamics. Comparison between the hillslope-storage Boussinesq and 

Richards equation models for various scenarios and hillslope configurations shows that the 

hsB model is able to capture the general features of the storage and outflow responses of 

complex hillslopes (Paniconi et al., 2003; Hilberts et al., 2004).  

Berne et al. (2005) used the hsB model for the similarity analysis of subsurface flow response 

of hillslopes with complex geometry. He linearized the hsB equations by exponential width 

functions and introduced the hillslope Pe´clet number, an efficient similarity parameter for 

describing the hillslope subsurface flow response.   

Aryal (2005) and O_Loughlin (2005) have shown that the hillslope travel time in subsurface 

flow is dependent on hillslope length, hydraulic conductivity, plan shape, profile curvature 

and recharge rate. They demonstrated equations of saturation zone boundary for hillslope in 

steady state and introduced three equations for calculating complex hillslopes travel time 

based on Zaslavsky and Rogowski (1969) geometry equations.   

The objectives of this paper are: (i) introduce an equation for subsurface travel time of all 

complex hillslopes with regard to parameters such as the saturation zone length  , total length, 



 
soil porosity, profile curvature, soil hydraulic conductivity , and  average bedrock slope, (ii) 

calculate the saturation zone length of nine basic hillslopes in steady-state conditions, (iii) 

explore the effects of different factors such as the soil depth, the recharge rate, bedrock slope 

angle on travel time and saturation zone length, (iv) present analytical expressions for 

calculating saturation zone length in straight hillslopes for different shape functions 

(convergent, parallel, divergent) and finally, (v) compare the drainage capacity of  all complex 

hillslopes based on their average discharge rates.    

2 Model formulation 

2.1   Hillslope geometry 

Evans (1980) characterized hillslopes by the combined curvature in the gradient direction 

(profile curvature) and the direction perpendicular to the gradient (contour or plan curvature). 

The surface of an individual hillslope is represented by the following function: 

2)/1   y) z(x, yLx n

                                                                               (1) 

where z is the elevation(m), x is horizontal distance measured in the downstream length(m) 

direction of the surface, y is the horizontal distance(m) from the slope centre in the direction 

perpendicular to the length direction (the width direction), E is the minimum elevation(m) of 

the surface above an arbitrary datum, H is the maximum elevation(m) difference defined by 

the surface, L is the total horizontal length of hillslope(m), n is a profile curvature parameter, 

and 

 

is a plan curvature parameter. Figure 1 shows a hillslope with a three-dimensional view 

of a convergent hillslope on top of an impermeable layer and a straight bedrock.  

Figure 2 illustrates nine basic hillslope types that are formed by combining three plan and 

three profile curvatures. The geometrical parameters for the nine characterized hillslopes are 

listed in Table 1. The values of the hydrological parameters have been listed in Table 2. 

The assumptions applied to modeling subsurface government equations are: The saturated 

hydraulic conductivity is assumed to be uniform with depth, the hydraulic gradient is equal to 

the local surface slope, soil depth is uniform and recharge rate is constant (the steady state 

conditions).   



 
2.2   The hillslope-storage kinematic wave equation 
                                                              

The soil moisture storage capacity )(Sc has been defined by Fan and Bras (1998)(Troch et al. 

2003; Talebi et al. 2008a) as: 

fxDxwxSc )()()(                                                                                                   (2) 

where f is the drainable porosity , w(x) is the width of the hillslope(m) at a distance x and 

)(xD is the average soil depth(m) at x (see Fig. 1.a). cS defines the pore space along the 

hillslope and accounts for both plan shape, through the width function, and the profile 

curvature, through the soil depth function. 

Similarly, the soil moisture storage S(x,t) has been defined by Troch et al. (2002) as: 

ftxhxwtxS ),()(),(                                                                                                  (3) 

where ),( txh is the average height over the width of the groundwater table at x and t. 

Introducing the integrated discharge over the width of the hillslope Q(x,t), the continuity 

equation becomes (Troch et al.2002): 
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where N(t) is the recharge to the saturated layer(m/s). The subsurface flow rates can be 

described with a kinematic wave approximation of Darcy s law as (Troch et al. 2002): 
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where z is the elevation of the bedrock above a given datum, k is the soil hydraulic 

conductivity(m/s). In the context of subsurface flow, it is reasonable to assume the following 

initial and boundary conditions: 
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where g(x) represents the initial soil moisture storage along the hillslope. Troch et al. (2002) 

solved Eq. (4) analytically using the method of characteristics. The solution is given by: 
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where A(x) is the upstream drainage area at location x (integral from 0 to x of w(x)). This 

equation expresses the storage profile along the hillslope in the steady-state condition. 



 
Analytical solutions to Boussinesq s equation are very useful to understand the dynamics of 

subsurface flow processes along a hillslope.   

3 Prediction of the saturation zone in complex hillslopes 

In this study, we used the steady state analytical solution of hillslope-storage kinematic wave 

equation that was presented by Troch et al. (2002) for predicting and extending the saturation 

zone in compound hillslopes.   

Fig. 3 shows a convergent hillslopes under recharge conditions. As can be seen, many 

parameters like recharge rate (N), soil depth (D), hillslopes length (L), soil hydraulic 

conductivity (k), average slope( S ) , profile curvature parameter (n), and plan curvature 

parameter ( ) affect  the hillslope saturation zone extension.    

According to Fig. 3 any point of the hillslope which the storage equals the storage 

capacity ))()(( xSxS c , belongs to the saturation zone. If we call the ratio of actual storage to 

storage capacity as 'Relative Saturation ( )', one can say that any point of the hillslope where 

the relative saturation reaches one ( 1), would be a saturation point.  

The steady-state relative saturation function is now given by Talebi et al. (2008a): 
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                                                                                  (8) 

where T = kD is soil transmissivity )/( 2 sm and a(x) = A(x) / w(x) is drainage area per unit 

hillslope width(m). The variable )(x describes the steady-state wetness of the soil and is 

conceptually similar to the topographic index )
tan

ln(
a 

of Beven and Kirkby (1979), wetness 

index (W) derived by O'Loughlin (1986) and Mcontgomery and Dietrich (1994).  The location 

of the saturation  zone boundary can be determined by inserting )()(1)( xSxSorx c

 

in 

Eq. (8) and using the storage function from Eq. (2) and storage capacity from Eq. (7), we then 

obtain: 
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By solving the Eq. (9) numerically, the location of the saturation zone boundary )( satx could be 

determined. The x-coordinate satx , is where the mean groundwater table height is maximum. 



 
The saturation capacity beyond the saturation zone boundary )( Lxxsat

 
depends on the 

relative saturation at those points.   

3.1 Calculation of the saturation zone length in the nine basic complex 
hillslopes 

In general, relative saturation in the hillslope is a determiner of the soil saturation capacity. 

This parameter was also used by Troch et al. (2002) and Talebi et al. (2008a) in their research. 

Fig.4 shows variations of the relative saturation along the nine basic hillslopes of Table1 and 

Table 2 for different recharge rates.  

 

According to Fig. 4 all hillslopes react to the recharge variations differently. The saturation 

zone occurs in a certain recharge rate corresponding to the geometric attributes and the soil 

characteristics of the hillslopes which is called 'Saturation Recharge Rate (SRR)'. The 

recharge rate that causes the occurrence of the saturation zone in every hillslopes was 

calculated for all slopes. Figure 5 shows the SRR for nine basic of hillslopes.  

The concave and convergent hillslopes are saturated very soon. As can be seen, the SSR in 

divergent hillslopes is averagely seven times more than the convergent slopes and the SSR in 

convex slopes is averagely nine times more than the concave slopes. For example, the SRR 

for convergent-concave hillslope is 2 mm/day (minimum rate) and it is 129 mm/day for 

divergent-convex hillslopes (maximum rate).  

According to the studies on concave and straight hillslopes, the saturation zone in these 

hillslopes after saturation, occurs at the lower reaches of the hillslope between the edge of the 

saturated boundary and the hillslope outlet (ridge) completely, so the saturation zone length is 

obtained from the relation : satxLSZL . In the case of a convex hillslope, the saturation 

zone occurs in the distance between the edge of saturation boundary and the hillslopes outlet; 

and close to the ridge, the storage is less than the storage capacity, as seen in Fig.4. The 

relative saturated storage profile in concave and straight slopes is linear to parabolic and in 

convex slopes is semi- ellipse.  

Figure 6 depicts the SZL of all complex hillslopes for various recharge rates (10mm/day-

30mm/day). The recharge rate is a very effective factor in the saturation rate, for instance, the 

convergent-concave hillslopes with recharge under 20mm/day show more reaction to the 

saturation rate in comparison to straight and convergent-convex hillslopes. In recharge rates 



 
over 20 mm/day the maximum of the SZL corresponds to the convex-convergent hillslopes. In 

all recharge rates, the convergent hillslopes tend to saturate much more than the parallel and 

divergent ones. SZL in the convergent hillslopes are greater than parallel and divergent 

hillslopes. Greater SZL corresponds to concave hillslopes compared to the convex ones. The 

Convex-divergent hillslopes show minimum response to saturation; therefore, in a recharge 

rate below 129 mm/day no saturation zone is created. In general, occurrence of the saturation 

zone in hillslopes causes an increase in pore pressure followed by a decrease in the stability of 

hillslopes. Talebi et al (2007) proved that the stability of the convergent hillslope is less than 

the divergent ones and the same is true about the concave hillslopes compared with the 

convex ones.

 

Soil depth is also an important factor affecting relative saturation. Fig. 7 shows the change of 

relative saturation and SZL for the soil depths from 0.5m-2m. The less soil depth is created 

the more saturation zone, because the storage capacity is decreased and the soil will become 

saturated faster.  

An increase in the soil hydraulic conductivity as well as the average bed rock slope yields a 

decrease in the saturation zone in complex hillslopes. Changes in the bedrock slope cause 

changes in the plan shape coefficient )/( 2LH , then changes the relative saturation of the 

hillslopes. Figure 8 depicts the effect of the average bedrock slope angle on the extension of 

the saturation zone .   

3.2 Analytical solution for the saturation zone length in the straight hillslopes  

In straight hillslopes there is no slope variation (n=1) and the width function is as follows 

(Talebi et al. 2008a): 

)
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where 0w is the hillslope width(m) at the upstream divide (x=0). As a consequence, the 

hillslope drainage area upstream of x becomes (Talebi et al., 2008a): 

x
x

H

L

L

Hw
duxwxA

0

0 )
2

exp(1
2

)()(                                                           (11) 

Note that in convex/concave hillslopes, the drainage area in each point should be determined 

numerically and we cannot product an analytical equation for calculating the saturation zone 



 
in these slopes. The steady-state saturated storage profile for straight hillslopes based on 

(Talebi et al., 2008a) can be calculated as (Appendix A): 
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Dividing Eq. (12) by Eq. (2), Talebi et al. (2008a) obtained the relative saturation function for 

straight hillslopes:  
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, belongs to the saturation zone. 1)(x

 

each point of the hillslopes with equating Eq. (13) to 

one, we derive the saturation zone length as follows:    
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Where S is the average slope (=H/L). Equation (14) expresses the SZL in a hillslope in 

agreement to Fig.3. The SZL depends on the recharge rate, the plan shape, the soil hydraulic 

conductivity, the soil depth and the total hillslope length. If solution of the Eq. (14) is negative 

or a complex number (no valid value), it emphasizes that the saturation zone does not exist, so 

SZL is zero; otherwise, if ]1)/2/[exp(2 2 HLkDSRRN , the solution is positive. The 

plan shape parameter )( of straight-parallel hillslopes is zero, by limiting 

 

toward zero; the 

Eq. (14) is changed to:  

N

SkD
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Positive solutions of the Eq. (15) present the saturation zone length in straight-parallel 

hillslopes after saturation.  

4 The complex hillslope travel time in the subsurface flow 

The time of concentration has been used by some authors to define response times of 

hillslopes. Ben-Zvi (1984) defined the time of concentration as the time taken from the 

initiation of rainfall to the time when the catchment discharge attains (nearly) 0.8 of the 

equilibrium discharge. Beven (1982) defined the time of concentration as the time at which a 

steady-state flow profile is developed over the entire hillslope, assuming a constant input rate 

for a sufficient length of time. In this paper, the time of concentration is defined as the average 

time required for water particles to travel from the top of the hillslope, via the subsurface 



 
hillslope layers, to the outlet. Aryal et al. (2005) used the Zaslavsky and Rogowski (1969) 

geometry equations and derived  three equations for travel time in hillslopes with concave , 

convex and  straight profiles and all plan form geometries, however,  in this paper, since we 

have used the Evans (1980) equation for modeling of slopes geometry, one equation is 

presented for all complex hillslopes.  

In a soil profile over an impermeable layer, the interstitial velocity in soil pores according to 

Darcy s law is(Aryal2005):                                                                                                                              
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where s* is the local slope. The profile curvature affects slope changes and the velocity of 

water in soil. The local slope for the compound hillslopes is derived from Eq. (1): 
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Putting v = dx/dt and substituting the value of s* [from Eq. (17) ] in Eq. (16) and integrating 

with bounds t = 0 to T, and x = 0 to satx  for travel time of the unsaturation zone, we obtain:  
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Note that when the saturation occurs over part of the lower hillslope, the total travel time 

diminishes. In this case, the overall travel time for subsurface flow is reduced by the travel 

time required to traverse the saturation zone length (see Marani et al., (2001) ;  Aryal et al., 

(2002)). 

The analytical Eq. (18) represents the subsurface travel time in all complex hillslopes. The 

coordination of the saturated zone boundary in each hillslope is a key parameter in calculating 

travel time. All parameters which affect the development of the saturation zone of the 

hillslopes also change the travel time. Equation (18) expresses  that the travel time of the nine 

hillslopes is a function of the saturation zone length ( satxLSZL ) , the total length (L), the 

effective porosity (f), the profile curvature parameter (n), the soil hydraulic conductivity (k) , 

and the average  bedrock slope ( S ).  



 
The subsurface travel time in the steady-state conditions involves the storage rate in the 

system, and the outlet discharge. Inserting Eq. (17) into Eq. (5) gives the ratio of the storage 

to the outlet discharge in this case: 

(19)n

L

x

nkH

fL

xQ

xS 1)1(
)(
)(

This ratio for hillslopes with constant profile curvature remains the same, but varies along the 

hillslope. Combining Eq. (18) and Eq. (19) one can write (Talebi et al., 2008c): 
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The value of the storage in the system is estimated from Eq. (7) and the outlet discharge from 

Eq. (5). By using Eq. (20), we derive the travel time from the area under the graph of S/Q 

along the unsaturation zone length. Both Eqs. (18) and (20) describe the subsurface travel 

time in complex hillslopes but Eq. (18) is simpler and avoids any calculations for S(x) and 

Q(x). In slopes with fixed profile curvature, the ratio of the storage to the flow rate in steady-

state conditions remains constant; hence this is the unsaturation zone length (the effective 

length) which influences the travel time in these hillslopes.  

4.1 The subsurface travel time in straight hillslopes 

In straight hillslopes (n=1) Eq. (18) becomes:       

sk
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This equation presents the subsurface travel time of the straight hillslopes after saturation.  

Replacing Eq.(14) into Eq. (21) yields(Appendix B):    
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As seen in Eq. (22) , the subsurface travel time of the straight hillslopes after saturation is a 

function depending on the recharge rate, the plan shape, the soil hydraulic conductivity, the 

soil depth, the hillslope length, the soil porosity and the bedrock slope angle.  

Equation (22) does not relate to SZL and profile curvature. This equation is an extended 

equation of the Henderson (1964) equation. The runoff travel time for the subsurface flow 

region that was presented by Henderson and Wooding (1964) is: 
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Most researchers have used Eq. (23) for calculating subsurface travel time in overlands in 

order to predicting the subsurface flow hydrograph. In Eq. (23) the effect of recharge rate, 

geometry and soil depth has been ignored. This equation is only valid for the straight 

hillslopes before the saturation conditions.   

The Eq. (22) is simplified for straight-parallel )0( hillslopes to: 

N

Df
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It can be stated that the travel time in straight-parallel hillslopes is a function of SkfL / 

before saturation and is a function of NDf / after saturation develops. This concept has also 

been proved by Aryal et al.(2005). They proved that the travel time in straight-parallel 

hillslopes is a function only of qsmd/ after saturation occurs, where  q

 

is the net change in 

flux and smd is the soil moisture deficit. The relationship between the initial soil moisture and 

the soil moisture deficit is: 

Dfsmdxg )(                                                                                                    (25)  

4.2 Calculation of the subsurface travel time in the nine basic hillslopes 

The travel time and SZL of the all complex hillslopes according to the attributes in Table 1 

and Table 2 are presented in Table 3.  

Figure 9 represents also the variations of the SZL as the recharge reaches 50 mm/day. Figure 

10 shows the subsurface travel time of the nine basic complex hillslope for N=50mm/day.  

The histograms showed in Fig. 10 and Table 3 illustrate that the convergent hillslopes exhibit 

less travel time than parallel and divergent ones and it is also more for the convex hillslopes 

compared to the straight and concave hillslopes. The travel time in divergent hillslopes is 

approximately double those of convergent hillslopes.   

As verified by our studies, the least travel time corresponds to the concave-convergent 

hillslopes and the greatest to the convex-divergent ones. When the saturation zone length is 

increased, the length of unsaturation zone is decreased and the effect of the surface flow is 

more important than the subsurface flow. In this situation the travel time of the subsurface 

flow will be reduced.  



 
The steady-state outflow at each point of the hillslope is equal to:  

)()( xNAxQ                                                                                                          (26) 

The average outflow along hillslopes would be: 
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The average subsurface flow can be obtained from Eq. (27) for nine basic hillslopes (see Fig. 

11). Figure 11 illustrates that the average flow of the convergent hillslopes is less than the 

divergent ones. Also the convex hillslopes tend to show much more flow than the concave 

ones. The least flow relates to the concave-convergent hillslope, with 0.04 /hrm3 while the 

highest corresponds to the convex-parallel, with 34 /hrm3 . 

Hilbert et al. (2005) also measured the water tables and outflow rates from a drainage 

experiment in a laboratory setup by two sets of linear convergent hillslopes and linear 

divergent hillslopes and our results are consistence with their results as they showed that the 

convergent hillslopes drain more slowly than the divergent ones.   

5 Conclusions 

In this paper, we proved the hillslope-storage kinematic wave model is suitable for 

investigating the response of the complex hillslopes and some of our results are similar to the 

Aryal et al. (2005) results in the steady state condition but the hsB model can be also extended 

for unsteady state condition. Troch et al. (2003) and Talebi et al. (2008b) have used the 

unsteady-state hsB model in their researches. The main aim of the present study is to benefit 

from its results for the modeling saturation zone extension in unsteady-state condition based 

on temporal distributions of rainfall during storms in hillslopes in future studies. The 

convergent hillslopes possess less flow rate discharge in comparison to the parallel and 

divergent ones, a fact admitted by the experimental results obtained by Troch et al. (2003) and 

Hilbert et al. (2004) in the laboratory. In convergent hillslopes the ground water table is 

higher than the divergent ones, leading to more saturation with larger saturation zone length in 

contrast to parallel and divergent hillslopes. 

Since the travel time is determined along the unsaturation zone, the saturation zone length 

reduces the subsurface travel time. In hillslopes with fixed profile curvature (convergent, 

parallel, divergent), the ratio of the storage to the flow rate in steady-state conditions remains 

constant, hence, this is the effective length which influences the travel time in these hillslopes. 



 
The maximum saturation zone length in convergent hillslopes, it is inferred that they have the 

minimum effective length, with shorter subsurface travel time relative to the divergent and 

parallel hillslopes.   

Any alteration in the plan shape makes change(s) in the effective length, eventually resulting 

in changes in the travel time. So the travel time is a function of the profile curvature, the plan 

shape, and the characteristics of the soil and recharge.  

Based on our results, the convex hillslopes show smaller saturation zone than the concave 

hillslopes and take greater travel time than the straight and concave ones; whereas in convex-

convergent hillslopes due to their convergent, there is much inclination towards saturation.  

The least travel time corresponds to the concave-convergent hillslopes, and the greatest to the 

convex-divergent ones.  

Appendix A:  

Troch et al. (2002) introduced the storage function for steady state condition as:   
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                                                                                A.1  

The storage function for straight hillslope(n=1) is obtainted:  
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By inserting the Eq.12 in Eq. A.2 , we obtain: 
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Appendix B: 

The relationship between SZL and the location of the  saturation zone boundary for straight 
hillslopes is: 

                                                                                               B.1
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The location of the  saturation zone boundary from Eq.15 is obtained:  
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By inserting the Eq. B.2 in Eq. 22, we obtain: 
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Equation  B.3 presents the subsurface travel time of the straight hillslopes after saturation
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Tables 

Table1. Geometrical parameters for the nine characterized hillslopes (after Talebi et al., 

2008a). 

][ 2m Area *]10[ 13 mn[-]
Plan  
Shape

Profile  
Curvature

Hillslope  
Nr.

2441 +2.7 1.5 convergentconcave1
5000

 
0

 
1.5

 
parallelconcave2

 
1049 -2.7 1.5divergentconcave3 
2162+2.71 convergentstraight4 
500001 parallelstraight5 
2162 -2.7 1 divergentstraight6 
1402 +2.7 0.5 convergentconvex7 
5000 0 0.5 parallelconvex8 
2268 -2.7 0.5 divergentconvex9 

Table 2. Hydrological parameters (based on Talebi et al., 2008a). 

ValueUnitsSymbol 

 

Parameter name

0.0001 1mskSaturated hydraulic 
conductivity

0.34 fEffective porosity 

301mmdNRecharge 

2 mDSoil depth(vertical) 
15 degSlope angle 

Table 3. SZL and STT in the nine basic hillslopes (N=30mm/day)  

STT(hr)SZL(m)
Plan  
Shape

Profile  
Curvature

Hillslope  
Nr.

204 32 convergentconcave1
294 14 parallelconcave2 
423 1divergentconcave3 
24730 convergentstraight4 
3520 parallelstraight5 
352 0 divergentstraight6 
293 52 convergentconvex7 
470 0 parallelconvex8 
470 0 divergentconvex9 

    



 
Figures caption 

Figure 1. a) A three dimensional view of a convergent hillslope overlying a straight bedrock 

profile, b) a definition sketch of the cross section of a one-dimensional hillslope aquifer 

overlying a bedrock with a constant bedrock slope angle (after Talebi et al., 2008a).  

Figure 2. A three-dimensional view (top) and a two-dimensional plot of the contour lines and 

slope divides (bottom) of the nine hillslopes considered in this study (after Hilbert et al., 

2004).  

Figure 3. Prediction of saturation zone boundary at convergent hillslope 

(after Rezzoug et al.2005)   

Figure 4. Relative saturated storage along the nine basic hillslopes  for different recharge rates 

(solid line: N=30mm/day; dashed line: N=20mm/day; dotted line: 

N=10mm/day). )15,34.0,2,/0001.0(k ofmDsm

  

Figure 5. Saturation Recharge Rate (SRR) for complex hillslopes.  

Figure 6. Saturation zone length (SZL) for different recharge ratios.  

Figure7.Relative saturated storage along the nine basic hillslopes  for different soil depths  

N=10 mm/day (solid line: D =0.5m; dashed line: D =1m; dotted line: D =2m).  

Figure 8.Relative saturated storage along the nine basic hillslopes for different bottom average 

bedrock slope angles (solid line: 

 

=25, =0.0047 dashed line: =20, =0.0036; dotted line: 

=15, =0.0027).  

Figure 9: Saturation zone length (SZL) of the nine basic hillslopes (N=50mm/day) 



  
Figure10: Subsurface travel time (STT) of the nine basic hillslopes (N=50mm/day

  
Figure11. Average subsurface flow for nine basic hillslopes (N=30mm/day)    
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