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Abstract 12 

The spatial and temporal variability of the soil moisture status gives an important base 13 

for the assessment of ecological (for restoration) and economic (for agriculture) 14 

conditions at micro- and meso-scales. It is also an essential input into many 15 

hydrological processes models. However, there has been a lack of effective methods 16 

for its estimation in the study area. The aim of this study was to determine the 17 

relationship between the soil moisture status and precipitation and topographic factors. 18 

First, this study compared a linear regression model with interpolating models for 19 

estimating monthly mean precipitation and selected the linear regression model to 20 

simulate the temporal-spatial variability of precipitation in the southern Qilian 21 

Mountainous areas of the Heihe River Basin. Combining topographic index with the 22 

distribution of precipitation, we calculated the soil moisture regime in the Pailugou 23 

catchment, one representative comprehensive research catchment. The modeled 24 

results were tested by the observed soil water content for different times. The 25 
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correlation coefficient between the modeled soil moisture status and the observed soil 26 

water content is quite high, assuring our confidence in the spatially-modeled results of 27 

the soil moisture status. The method was applied to the southern Qilian Mountainous 28 

regions. Therefore the modeled distribution of the soil moisture status reflected the 29 

interplay of the local topography and landscape climate processes. The driest sites 30 

occur on some ridges in northern part and western part of the study area, where have 31 

small accumulating flow areas and low precipitation rates. The wettest sites are 32 

registered in the low river valley of the Heihe River and its major tributaries in the 33 

eastern part due to large accumulating flow areas and higher precipitation rates. 34 

Temporally, the bigger variation of the soil moisture status in the study occurs in July 35 

and smaller difference appears in May. 36 

Keywords: soil moisture status; precipitation; linear regression; topographic index; 37 

Qilian Mountains; Landscape scale 38 

 39 

1 Introduction  40 

The Heihe River Basin, the second largest inland river basin in the arid regions 41 

of northwestern China, consists of three major geomorphic units: the southern Qilian 42 

Mountains, the middle Hexi Corridor, and the northern Alxa Highland. The southern 43 

Qilian Mountains are hydrologically and ecologically the most important unit because 44 

of the functions as the water source to support the irrigating agriculture in the Hexi 45 

Corridor and also to maintain the ecological viability in the northern Alxa Highland. 46 

With the rapid growth of population, agricultural irrigation areas increasingly spread 47 
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in the middle Hexi Corridor. As a result, the already-existing conflict between 48 

economic use of the water here and ecological demand of the water in the Alxa 49 

Highland has been recently exacerbated. How to resolve the conflict and coordinate 50 

the development in economy and ecological environments becomes the focus of 51 

attention in the Heihe River basin. Many researchers have dealt with water resources, 52 

such as water resources carry capacity (Ji, et al., 2006), ecological requirement water 53 

(Zhao, et al., 2005; Zhao et al., 2010), the runoff amount of the Heihe River and its 54 

variation (Wang, et al., 2009), methods of irrigation and so on. The water resources 55 

are very scarce in the Heihe River basin, and the runoff from the southern Qilian 56 

Mountains approximately represents the water resources amount of the middle Hexi 57 

Corridor and the northern Alxa Highland. Therefore, accurate estimation of runoff 58 

from Qilian Mountainous watersheds is an urgent need for answering Heihe River 59 

water resources carry capacity and for water management and planning. To 60 

accomplish the needed runoff estimation in the upper reaches, several distributed 61 

hydrological models are applied for the practical purpose. Soil moisture is considered 62 

to be an important parameter in these distributed hydrology models. It thus has to be 63 

spatially and temporally portrayed (Liang et., 1994; Wignosta et al., 1994; Famiglietti 64 

and Wood, 1994; Li & Islam, 1999). For the reason, during the last 30 years there 65 

have been various studies that have attempted to develop a method to estimate the soil 66 

moisture content over large scale. The one commonly used is extrapolation approach 67 

in which one method is to estimate soil moisture by extrapolating point measurements 68 

across the landscape with geostatistical techniques (Western and Grayson, 1998; 69 



 4

Wang et al., 2001;Western et al., 2004). Unfortunately, ground-based methods (e.g. 70 

neutron thermalization, oven-dry method) are much too labor-intensive to maintain 71 

for a large area (e.g., in the entire southern Qilian Mountains). Another method is to 72 

estimate soil moisture by using wetness indices based on terrain information (e.g. 73 

Beven and Kirkby, 1979; O’Loughlin, 1986; Svetlitchnyi et al., 2003; Teuling and 74 

Troch, 2005). The latter method hypothesizes that the spatial distribution of 75 

topographic attributes that characterize these flow paths inherently captures the spatial 76 

variability of soil moisture status at the meso-scale as well. However, soil moisture 77 

patterns are influenced by a number of factors such as soil properties, vegetation, 78 

depth to water table and meteorological conditions besides topographic attributes. 79 

Climate, parent material, topography, vegetation, and other biotic agents are the 80 

dominant soil-forming process, but climate probably exert control at larger scales 81 

(Moore et al., 1988; Gómez-Plaza et al., 2001). Thus, in this study the relationship of 82 

the temporal and spatial variation of soil moisture is determined by establishing its 83 

controlling factors, e.g. topography and precipitation. Topographic attributes can be 84 

easily extracted from a digital elevation model (DEM). Whereas, precipitation fields 85 

on a regular grid and in digital forms must be inferred from neighbouring 86 

meteorological stations or from relationships with other variables (Marquínez et al., 87 

2003). There are many methods of interpolating precipitation from monitoring 88 

stations to grid points (Dirks et al., 1998; Goovaerts, 2000; Wei, et al., 2005; Price et 89 

al., 2000; Guenni & Hutchinson, 1998). Basic techniques use only the geographic 90 

coordinates of the sampling points and the value of the measured variable. However, 91 
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the study area is one in which these methods have not been applied previously. In 92 

addition, regression models are using only additional information as regression 93 

models between precipitation and various topographic variables such as altitude, 94 

latitude, continentality, slope, orientation or exposure (Basist et al., 1994; Goodale et 95 

al., 1998; Ninyerola et al., 2000; Wotling et al., 2000; Weisse & Bois, 2001). But few 96 

researchers could interpolate precipitation by regression models in the study area 97 

because of unavailable digital elevation models (DEM). Fortunately, significant 98 

progress in this area has recently been achieved through the development of a 99 

high-resolution DEM with a resolution of 10m×10m by the remote sensing laboratory 100 

of Cold and Arid Regions Environmental and Engineering Research Institute, CAS. 101 

The topographic factors of soil moisture are best delineated by the DEM at the 102 

resolution that closely matches the smallest orographic scale supported by the data.  103 

This study sought to develop the relationships between soil moisture and its 104 

controlling factors (i.e., precipitation and topographic variables) in order to map the 105 

soil moisture status across the southern Qilian Mountains. In the following sections 106 

we will present the various steps that lead to the mapping of the soil moisture regime: 107 

(1) use of available data; (2) determination of the best model for modelling the areal 108 

distribution of precipitation; (3) definition of the wetness index and GIS realization of 109 

the wetness index model; (4) mapping of the soil moisture status distribution; and 110 

finally (5) validation of the results.  111 

 112 
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2 Materials and methods  113 

2.1 Study area  114 

The study area, one portion of the Qilian Mountains within the Heihe River 115 

Basin, is located between 98º34ˊ- 101º11ˊE and 37º41ˊ- 39º05ˊN and covers 116 

an area of approximately 10, 009 km2, with the elevation ranging from 2000 to 5500m 117 

a.s.l. Administratively, the major part of the study area is in Gansu Province and a 118 

small part in Qinghai Province (Fig. 1). The mean annual precipitation increases with 119 

the increasing elevation (from 250 to 700mm). The inter-annual variability in the 120 

precipitation is as high as 80%, and over 88% of the precipitation falls between May 121 

and September. Figure 2 shows the pattern of rainfall over the year in Zhamashike 122 

meteorological station (one representative meteorological station in the study area). 123 

The mean annual temperature decreases with the increasing elevation (from 6.2 to - 124 

9.6ºC). The vegetation distribution closely follows the temperature- and 125 

precipitation-determined heat-water combinations in the Mountains. They are (from 126 

low to high elevations): desert steppe, forest steppe, sub-alpine shrubby meadow, 127 

alpine cold desert, and ice/snow zone. In addition to the obvious vertical zonality, 128 

horizontal zonality also exits due to precipitation and air temperature differences from 129 

the south to the north and from the east to the west. Generally, precipitation decreases 130 

from the east to the west and increases from the north to the south but the temperature 131 

is reverse in the study area.  132 

 133 
 134 
 135 
 136 

Figure 1 Location of the study area, meteorological stations and rain gauges. 
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 137 

 138 

2.2 Data collection 139 

The monthly mean precipitation data (from 1957 to 1995) were obtained from 43 140 

stations, including meteorological stations and rain gauges located within the study 141 

area and the surrounding areas. The locations and the altitudes of these stations were 142 

measured with a global positioning system (GPS) and an elevation meter. Among 143 

them, 30 stations were chosen to develop the regression model or to use for 144 

interpolating and other 13 stations were remained to test the models. Total 27 plots 145 

were located to measure soil water content, 22 plots were in Pailugou catchment (one 146 

representative comprehensive research catchment in the study area located at 38.55ºN, 147 

100.30ºE) (Fig. 1). Pailugou catchment covers an area of 10 km2, with the elevation 148 

ranging from 2600m to 3800m a.s.l. Soil was sampled on a biweekly interval at four 149 

depths (0-10, 10-20, 20-40, 40-60 cm) from May to September in 2003 and 2004. Soil 150 

moisture was measured by the conventional oven-dry method. Calculation of mean 151 

value of soil water content (SWC) is demonstrated as follows: suppose that SWC of 152 

plot i, layer j, sampling occasion k is expressed as SWCi,j,k. Nj represents the number 153 

of sampling soil layer or soil depths and is 4 in this study; Nk is the number of 154 

sampling occasion in each month, which is 2. Mean SWC in each month on plot i 155 

(SWCi) is calculated as follows: 156 
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At final, we can get available data of 15 plots, which was used to validate the model 158 

Figure 2 Distribution of monthly mean precipitation in Zhamashike meteorological 
station (1957-1995). 
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mentioned hereinafter. Pailugou catchment has a weather station at the catchment 159 

outlet. 16 rain gauges were located along elevation gradient, on a 100m interval 160 

between 2600-3500m and on a 50m intervals between 3500-3800m, for providing 161 

information on the spatial variability of rainfall. 162 

DEMs of the study area and Pailugou catchment were obtained from the remote 163 

sensing laboratory of Cold and Arid Regions Environmental and Engineering 164 

Research Institute, CAS.  165 

2.3 Description of models 166 

Hydrological prediction at the micro- and meso-scales is intimately dependent on 167 

the ability to characterize the spatial variability of the soil water content. However, 168 

soil moisture exhibits drastic temporal and spatial variations even in a small 169 

catchment. In mountainous terrains, the soil water distribution is controlled by vertical 170 

and horizontal water divergence and convergence, infiltration recharge, and 171 

evapotranspiration. The latter two terms are affected by solar insolation and the 172 

vegetation canopy that vary strongly with exposure in arid areas. The 173 

divergence/convergence term is dependent on hill-slope position (Moore et al., 1993). 174 

Considering the hill-slope position, most index approaches for predicting the spatial 175 

distribution of soil water can be expressed as (Beven and Kirkby, 1979): 176 

 177 
IN1 = ln (a/tanβ)                                        (2) 178 

 179 

where IN1 is the wetness index, α the contributing area and β the local slope of the 180 

terrain. The soil water content is not only affected by the divergence/convergence of 181 

water but also affected by evapotranspiration. In arid areas, evapotranspiration is 182 
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obviously different in different aspects because of variations of insolation. A modified 183 

wetness index is defined by merely introducing the factor of aspect (A), an appropriate 184 

surrogate of potential insolation (Grayson et al., 1997; Gomez-Plaza et al., 2001). 185 

Then, the Eq.(2) becomes: 186 

 187 

IN2 = ln (a/tanβ)×cosA                                  (3) 188 

 189 

where IN2 is the modified wetness index and A the aspect. 190 

The soil moisture index at landscape scales is determined by high-resolution 191 

spatial distributions of precipitation and DEM-based topographic factors (Dymond 192 

and Johnson, 2002) and given as the following: 193 

 194 

IN3 = ln(a/tanB)×cosA × Pi                                 (4) 195 

 196 

where IN3 is the soil moisture index in every month, Pi the monthly mean precipitation. 197 

Eq.(4) requires four parameters: slope, aspect, the specific catchment area (catchment 198 

area draining across a unit width of contour) and precipitation. Topographical 199 

parameters such as slope (β), aspect (A), and the contributing area (α) are computed 200 

from DEM. Precipitation is an important parameter and must be accurately estimated.  201 

The temporal and spatial distribution of precipitation in Pailugou catchment was 202 

simulated by regression relationship between the monthly mean rainfall and altitude, 203 

which is presented as: 204 

Pi = a + bH+cH2                                          (5) 205 
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where H is the altitude in meter, a, b and c the regression coefficients (Table 1) 206 

We here used five methods to simulate the temporal and spatial distribution of 207 

precipitation in the southern Qilian Mountains, i.e. linear regression, inverse distance 208 

weighted (IDW), ordinary kriging (OK), trend and spline. The regression model 209 

derived by regression analyses can predict annual, monthly precipitation as functions 210 

of elevation and geographical coordinates (Wei et al., 2005; Michaud et al., 1995). By 211 

the analysis of the precipitation data with their elevation and geographical coordinates 212 

in the study, a linear regression relationship between the monthly mean rainfall and 213 

locational/topographic factors is presented as: 214 

                      215 
Pi = a + bH + cY + dX                                        (6) 216 

 217 

where H is the altitude in meter, Y the latitude in degree, X the longitude in degree and 218 

a, b, c, d the regression coefficients (Table 2).  219 

 220 

 221 

 222 

Besides the regression model, four conventional interpolation methods, inverse 223 

distance weighted (IDW), spline, ordinary kriging (OK), and trend, were tested. IDW 224 

estimates the value of an unsampled area as a weighted average of a defined number 225 

of neighborhood points, or area, and the weight assigned to each neighborhood point 226 

diminishes as the distance to the neighborhood point increases (Lloyd, 2005). Spline 227 

interpolators have been widely used in developing climatic surfaces from sparse 228 

observation points (Tsanis and Gad, 2001). The interpolated surface based on spline 229 

Table 1 

Table 2 
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(a) passes exactly through the data points and (b) has a minimum curvature. OK is a 230 

geostatistical procedure that uses a variogram model, which describes the spatial 231 

continuity of the input data to estimate values at unsampled locations (Isaaks and 232 

Srivastava, 1989). The variability between samples as a function of distance (i.e., 233 

semivariance) is evaluated and modeled prior to kriging (Wackernagel, 1995). The 234 

trend surface interpolator uses a polynomial regression to fit a least-squares surface to 235 

the input points. It creates smooth surfaces. The surface generated will seldom pass 236 

through the original data points since it performs the best fit for the entire surface.   237 

3 Results and discussion 238 

3.1 Wetness indexes 239 

Topographical parameters, such as slope, aspect and the contributing area were 240 

computed from DEM. The aspect is expressed in positive degrees from 0 to 360, 241 

measured clockwise from the north. The maps of the wetness index (IN1 and IN2) and 242 

the modified wetness index (IN3) in Pailugou catchment were obtained from the 243 

models using ARC/INFO + grid. The simulated wetness indexes were validated by 244 

observed data. We found that IN1 was able to explain between 34% and 38% of the 245 

spatial variability of soil moisture, but if the aspect was considered as a 246 

complementary factor, this capacity increased up to 69.5%. The results were 247 

supported by some researches (Moor et al., 1988; Gómez-Plaza et al., 2001). However, 248 

Eq. (2) and Eq. (3) only take the topographic factors into account. If the spatially 249 

inhomogeneous precipitation was considered as another complementary factor (i.e. Eq. 250 

(4)), the capacity of the spatial variability of soil moisture can be explained to be 76% 251 
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in Pailugou catchment (Fig. 3). The maps of the wetness index (IN1) and the modified 252 

wetness index (IN2) in the southern Qilian Mountains were obtained from the models 253 

using ARC/INFO + grid (Fig. 4). According to precipitation measurement, 254 

precipitation shows dramatically differences in the southern Qilian Mountains. It 255 

increases from the north to the south, from the lower altitude to the higher altitude, 256 

and decreases from the east to the west. In turn, the soil moisture status exhibits a 257 

spatially inhomogeneous arrangement in the landscape due to precipitation. Therefore, 258 

precipitation must be considered. 259 

 260 

 261 

 262 

 263 

3.2 Spatial and temporal distributions of precipitation 264 

Prediction of precipitation on the locations of the validation points and the 265 

measured values at these locations were compared by three criteria: the mean error 266 

(ME), the mean absolute error (MAE) and the root mean square error (RMSE). ME 267 

indicates the degree of bias, MAE provides a measure of how far the estimate can be 268 

in error, ignoring the sign, and RMSE provides a measure that is sensitive to outliers. 269 

A summary of the errors obtained from the criteria was presented in Table 3. ME was 270 

relatively low for IDW, OK, trend and linear regression, but was generally lowest for 271 

the linear regression model. The linear regression and OK methods gave the lower 272 

MAE and RMSE. The spline gave consistently poor performances. For five methods, 273 

Figure 4 Distribution of wetness indexes (IN1 and IN2) in the southern Qilian
Mountains. 

Figure 3 Scatter plots of observed soil moisture content and modeled soil moisture
status from May to August 
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there were substantial variations in RMSE through the year (Fig. 5). The highest 274 

errors occurred from July to September and the lowest values from October to 275 

February, which probably reflected the greater precipitation differences across the 276 

region in summer. From June to August, the linear regression performed better than 277 

OK. Thus the conclusions are as follows: on average over the year, larger predictions 278 

errors were obtained by the spline, the trend and IDW methods that ignore elevation 279 

factors, with the worst results produced by the spline. It was noteworthy that for 280 

several months (from January to May, from September to December), OK yielded 281 

smaller prediction errors than the linear regression of precipitation against elevation 282 

and locational/topographic factors. 283 

 284 

 285 

 286 

As mentioned above, over 88% of the precipitation falls between May and 287 

September and over 63% between June and August in the southern Qilian 288 

Mountainous areas of the Heihe River Basin. We were here focusing on the spatial 289 

distribution of precipitation during the ecologically meaningful time period, i.e., 290 

growing seasons approximately from May to August. Our comparison between these 291 

models’ performances demonstrated that the linear regression model did the best job 292 

during the ecologically meaningful time period. The best performance of the linear 293 

regression in the study area made this model the best choice. A series of 294 

spatial-distribution maps of precipitation were obtained by the regression model (Fig. 295 

Table 3 

Figure 5 Validation RMSE for monthly mean precipitation averaged across 13 test
stations for five methods. 
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6). Figure 6 showed that lower precipitation values were registered in the low valleys 296 

of the Heihe River and the northwest part, and higher precipitation values appeared in 297 

the southeast part where the altitude and longitude depended precipitation is higher. 298 

Figure 6 also showed that precipitation value had temporal variations during growing 299 

seasons (i.e. from May to August), highest precipitation value, ranging from 46mm to 300 

145.4mm, appearing in the July, and the lowest precipitation value, from 25.2mm to 301 

64.5 mm, being seen in May.  302 

 303 

 304 

3.3 Temporal and spatial distribution of soil moisture status in the southern 305 

Qilian Mountains. 306 

The soil moisture data are fairly sparse in the study area. We could not collect the 307 

soil moisture data except in Pailugou catchment. The soil moisture status of Pailugou 308 

catchment was simulated using Eq.(4). To test the spatially-modeled results of the soil 309 

moisture status in the catchment, we compared the observed results for 4 months at 15 310 

sample plots with the spatially-modeled results for the corresponding months and 311 

sample plots. The correlation coefficients (R2) are from 0.60, 0.76, 0.67, 0.69 for May, 312 

June, July and August respectively (Fig. 3). These assure our confidence in the spatial 313 

model (i.e. Eq.(4)) of the soil moisture status.  314 

Therefore, the same strategies were employed to estimate the soil moisture status 315 

of the southern Qilian Mountains areas (Fig. 7). The distributions of the soil moisture 316 

status in the study area reflected the interplay of the local and landscape climate 317 

Figure 6 Distribution of monthly mean precipitation in southern Qilian Mountains
from May to August. 
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processes. As viewed from a small scale, the gentle bases of long hill-slopes had more 318 

moisture than the steep short sites due to its larger catchment areas, and the 319 

south-facing slope had less moisture than the north-facing slope because it got more 320 

insolation on the dryness of the matrix soil water. From the landscape scale viewpoint, 321 

the moisture increased from the north to the south and from the west to the east due to 322 

the precipitation increase. Figure 7 showed that the driest sites (IN3 from –1412 to 323 

–985) occurred on some ridges in the northern part and the western part of the study 324 

area, which has very small catchment areas and small precipitation. The wettest sites 325 

(IN3 from 1150 to 1577) were registered in the low valleys of the Heihe River and its 326 

major tributaries in the eastern part due to large accumulating flow areas and more 327 

precipitation. The bigger variation of the soil moisture status in the study occurred in 328 

July and smaller difference appeared in May. Although there is temporal different in 329 

the status of soil moisture, the spatial variation trend of soil moisture in different 330 

month is the same. Comparing the dominant communities at 35 sample points 331 

extracted from the present distribution of vegetation types with the spatially-modeled 332 

results of soil moisture in June for the corresponding sample points (Table 4), we 333 

found a certain community occupies its special range of soil moisture. For example, 334 

Qinghai spruce (Picea crassifolia), distributing north-facing slope in the Qilian 335 

Mountains, dominates the range of soil moisture (NI3) between 0-800. Stipa 336 

breviflora-Stipa bungeana has a range of soil moisture between -100-600 with higher 337 

frequency between -100-200. Stipa przewalskyi-Stipa purpurea community covers a 338 

range of soil moisture between -100-700 with higher frequency between 200-600. 339 
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Salix gilasnanica dominates a range between 300-1200, distributing above the upper 340 

line of Qinghai spruce forest on the north-facing slope. Kobresia tibetica is dominant 341 

species of the alpine meadow in Qilian Mountains. which occupies higher range of 342 

soil moisture between 500-1400 with higher frequency between 800-1100.  343 

 344 

 345 

 346 

 347 

In addition to topography, the land use type is another important factor 348 

controlling soil water patterns, which means that difference in vegetations resulting 349 

from different land use types was one of the major factors influencing soil moisture 350 

variability. However, the factor of vegetations is not included in Eq. (4). How to 351 

improve the model to estimate the soil moisture status is an objective of our future 352 

study. 353 

 354 

4 Conclusions 355 

Accurate prediction of the soil moisture status at the large scale is of crucial 356 

interest to hydrology and agronomy related studies in the southern Qilian Mountains. 357 

However, soil moisture data are not available and ground-based methods (e.g. neutron 358 

thermalization, oven-dry method) are far too labor-intensive to maintain for the large 359 

area (e.g., the entire southern Qilian Mountains). Therefore, it is very important to 360 

develop more descriptive models of the soil moisture status. We can draw some 361 

Figure 7 Distribution of monthly mean soil moisture status in southern Qilian 
Mountains from May to August. 

Table 4 A range of soil moisture (NI3) in five plant communities in southern Qilian
Mountains 
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conclusions from the approach: 362 

1. Equation (4) was used to predict the variability of the soil moisture status in 363 

the study area and the model was validated by Pailugou catchment. The results of 364 

validation assured our confidence in the spatially-modeled results of the soil moisture 365 

status. But one important factor affecting soil moisture is vegetation types which were 366 

excluded in the model. Vegetation, which is in part responsible for the distribution of 367 

soil moisture, will be integrated in equation (4) to improve the estimation accuracy in 368 

future work. Further studies would benefit from using these types of index to set up 369 

the distributed initial soil water conditions in the hydrological modeling of the study 370 

area incorporating estimated evapotranspiration fluxes of vegetation. 371 

2. Equation (4) includes two terms, the topographic indices and precipitation. 372 

The model of the topographic indices in Eq. (3) is universal in a different sense. 373 

Therefore accurate estimations of precipitation are very important to estimate the soil 374 

moisture state at large scale. We selected five methods to simulate the temporal-spatial 375 

distributions of precipitation in the study. By comparison, the best performance of the 376 

linear regression in the study area made this model the best choice.  377 

3. Soil moisture status is influenced by other factors, such as soil properties, 378 

vegetation, meteorological conditions besides topography. The importance of these 379 

factors can vary with the study area. Any simple relationship between topographic 380 

indices and soil moisture must, however, be used with great care (Rodhe and Seibert, 381 

1999; Svetlitchnyi et al., 2003). According to Florinsky et al. (2002) in soil studies 382 

with digital terrain modelling, there is a need to take into account four types of 383 
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variability in relations between soil and a relief: regional, time, depth, and scale. For 384 

example, Chinese Loess Plateau comparing with the southern Qilian Mountains, three 385 

natural factors: steeply-sloped topography with gullies, fine-textured loessial soils and 386 

precipitation in form of storms are first and foremost considered. These factors decide 387 

the unique hydrogeomorphic condition that the rainfall intensity often exceeds the soil 388 

infiltration capacity differing from that in the southern Qilian Mountains. This 389 

imposes on equation (4) quite certain regional restrictions.  390 

 391 
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Table 1. Monthly regression coefficients and R2 needed to calculate monthly mean 504 
precipitation using altitude (H) for Pailugou catchment (P = a + bH+cH2). 505 

time a b c R2 

Apr. -0.00002 0.1344 -194.41 0.965 

May -0.00004 0.2386 -345.24 0.969 

Jun. -0.00020 0.9756 --1411.6 0.968 

Jul. -0.00010 0.7745 -1120.7 0.968 

Aug. -0.00005 0.3489 -504.77 0.967 

Sep. -0.00006 0.3770 -545.41 0.967 

 506 

 507 

Table 2. Monthly linear regression coefficients and R2 needed to calculate monthly 508 
mean precipitation using altitude (H), latitude (Y) and longitude (X) for the southern 509 
Qilian Mountains (P = a + bH + cY + dX). 510 

time a b c d R2

Jan. -19.811 0.000260 -0.051 0.231 0.207

Feb. -70.701 0.001103 0.221 0.626 0.331

Mar. -249.545 0.003390 0.433 2.336 0.406

Apr. -16.862 0.004009 -4.289 1.879 0.584

May 408.331 0.009569 -12.540 0.869 0.810

Jun. 530.716 0.021000 -13.656 0.016 0.863

Jul. 689.699 0.029650 -12.485 1.018 0.870

Aug. 495.902 0.018520 -19.839 2.869 0.879

Sep. 196.940 0.009100 -15.049 4.003 0.856

Oct. -5.170 0.002153 -5.737 2.341 0.841

Nov. -136.015 0.000984 0.240 1.283 0.455

Dec. -81.180 0.000480 0.493 0.627 0.166

Annual 1742.001 0.097260 -87.915 17.197 0.861

511 
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Table 3. Validation errors averaged across 13 test sites for the five interpolation methods in each month. 1 

 Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

IDW 0.20 0.95 2.56 0.83 -1.2 5.97 -2.58 1.28 -4.56 0.3 -0.68 0.59 
TREND 0.31  0.72  1.32  5.33 0.40 0.64  0.31  0.72  1.32  5.33 0.40 0.64 

OK 0.22 0.97 2.54 1.48 0.35 6.73 -2.23 2.66 -3.78 0.75 -0.65 0.58 

SPLINE 0.42 1.16 3.65 2.59 1.27 9.98 -0.94 4.5 -3.3 1.02 -0.38 0.7 

ME 

REGRESSION 0.32 1.04 2.3 0.36 -1.51 6.15 -3.56 -0.23 -6.09 -0.57 -0.75 0.7 

              

IDW 0.84 1.56 4.46 5.34 6.84 11.41 12.68 9.98 6.47 3.1 1.52 1.15 

TREND 1.06 2.09 5.24 6.10 6.34 11.89 10.93 8.44 7.53 3.17 1.67 1.33 

OK 0.84 1.89 5 4.85 4.57 8.15 8.18 7.06 4.8 1.63 1.41 1.18 

SPLINE 0.97 1.81 7.29 6.99 7.04 12.18 12.57 9.71 6.68 2.79 1.51 1.47 

MAE 

REGRESSION 1.05 1.98 4.94 5.86 5.03 7.46 6.07 4.6 7.41 2.92 1.72 1.3 

              

IDW 1.19 1.94 5.65 6.53 8.56 13.50 15.47 12.72 8.23 3.51 1.71 1.35 

TREND 1.28 2.22 8.13 8.88 8.52 15.01 15.80 10.52 8.23 3.88 1.88 1.79 

OK 1.18 2.16 6.16 6.21 5.54 10.78 9.75 8.62 6.05 2.18 1.65 1.37 

SPLINE 2.22 8.13 8.88 8.52 15.01 15.80 10.52 8.23 3.88 1.88 1.79 2.22 

RMSE 

REGRESSION 1.27 2.32 6.16 6.63 6.10 9.47 8.33 7.39 9.21 3.51 2.08 1.53 

2 
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Table 4 A range of soil moisture (NI3) in five plant communities in southern Qilian 1 
Mountains 2 

Frequency of five communities NI3 classes 
Stipa breviflora - 

Stipa bungeana 
Stipa przewalskyi - 

Stipa purpurea 

Picea 

crassifolia 

Salix 

gilasnanica 

Kobresia 

tibetica 

-100-0 14.29 2.70 0.00 0.00 0.00 
0-100 20.00 5.41 2.94 0.00 0.00 

100-200 25.71 2.70 2.94 0.00 0.00 
200-300 34.29 18.92 11.76 0.00 0.00 
300-400 0.00 18.92 17.65 5.71 0.00 
400-500 0.00 29.73 23.53 5.71 0.00 
500-600 5.71 18.92 23.53 8.57 3.23 
600-700 0.00 2.70 11.76 5.71 9.68 
700-800 0.00 0.00 5.88 8.57 6.45 
800-900 0.00 0.00 0.00 25.71 19.35 

900-1000 0.00 0.00 0.00 25.71 19.35 
1000-1100 0.00 0.00 0.00 5.71 22.58 
1100-1200 0.00 0.00 0.00 8.57 9.68 
1200-1300 0.00 0.00 0.00 0.00 6.45 
1300-1400 0.00 0.00 0.00 0.00 3.23 

 3 

 4 
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 1 

Figure 1. Location of the study area, meteorological stations and rain gauges in 2 

Pailugou catchment. 3 
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Figure 2. Distribution of monthly mean precipitation in Zhamashike meteorological 3 

station (1957-1995). 4 
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Figure 3. Scatter plots of observed soil moisture content and modeled soil moisture 2 

status from May to August 3 
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 2 

Figure 4. Distribution of wetness indexes (IN1 and IN2) in the southern Qilian 3 
Mountains. 4 
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Figure 5. Validation RMSE for monthly mean precipitation averaged across 13 test 5 

stations for five methods. 6 
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Figure 6 Distribution of monthly mean precipitation in southern Qilian Mountains 3 

from May to August. 4 
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Figure 7. Distribution of monthly mean soil moisture status in southern Qilian 2 

Mountains from May to August. 3 


