
We thank reviewer #2 for detailed comments and suggestions for improving the original 
manuscript. We answer the main comments in the following sections (minor and 
technical comments are included in the revised manuscript): 
 
...The weakness that I see in the technique used to evaluate the models and their relative 
posterior model probability is the fact that there is not penalty factor accounting for 
adding too many parameters. So, the models with the highest number of parameters, as 
expected, have the highest posterior model probability. I will make also the point in the 
specific comments, but I would strongly suggest to make a simple and fast test of the 
performances of the different models using a statistic which account for the number of 
parameters added (the simplest I have in mind is AIC or AICc). 

We partially agree with this comment. As mentioned by the reviewer there is no 
(explicit) penalty term included in the likelihood function when the number of parameters 
increases. Since the likelihood is linked to model performance, models with more 
parameters usually show the highest model likelihood. A penalizing term, however, can 
be included in the framework of the GLUE-BMA method through the prior model 
probabilities. If the analyst’s prior knowledge about the plausibility of the alternative 
conceptualizations is sound enough to define non-uniform prior model weights, the latter 
could be used to penalize those models including a high number of parameters. The 
inclusion of this prior knowledge rests on the Bayesian paradigm and it is seen as an 
advantage in the context of the used methodology. This knowledge should reflect the 
analyst’s prior perception about how likely the alternative conceptualizations are. Related 
to this, in a recent article (Rojas et al., 2009c) we have shown that including proper prior 
knowledge about the alternative conceptual models will reduce the predictive variance 
and outperform the case when selecting uniform prior model probabilities. The question 
here, however, translates into how to efficiently define these prior model probabilities to 
reflect this penalizing factor. Answering this question, however, is beyond the scope of 
this article. Some guidelines can be found in Ye et al. (2008b). 

Reviewer #2 suggests doing simple tests using model selection criteria (e.g. AIC 
or AICc) to assess model performances accounting for the number of parameters added. 
We must emphasize two points for answering this comment. First, it is not the aim of this 
article to select “the best model” out of an ensemble of model candidates, i.e. solve a 
model selection problem. Rather the objective is to assess the uncertainty arising from the 
definition of an ensemble of plausible conceptual models for the PTA, i.e. solve a 
predictive multimodel problem. Second, we have shown in a recent work (Rojas et al. 
2009a) that using different model selection criteria to approach the posterior model 
weights used for multimodel aggregation will likely produce misleading and conflicting 
results. This is mainly due to the differences in how alternative model selection criteria 
(e.g. AIC, AICc, BIC, KIC) penalize model complexity, value prior information on 
parameter estimates, or interpret the quality of the available dataset D. Although Ye et al. 
(2008a) have shown clear advantages of KIC compared to the other model selection 
criteria, the controversy about using different selection criteria in the framework of 
multimodel methodologies is not settled yet.  

Working with model selection criteria, to comply with the principle of parsimony, 
alternative conceptualizations will be ranked differently, and consequently, they will be 
given different posterior model probabilities. Different posterior model probabilities will 



lead to different estimations of conceptual model uncertainty and predictive uncertainty. 
In the framework of multimodel methodologies (and applications) this is critical and can 
not be neglected. 

As an example, Table R.1 shows the results obtained in a multimodel application 
for the aquifer underlying the Walenbos Nature Reserve in Belgium (Rojas et al. 2009a). 
In this application we used 3 conceptual models (M1, M2 and M3) and 4 model selection 
criteria to estimate posterior model weights based on Ye et al (2008a). 
Conceptualizations considered an increasing number of parameters and a fixed number of 
observations. 
 
Table R.1: Summary of posterior model probabilities using alternative model selection 
for models M1, M2, and M3 
 

   * SWSR: Sum of weighted squared residuals. 
** MLOFO: Maximum likelihood objective 

function observations. 
*** Ln|F|: Natural log of the determinant of the 

Fisher matrix. 
 

As suggested by reviewer #2 we could consider AIC and AICc. Although the 
ranking of models is the same, the posterior model probabilities (p(Mk|D)) are rather 
different for models M1 (59.6% and 84.5% for AIC and AICc, respectively). This 
difference resulted in predictive variances differing in one order of magnitude for key 
groundwater flow components (e.g. inflows to the Nature Reserve) when working with 
AIC- or AICc-based posterior model weights. Additionally, when using AICc-based 
model weights conceptual model uncertainty accounted for 16% of the total uncertainty, 
whereas using AIC-based model weights this contribution was 36%. If we consider BIC 
or KIC (compared to AIC and AICc), the ranking of models and, even more important, 
the posterior model weights are significantly different. 

These results show that, even for the case of the simplest statistics accounting for 
the number of parameters added (AIC or AICc), using alternative model selection criteria 

 Conceptual models 
 M1 M2 M3 
Nr observations 51 51 51 
Nr parameters 4 6 8 
SWSR* 180.95 182.18 158.18 
MLOFO** 64.95 64.93 57.73 
LN |F|*** -122.75 -117.88 -102.18 
p(Mk) 1/3 1/3 1/3 
AIC 74.59 78.93 75.73 
Rank 1 3 2 
P(Mk|D) 0.596 0.068 0.337 
AICc 75.92 81.54 80.12 
Rank 1 3 2 
P(Mk|D) 0.845 0.051 0.104 
BIC 84.25 92.46 93.11 
Rank 1 2 3 
P(Mk|D) 0.972 0.016 0.012 
KIC -5.99 -6.68 -10.48 
Rank 3 2 1 
P(Mk|D) 0.085 0.119 0.796 



to estimate posterior model probabilities might result in misleading and conflicting 
results in multi-modelling applications. We argued that seems more reasonable to work 
with model weights (used for multimodel aggregation) obtained from the sampling of the 
full hyperspace dimensioned by conceptual models, parameters and forcing data vectors 
than working with model weights obtained from model selection criteria using penalizing 
terms for model complexity. In the event that a penalizing term must be considered, this 
can be done through the definition of non-uniform prior model weights. As mentioned, 
however, an analysis of this kind is beyond the scope of this work. 
 
I suggest to rework on section 5 and make the explanations of the different results easier 
to understand by mean of bullet list, or analysis by area, or any other way that authors 
feel appropriate. 

Corrected. See revised manuscript. 
 
P5885, lines 1-5. The recharge seems to be the key issue for the model representations. It 
will be explained later, but it would be useful to have at this point the different recharges. 

Corrected. See revised manuscript. 
 
P5885, line 7. What is the implication of neglecting that recharge? It will be presented 
later but it is of interest here. 

Corrected. See revised manuscript. 
 
P5886, lines 15-20. Which are exactly the observations used? 

Observations used varied among the alternative models. In general, previous 
studies used a common set of head measurements (40-55), estimated discharges for the 
transpiration from the forested areas (years 1960, 1988 and 1993), and estimated 
discharges for the evaporation from salares (salt pans) present in the study area for years 
1960, 1988, 1983.  
  
P5887, lines 10-15. No flow observations in the calibration set? How this affects the 
calibration results in terms of nonuniqueness? 

Since the study area is located in the Atacama’s Desert, there are no flow 
observations. Values for some flow components (e.g. transpiration and evaporation) were 
obtained as models’ result from previous studies. These estimations, however, are not 
included in this application for conditioning simulations as they are considered relatively 
uncertain. We agree with the reviewer that adding flow observations will reduce the 
problem of non-uniqueness and probably will constrain the likelihood response surfaces 
as demonstrated by Rojas et al. (2009b), thus, improving the performance of the GLUE-
BMA approach. However, for the present application only a suite of head measurements, 
which may often be the only information available to perform multimodel applications, 
was available to assess the model performance. 
 
P5888, lines 15-20. No penalty for too many parameters with respect to the number of 
observations? 



See answer comment #1. As explained, a penalty term could be included in the 
form of non-uniform prior model probability distributions. The definition of such priors, 
however, is beyond the scope of this article. 
 
P5892, lines 10-13. Explain. 

Corrected. See revised manuscript. 
 
P5898, lines 23-28. Did you run any sensitivity analysis on the selected parameters? Did 
you see parameter correlations problems? Also models M2 have a much bigger number 
of parameters and I am not sure about having a successful calibration of those models 
having only heads observations. 
 For this work we did not perform a sensitivity analysis on the selected parameters. 
In a previous work, Rojas and Dassargues (2007) did an extensive sensitivity analysis for 
a groundwater flow model equivalent to model M2 used in this application. The 
sensitivity analysis in that work was performed for the 22 hydraulic conductivity zones, 
elevation of constant head at the south boundary, evaporation rate, extinction depth for 
evaporation process and recharge flow rates. From that analysis, the most sensitive 
parameters were the recharge rates and the hydraulic conductivities, which showed some 
degree of correlation given the steady-state nature of the model developed. The elevation 
of the southern boundary condition (CH_S) showed moderate sensitivity whereas 
parameters related to the evaporation process were relatively insensitive. 
 As explained before, flow observations were not available for the calibration. 
There are estimations which are based on previous models’ results but they are used as 
reference values solely. We fully agree with the reviewer that non-uniqueness of 
parameters and equifinality problems would be reduced with the inclusion of flow-related 
observations. In a recent work (Rojas et al., 2009b) we have illustrated the value of flow-
related observations in the context of the GLUE-BMA methodology. 
 
P5904, lines 19-23. This conclusion may be driven by my concern on the number of 
parameters. Also Table 4 shows that none of the models is really showing a significantly 
higher model posterior probability. 
 As explained, model likelihoods are linked to model performances. Therefore, 
better performing models will have higher integrated model likelihoods. Since we are 
keeping the analysis neutral by considering uniform prior model probabilities, integrated 
model likelihoods are proportional to the posterior model weights. 
 Conceptual models using RSF theory to describe the spatial distribution of the 
hydraulic conductivity show high integrated likelihoods. If we consider conditioned 
realizations of the hydraulic conductivity field, the conceptualization shows higher 
posterior model probabilities.  
 We agree with the reviewer that Table 4 does not show significant differences in 
posterior model probabilities. This is due to the fact that models’ simulations are 
conditioned solely on heads and on a relatively low number of hydraulic conductivity 
measurements given the area of the modelled domain (62 k-measurements for an aquifer 
of more than 5000 km²). In a recent work (Rojas et al., 2009b) we have demonstrated that 
head measurements convey low information content to improve the discrimination among 
alternative conceptualizations contained in an ensemble M. This discrimination is 



drastically improved, however, by the inclusion of flow-related measurements and a 
sufficiently dense measurement network of hydraulic conductivity values for 
conditioning the K-field. Unfortunately, for the application to the PTA information to 
improve the discrimination among alternative conceptualizations was not available. 
 
P5911-5912. Most of the conclusion can be revisited after making a test with a measure 
which accounts for number of parameters. Overall, considering the results obtained, 
which model would you select for future simulation and prediction? 

See answer comment #1. 
We must emphasize that it is not the aim of this work to select “the best model” 

out of an ensemble of model candidates, i.e. solve a model selection problem. Rather the 
objective is to assess the uncertainty arising from the definition of an ensemble of 
plausible conceptual models for the PTA, i.e. solve a predictive multimodel problem. By 
mimicking actual conceptual models developed in previous studies we demonstrated that 
conceptual model uncertainty is a relevant source of uncertainty. This is critical for the 
PTA where human pressure for water resources is considerably high and uncertainty due 
to climatic conditions is relatively important. 

Clearly, the most conditioned model (M4) showed slightly higher posterior model 
probabilities. However, neglecting the other conceptualizations will likely produce biased 
and under-dispersive uncertainty estimations. Working with the ensemble prediction, on 
the other hand, we deliberately work with a suite of potential candidates spanning 
plausible model realizations. Raftery and Zhang (2003) have shown that BMA 
outperforms predictions of any other single member of an ensemble of potential model 
candidates for statistical models. Similar results were obtained by Rojas et al. (2008) for a 
synthetic groundwater system. 
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