
We thank reviewer #1 for comments and suggestions to improve our paper entitled: 
“Assessment of conceptual model uncertainty for the regional aquifer Pampa del 
Tamarugal – North Chile” by R. Rojas et al. 
 
We answer the main comments in the following sections: 
 
Pag 5891 line 9-15. It appears that your posterior model weights do not account for the 
number of parameters of the model. If the integrated likelihood and the prior probability 
of two models are equal your method assigns the same posterior model weight. I believe 
that in this case the model with less number of parameter should be preferred in 
according with the principle of parsimony. Is this correct? The authors should comment 
on this. 

We partially agree with this comment. Posterior model weights implicitly account 
for the number of parameters through the likelihood function. It is likely that a model 
with more parameters will have a higher likelihood value, as obtained from model 
performance. If both prior and integrated model likelihoods are equal for alternative 
conceptualizations, these conceptualizations will receive the same posterior model 
weight. The latter means that the evidence provided by the data did not support any single 
model compared to the rest, independently of the number of parameters for each model. 
We acknowledge, however, that the GLUE-BMA method does not penalize more 
complex models (i.e. models with a higher number of parameters) through the model 
likelihood. However, this can be done through the definition of non-uniform prior model 
probabilities. These non-uniform prior model probabilities could penalize alternative 
conceptual models on the basis of the number of parameters, complexity, plausibility or 
any other criteria followed by the analyst. An analysis of this type, however, is beyond 
the scope of this article. 

The principle of parsimony is the general guideline for penalizing more complex 
models and for selecting one model over the others. Different model selection criteria 
using different penalizing terms could be used to select a model as the number of 
parameters increases. We must emphasize, however, that this work is not a model-
selection exercise, rather the aim is to assess the uncertainty arising from the definition of 
an ensemble of plausible conceptual models for the PTA, i.e. a multimodel exercise. 

In the case of uncertainty analysis for multi-modelling applications the use of 
model selection criteria (to comply with the principle of parsimony as suggested by the 
reviewer) can produce misleading and conflicting results. In a recent work, we 
investigated the use of different model selection criteria, namely, AIC, AICc, BIC, and 
KIC, in a multimodel application for the aquifer underlying the Walenbos Nature Reserve 
in Belgium (Rojas et al. 2009). Conceptualizations used in that work considered an 
increasing number of parameters. Results of that work are summarized in Table R.1. 

Results from Table R.1 show that different model selection criteria assign 
(significantly) different posterior model probabilities. This had a drastic impact on the 
estimation of the predictive variance (uncertainty) (as estimated from equation (4) of the 
manuscript) in function of alternative model selection criteria. In the context of a 
multimodel analysis this is crucial and can not be neglected. On the basis of these results 
we argued that seems more reasonable to work with posterior model probabilities (model 
weights used for multimodel aggregation) obtained from the sampling of the full 



hyperspace dimensioned by conceptual models, parameters and forcing data vectors than 
working with posterior model weights approximated from model selection criteria using 
penalizing terms for model complexity. Although Ye et al., (2008) have presented an 
enlightening discussion about the merits and drawbacks of alternative model selection 
criteria in multimodel applications, the discussion about using an alternative criterion 
over the others is far from being settled yet. Considering this, we believe that estimations 
of posterior model weights based on an extensive exploration of the likelihood surface 
are more robust than local approximations based on model selection criteria. 
 
Table R.1: Summary of posterior model probabilities using alternative model selection 
for models M1, M2, and M3 
 

   * SWSR: Sum of weighted squared residuals. 
** MLOFO: Maximum likelihood objective 

function observations. 
*** Ln|F|: Natural log of the determinant of the 

Fisher matrix. 
 

Conceptual model uncertainty is often neglected in groundwater modelling by 
working with a single conceptualization solely, which is equivalent to assign all posterior 
model weight to a particular model. This is usually done by using model selection criteria 
in the case of multiple conceptualizations, supported by a guiding principle as parsimony. 
In recent works we have shown, however, that neglecting conceptual model uncertainty 
will produce biased and under-dispersive uncertainty estimations, and that using model 
selection criteria to approach posterior model weights might lead to conflicting results in 
multi-modelling applications.  

 Conceptual models 
 M1 M2 M3 
Nr observations 51 51 51 
Nr parameters 4 6 8 
SWSR* 180.95 182.18 158.18 
MLOFO** 64.95 64.93 57.73 
LN |F|*** -122.75 -117.88 -102.18 
p(Mk) 1/3 1/3 1/3 
AIC 74.59 78.93 75.73 
Rank 1 3 2 
P(Mk|D) 0.596 0.068 0.337 
AICc 75.92 81.54 80.12 
Rank 1 3 2 
P(Mk|D) 0.845 0.051 0.104 
BIC 84.25 92.46 93.11 
Rank 1 2 3 
P(Mk|D) 0.972 0.016 0.012 
KIC -5.99 -6.68 -10.48 
Rank 3 2 1 
P(Mk|D) 0.085 0.119 0.796 



P5899 line 12. The authors describe the cell size of the models. I suggest to write 
explicitly if the models are three-dimensional and report the thickness of the cell in 1-
layer and 2-layers models. The authors should state if they performed any sensitivity 
analysis to the cell size and if not show that their cell sizes are adequate for the problem 
at hand. 

Model M1 (a and b) is three-dimensional with varying cell thicknesses defined by 
stratigraphic units Q3 and Q4 (see Rojas and Dassargues, 2007) whereas models M2, M3 
and M4 are two-dimensional. We did not perform a sensitivity analysis on the cell size. 
We defined the cell size on the basis of the previous models developed for the PTA and 
based on pragmatic reasons to make the problem computationally tractable. For the latter, 
we performed preliminary runs to estimate the computation time for individual runs. 

 
P5899 line 24. To improve the clarity of the paper I suggest to add more information 
about the 42 observed heads. Do the hydraulic head measurements belong to the aquifer 
Q3 or Q4? What are the minimum and the maximum value that you observed? On which 
basis do you assume that the standard deviation of observed heads is 10 m? 

Head measurements are obtained for both aquifers as observation wells are 
screened at multiple sections. The range of head measurement values is between 915 
masl and 1033 masl. 

We performed a series of preliminary runs to test the implementation of the M-H 
algorithm. The standard deviation defined for the heads is the basis for the rejection 
criterion implemented in the GLUE-BMA method and, therefore, has a significant impact 
on the procedure to explore the sampling space using the M-H algorithm. Small standard 
deviation values made the algorithm excessively slow by defining a too stringent 
rejection criterion. We sequentially increased the value of the standard deviation from 
2.5m (value obtained from Rojas et al., 2008) until we reached a trade-off between 
computational time and number of “behavioural” simulators in the subset Ak. This value 
was 10m which allowed defining the rejection threshold as 30m. Considering the 
dimensions of the modelled domain, and the range of observed heads (915-1033 masl), 
we considered this value as acceptable for the problem at hand. 
 
P5905 line 23. Could you explain better what you mean by ‘synthetic piezometers’? To 
improve the method reliability I suggest to leave out of the calibration process some point 
of the dataset D. In this way you could do a real validation instead of a pseudo-validation 
that you did. It would be more interesting to show how the mean of the full BMA 
prediction, conditioned on available information, reproduced measured values at a set of 
validation points, the measurements laying or not within the corresponding envelops of 
uncertainties. 

Synthetic piezometers are defined as points where no conditioning data either 
head or hydraulic conductivity measurements are included in the dataset (D) used for 
conditioning the multimodel simulations. The objective of including a suite of synthetic 
piezometers was to assess the relevance of uncertainty arising from the alternative 
conceptualizations at points not included in D (heads + conductivity measurements). We 
are aware of the cross-validation approach suggested by the reviewer. However, in our 
manuscript we are not working with an exact conditioning technique, i.e. observed heads 
are not exactly reproduced since the GLUE-BMA method allows a departure based on 



the rejection criterion, thus, exploring the global likelihood response surface cut-off at 
those thresholds. Thus, strictly speaking, the validation technique proposed by the 
reviewer can also be thought of as a pseudo-validation method in the context of the 
GLUE-BMA method. If the conditioning of heads would have been exact (i.e. if the 
variances at the observed points would have been zero in Table 5 of the manuscript), the 
cross-validation method proposed by the reviewer could be applied, however, this is not 
the case. 
 
P5906 line 2. In Table 5 the authors report only the head variances at observation wells. 
I suggest the authors to report also the observed heads and the full BMA prediction with 
the corresponding envelops of uncertainties at these points. Of course it is possible to see 
the observed heads in Figure 7, but it is difficult to see if the observed head lies within 
the envelops of uncertainties of the estimated one. In Table 6 the authors consider points, 
that they called ‘synthetic piezometers’, the variance could be very small or very large 
but they could not know how the estimated head is close to the observed one. I suggest 
the authors to give a physical explanation of the results that they show here. Moreover, 
how the information about the variance can be used from an applicative point of view? 
 Corrected see revised manuscript.  
 The summary for the observed heads and synthetic piezometers is shown  
in Tables R.2 and R.3. 
 
Table R.2: Summary of observed heads, BMA prediction and predictive variances for 
groundwater heads at observation wells. 

 Observation well 
 162 237 263 276 281 286 290 294 C-30 315 D-60 A-13 133 
Observed [m] 980.4 967.8 971.2 957.5 954.9 951.3 951.9 924.5 1131.4 993.5 997.1 1111.2 972.0 
BMA prediction ± 
std. dev. [m] 

968.1 
± 6.5 

966.4 
± 4.9 

964.7 
± 5.5 

950.6 
± 5.6 

945.7 
± 6.0 

942.1 
± 6.0 

937.5 
± 5.1 

932.8 
± 7.9 

1130.1 
± 11.6 

975.8 
± 7.8 

987.6  
± 9.3 

1125.3 
± 14.5 

976.5 
± 6.4 

Total variance 
[m²] 41.8 23.6 30.0 31.9 36.5 36.2 26.5 62.8 134.8 60.3 89.6 211.7 41.2 

 

Table R.2: Summary of BMA prediction and predictive variances at synthetic 
piezometers. 
 Synthetic piezometers 
 P1 P2 P3 P4 P7 P10 P11 P12 P13 P14 P15 
BMA prediction ± 
std. dev. [m] 

1131.0 
± 13.8 

1101.2 
± 18.6 

1043.3 
± 17.3 

1009.8 
± 14.5 

981.1 
± 7.5 

972.3 
± 5.5 

973.2 
± 7.8 

965.8 
± 8.7 

943.3 
± 9.4 

942.3 
± 10.1 

929.7 
± 12.1 

Total variance [m²] 191.0 345.9 299.7 209.7 54.6 30.7 60.9 76.5 88.6 102 146.9 

 
The reviewer is right in pointing out that values of the variance might be very 

small or very large at the synthetic piezometers. As discussed above, however, the 
objective of defining the synthetic piezometers was to assess the contribution of 
conceptual model uncertainty at points not contained in the dataset D. Therefore, 
independently of the variance value, we were interested in the ratio between-model to 
total variance at these points. 
 



P5912 line 3. The point number 4 is related to the point number 1. I suggest the authors 
to merge the two conclusions or to write them in two points which come one right after 
the other. 

Corrected. See revised manuscript. 
 
P5912 line 18. The authors conclude that the relevance of conceptual model uncertainty 
is more significant for spatial data not included as conditioning points. I believe that this 
statement is not a major conclusion and I would suggest not to highlight it. I think that 
this conclusion can not be deduced on the basis of the example shown (e.g. if you choose 
other ‘pseudo-validation’ points closest to the conditioning points it could happen that 
you do not appraise any difference between different conceptual models, is this correct? 

We agree with this comment. The relevance of conceptual model uncertainty, 
however, as seen from the results is more important for variables not included as 
calibration targets. In general, for heads the uncertainty is relatively low compared to 
predictions of groundwater flows or other variables not used for calibration. The latter is 
in full agreement with the results of Harrar et al. (2003) and Troldborg et al. (2008). 
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