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Abstract 12 

The spatial and temporal variability of the soil moisture status gives an important base 13 

for the assessment of ecological (for restoration) and economic (for agriculture) 14 

conditions at micro- and meso-scales. It is also an essential input into many 15 

hydrological processes models. However, there has been a lack of effective methods 16 

for its estimation in the study area. The aim of this study was to determine the 17 

relationship between the soil moisture status and precipitation and topographic factors. 18 

First, this study compared a linear regression model with interpolating models for 19 

estimating monthly mean precipitation and selected the linear regression model to 20 

simulate the temporal-spatial variability of precipitation in the southern Qilian 21 

Mountainous areas of the Heihe River Basin. Combining topographic index with the 22 

distribution of precipitation, we calculated the soil moisture regime in the Pailugou 23 

catchment, one representative comprehensive research catchment. The modeled 24 

results were tested by the observed soil water content for different times. The 25 
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correlation coefficient between the modeled soil moisture status and the observed soil 26 

water content is quite high, assuring our confidence in the spatially-modeled results of 27 

the soil moisture status. The method was applied to the southern Qilian Mountainous 28 

regions. Therefore the modelled distribution of the soil moisture status reflected the 29 

interplay of the local topography and landscape climate processes. The driest sites 30 

occur on some ridges in northern part and western part of the study area, where have 31 

small accumulating flow areas and low precipitation rates. The wettest sites are 32 

registered in the low river valley of the Heihe River and its major tributaries in the 33 

eastern part due to large accumulating flow areas and higher precipitation rates. 34 

Temporally, the bigger variation of the soil moisture status in the study occurs in July 35 

and smaller difference appears in May. 36 

Keywords: soil moisture status; precipitation; linear regression; topographic index; 37 

Qilian Mountains; Landscape scale 38 

 39 

1 Introduction  40 

The Heihe River Basin, the second largest inland river basin in the arid regions 41 

of northwestern China, consists of three major geomorphic units: the southern Qilian 42 

Mountains, the middle Hexi Corridor, and the northern Alxa Highland. The southern 43 

Qilian Mountains are hydrologically and ecologically the most important unit because 44 

of the functions as the water source to support the irrigating agriculture in the Hexi 45 

Corridor and also to maintain the ecological viability in the northern Alxa Highland. 46 

With the rapid growth of population, agricultural irrigation areas increasingly spread 47 
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in the middle Hexi Corridor. As a result, the already-existing conflict between 48 

economic use of the water here and ecological demand of the water in the Alxa 49 

Highland has been recently exacerbated. How to resolve the conflict and coordinate 50 

the development in economy and ecological environments becomes the focus of 51 

attention in the Heihe River basin. Many researchers have dealt with water resources, 52 

such as water resources carry capacity (Ji, et al., 2006), ecological requirement water 53 

(Zhao, et al., 2005; Zhao et al., 2010), the runoff amount of the Heihe River and its 54 

variation (Wang, et al., 2009), methods of irrigation and so on. The water resources 55 

are very scarce in the Heihe River basin, and the runoff from the southern Qilian 56 

Mountains approximately represents the water resources amount of the middle Hexi 57 

Corridor and the northern Alxa Highland. Therefore, accurate estimation of runoff 58 

from Qilian Mountainous watersheds is an urgent need for answering Heihe River 59 

water resources carry capacity and for water management and planning. To 60 

accomplish the needed runoff estimation in the upper reaches, the soil moisture status 61 

has to be spatially and temporally portrayed, as it is a critical state variable in 62 

hydrological models (Liang et., 1994; Wignosta et al., 1994; Famiglietti and Wood, 63 

1994; Li & Islam, 1999). The temporal and spatial variations in soil moisture depend 64 

on availability of high-resolution ground-based monitoring (Li & Islam, 2002). 65 

Unfortunately, ground-based methods (e.g. neutron thermalization, oven-dry method) 66 

are much too labor-intensive to maintain for a large area (e.g., the entire southern 67 

Qilian Mountains). Thus, in this study the relationship between the temporal and 68 

spatial variation of soil moisture is determined by establishing its controlling factors, 69 
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e.g. precipitation. Precipitation fields on a regular grid and in digital forms are 70 

required for spatial mapping of soil moisture. Accurate rainfall data only exist for 71 

irregularly distributed rain gauges and the meteorological stations, as a result of which 72 

values at any other point in the terrain must be inferred from neighbouring stations or 73 

from relationships with other variables (Marquínez et al., 2003). There are many 74 

methods of interpolating precipitation from monitoring stations to grid points (Dirks 75 

et al., 1998; Goovaerts, 2000; Wei, et al., 2005; Price et al., 2000; Guenni & 76 

Hutchinson, 1998). Basic techniques ues only the geographic coordinates of the 77 

sampling points and the value of the measured variable. However, the study area is 78 

one in which these methods have not been applied previously. In addition, regression 79 

models are using only additional information as regression models between 80 

precipitation and various topographic variables such as altitude, latitude, 81 

continentality, slope, orientation or exposure (Basist et al., 1994; Goodale et al., 1998; 82 

Ninyerola et al., 2000; Wotling et al., 2000; Weisse & Bois, 2001). But few 83 

researchers could interpolate precipitation by regression models in the study area 84 

because of unavailable digital elevation models (DEM). Fortunately, significant 85 

progress in this area has recently been achieved through the development of a 86 

high-resolution DEM with a resolution of 10m×10m by the remote sensing laboratory 87 

of Cold and Arid Regions Environmental and Engineering Research Institute, CAS. 88 

The other controlling factors of soil moisture and topographic factors, are best 89 

delineated by the DEM at the resolution that closely matches the smallest orographic 90 

scale supported by the data.  91 
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This study sought to develop the relationships between soil moisture and its 92 

controlling factors (i.e., precipitation and topographic variables) in order to map the 93 

soil moisture status across the southern Qilian Mountains. In the following sections 94 

we will present the various steps that lead to the mapping of the soil moisture regime: 95 

(1) use of available data; (2) determination of the best model for modelling the areal 96 

distribution of precipitation; (3) definition of the wetness index and GIS realization of 97 

the wetness index model; (4) mapping of the soil moisture status distribution; and 98 

finally (5) validation of the results.  99 

 100 

2 Materials and methods  101 

2.1 Study area  102 

The study area, one portion of the Qilian Mountains within the Heihe River 103 

Basin, is located between 98º34ˊ- 101º11ˊE and 37º41ˊ- 39º05ˊN and covers 104 

an area of approximately 10, 009 kmP

2
P, with the elevation ranging from 2000 to 5500m 105 

a.s.l. Administratively, the major part of the study area is in Gansu Province and a 106 

small part in Qinghai Province (Fig. 1). The mean annual precipitation increases with 107 

the increasing elevation (from 250 to 700mm). The inter-annual variability in the 108 

precipitation is as high as 80%, and over 88% of the precipitation falls between May 109 

and September. Figure 2 shows the pattern of rainfall over the year in Zhamashike 110 

meteorological station (one representative meteorological station in the study area). 111 

The mean annual temperature decreases with the increasing elevation (from 6.2 to - 112 

9.6ºC). The vegetation distribution closely follows the temperature- and 113 
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precipitation-determined heat-water combinations in the mountains. They are (from 114 

low to high elevations): desert steppe, forest steppe, sub-alpine shrubby meadow, 115 

alpine cold desert, and ice/snow zone. In addition to the obvious vertical zonality, 116 

horizontal zonality also exits due to precipitation and air temperature differences from 117 

the south to the north and from the east to the west. Generally, precipitation decreases 118 

from the east to the west and increases from the north to the south but the temperature 119 

is reverse in the study area.  120 

 121 
 122 
 123 
 124 
 125 

 126 

2.2 Data collection 127 

The monthly mean precipitation data (from 1957 to 1995) were obtained from 43 128 

stations, including meteorological stations and rain gauges located within the study 129 

area and the surrounding areas. The locations and the altitudes of these stations were 130 

measured with a global positioning system (GPS) and an elevation meter. Among 131 

them, 30 stations were chosen to develop the regression model or to use for 132 

interpolating and other 13 stations were remained to test the models (Fig. 1). Soil was 133 

sampled at four depths (0-10, 10-20, 20-40, 40-60 cm) from May to September in 134 

2003 and 2004 in Pailugou catchment (one representative comprehensive research 135 

catchment in the study area located at 38.55ºN, 100.30ºE). Soil moisture was 136 

measured by the conventional oven-dry method. DEMs of the study area and Pailugou 137 

catchment were obtained from the remote sensing laboratory of Cold and Arid 138 

Figure 1 The location of the study area, meteorological stations and rain gauges. 

Figure 2 Distribution of monthly mean precipitation in Zhamashike meteorological 
station (1957-1995). 
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Regions Environmental and Engineering Research Institute, CAS.  139 

2.3 Description of models 140 

Hydrological prediction at the micro- and meso-scales is intimately dependent on 141 

the ability to characterize the spatial variability of the soil water content. However, 142 

soil moisture exhibits drastic temporal and spatial variations even in a small 143 

catchment. In mountainous terrains, the soil water distribution is controlled by vertical 144 

and horizontal water divergence and convergence, infiltration recharge, and 145 

evapotranspiration. The latter two terms are affected by solar insolation and the 146 

vegetation canopy that vary strongly with exposure in arid areas. The 147 

divergence/convergence term is dependent on hill-slope position (Moore et al., 1993). 148 

Considering the hill-slope position, most index approaches for predicting the spatial 149 

distribution of soil water can be expressed as (Beven and Kirkby, 1979): 150 

 151 
INB1 B = ln (a/tanβ)                                        (1) 152 

 153 

where INB1 B is the wetness index, α the contributing area and β the local slope of the 154 

terrain. The soil water content is not only affected by the divergence/convergence of 155 

water but also affected by evapotranspiration. In arid areas, evapotranspiration is 156 

obviously different in different aspects because of variations of insolation. A modified 157 

wetness index is defined by merely introducing the factor of aspect (A), an appropriate 158 

surrogate of potential insolation (Grayson et al., 1997; Gomez-Plaza et al., 2001). 159 

Then, the Eq.(1) becomes: 160 

 161 

INB2 B = ln (a/tanβ)×cosA                                  (2) 162 
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 163 

where INB2 B is the modified wetness index and A the aspect. 164 

The soil moisture index at landscape scales is determined by high-resolution 165 

spatial distributions of precipitation and DEM-based topographic factors (Dymond 166 

and Johnson, 2002) and given as the following: 167 

 168 

INB3 B = ln(a/tanB)×cosA × PBi B                                (3) 169 

 170 

where INB3 B is the soil moisture index in every month, PBi Bthe monthly mean precipitation. 171 

Equation(3) requires four parameters: slope, aspect, the specific catchment area 172 

(catchment area draining across a unit width of contour) and precipitation. 173 

Topographical parameters such as slope (β), aspect (A), and the contributing area (α) 174 

are computed from DEM. Precipitation is an important parameter and must be 175 

accurately estimated.  176 

 177 

We here used five methods to simulate the temporal and spatial distribution of 178 

precipitation in the southern Qilian Mountains, i.e. linear regression, inverse distance 179 

weighted (IDW), ordinary kriging (OK), trend and spline. The regression model 180 

derived by regression analyses can predict annual, monthly precipitation as functions 181 

of elevation and geographical coordinates (Wei et al., 2005; Michaud et al., 1995). By 182 

the analysis of the precipitation data with their elevation and geographical coordinates 183 

in the study, a linear regression relationship between the monthly mean rainfall and 184 
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locational/topographic factors is presented as: 185 

                      186 
PBi B = a + bH + cY + dX                                        (4) 187 

 188 

where H is the altitude in meter, Y the latitude in degree, X the longitude in degree and 189 

a, b, c, d the regression coefficients (Table 1).  190 

 191 

 192 

Besides the regression model, four conventional interpolation methods, inverse 193 

distance weighted (IDW), spline, ordinary kriging (OK), and trend, were tested. IDW 194 

estimates the value of an unsampled area as a weighted average of a defined number 195 

of neighborhood points, or area, and the weight assigned to each neighborhood point 196 

diminishes as the distance to the neighborhood point increases (Lloyd, 2005). Spline 197 

interpolators have been widely used in developing climatic surfaces from sparse 198 

observation points (Tsanis and Gad, 2001). The interpolated surface based on spline 199 

(a) passes exactly through the data points and (b) has a minimum curvature. OK is a 200 

geostatistical procedure that uses a variogram model, which describes the spatial 201 

continuity of the input data to estimate values at unsampled locations (Isaaks and 202 

Srivastava, 1989). The variability between samples as a function of distance (i.e., 203 

semivariance) is evaluated and modeled prior to kriging (Wackernagel, 1995). The 204 

trend surface interpolator uses a polynomial regression to fit a least-squares surface to 205 

the input points. It creates smooth surfaces. The surface generated will seldom pass 206 

through the original data points since it performs the best fit for the entire surface.   207 

Table 1 
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3 Results and discussion 208 

3.1 Wetness indexes 209 

Topographical parameters, such as slope, aspect (A) and the contributing area 210 

were computed from DEM. The aspect is expressed in positive degrees from 0 to 360, 211 

measured clockwise from the north. The maps of the wetness index (INB1B) and the 212 

modified wetness index (INB2 B) in the southern Qilian Mountains were obtained from 213 

the models using ARC/INFO + grid (Fig. 3). The simulated wetness indexes were 214 

validated by observed data. We found that INB1 B was able to explain between 34% and 215 

38% of the spatial variability of soil moisture, but if the aspect was considered as a 216 

complementary factor, this capacity increased up to 69.5%. The results were 217 

supported by some researches (Moor et al., 1988; Gómez-Plaza et al., 2001). However, 218 

Eq. (1) and Eq. (2) only take the topographic factors into account and suppose a 219 

homogenous precipitation in the small catchment. In fact, precipitation shows 220 

dramatically differences at landscape scales in the study area. It increases from the 221 

north to the south, from the lower altitude to the higher altitude, and decreases from 222 

the east to the west. In turn, the soil moisture status exhibits a spatially 223 

inhomogeneous arrangement in the landscape due to precipitation. Therefore, 224 

precipitation must be considered. 225 

 226 

 227 

3.2 Spatial and temporal distributions of precipitation 228 

Prediction on the locations of the validation points and the measured values at 229 

Figure 3 The distribution of wetness indexes (INB1 B and INB2 B) in the southern Qilian
Mountains. 
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these locations were compared by three criteria: the mean error (ME), the mean 230 

absolute error (MAE) and the root mean square error (RMSE). ME indicates the 231 

degree of bias, MAE provides a measure of how far the estimate can be in error, 232 

ignoring the sign, and RMSE provides a measure that is sensitive to outliers. A 233 

summary of the errors obtained from the criteria was presented in Table 2. ME was 234 

relatively low for IDW, OK, trend and linear regression, but was generally lowest for 235 

the linear regression model. The linear regression and OK methods gave the lower 236 

MAE and RMSE. The spline gave consistently poor performances. For five methods, 237 

there were substantial variations in RMSE through the year (Fig. 4). The highest 238 

errors occurred from July to September and the lowest values from October to 239 

February, which probably reflected the greater precipitation differences across the 240 

region in summer. From Jun. to August, the linear regression performed better than 241 

OK. Thus the conclusions are as follows: on average over the year, larger predictions 242 

errors were obtained by the spline, the trend and IDW methods that ignore elevation 243 

factors, with the worst results produced by the spline. It was noteworthy that for 244 

several months (from January to May, from September to December), OK yielded 245 

smaller prediction errors than the linear regression of precipitation against elevation 246 

and locational/topographic factors. 247 

 248 

 249 

 250 

As mentioned above, over 88% of the precipitation falls between May and 251 

Table 2 

Figure 4 Validation RMSE for monthly mean precipitation averaged across 13 test
stations for five methods. 
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September and over 63% between June and August in the southern Qilian 252 

Mountainous areas of the Heihe River Basin. We were here focusing on the spatial 253 

distribution of precipitation during the ecologically meaningful time period, i.e., 254 

growing seasons approximately from May to August. Our comparison between these 255 

models’ performances demonstrated that the linear regression model did the best job 256 

during the ecologically meaningful time period. The best performance of the linear 257 

regression in the study area made this model the best choice. A series of 258 

spatial-distribution maps of precipitation were obtained by the regression model (Fig. 259 

5). Figure 5 showed that lower precipitation values were registered in the low valleys 260 

of the Heihe River and the northwest part, and higher precipitation values appeared in 261 

the southeast part where the altitude and longitude depended precipitation is higher. 262 

Figure 5 also showed that precipitation value had temporal variations during growing 263 

seasons (i.e. from May to August), highest precipitation value, ranging from 46mm to 264 

145.4mm, appearing in the July, and the lowest precipitation value, from 25.2mm to 265 

64.5 mm, being seen in May.  266 

 267 

 268 

3.3 Temporal and spatial distribution of soil moisture status in the southern 269 

Qilian Mountains. 270 

The soil moisture data are fairly sparse in the study area. We could not collect the 271 

soil moisture data except in Pailugou catchment, one representative comprehensive 272 

research catchment. The catchment is about 10 kmP

2
P in area situated at 38.55ºN and 273 

Figure 5 Distribution of monthly mean precipitation in southern Qilian Mountains
from May to August. 
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100.30ºE and has a weather station with a pluviometer, wind speed and direction, wet 274 

and dry bulb temperature. The soil moisture status was simulated using Eq. (3) by 275 

supposing the homogenous precipitation in the catchment. To test the 276 

spatially-modeled results of the soil moisture status in Pailugou catchment, we 277 

compared the observed results for 4 months at 15 sample plots with the 278 

spatially-modeled results for the corresponding months and sample plots. The 279 

correlation coefficients (RP

2
P) are from 0.60, 0.76, 0.67, 0.69 for May, June, July and 280 

August respectively (Fig. 6). These assure our confidence in the spatial model (i.e. 281 

equation 3) of the soil moisture status. In addition to topography, the land use type is 282 

another important factor controlling soil water patterns, which means that difference 283 

in vegetations resulting from different land use types was one of the major factors 284 

influencing soil moisture variability. However, the factor of vegetations is not 285 

included in Eq. (3). How to improve the model to estimate the soil moisture status is 286 

an objective of our future study. 287 

 288 

 289 

The same strategies were employed to estimate the soil moisture status of the 290 

southern Qilan Mountains areas (Fig. 7). The distributions of the soil moisture status 291 

in the study area reflected the interplay of the local and landscape climate processes. 292 

As viewed from a small scale, the gentle bases of long hill-slopes had more moisture 293 

than the steep short sites due to its larger catchment areas, and the south-facing slope 294 

had less moisture than the north-facing slope because it got more insolation on the 295 

Figure 6 Scatter plots of observed soil moisture content and modeled soil moisture status
from May to August 
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dryness of the matrix soil water. From the landscape scale viewpoint, the moisture 296 

increased from the north to the south and from the west to the east due to the 297 

precipitation increase. Figure 7 showed that the driest sites (INB3 B from –1.54 to –0.64) 298 

occurred on some ridges in the northern part and the western part of the study area, 299 

which had very small catchment areas and small precipitation. The wettest sites (INB3 B 300 

from 2.00 to 0.75) were registered in the low valleys of the Heihe River and its major 301 

tributaries in the eastern part due to large accumulating flow areas and more 302 

precipitation. The bigger variation of the soil moisture status in the study occurred in 303 

July and smaller difference appeared in May. 304 

 305 

 306 

4 Conclusions 307 

Accurate prediction of the soil moisture status at the large scale is of crucial 308 

interest to hydrology and agronomy related studies in the southern Qilian Mountains. 309 

However, soil moisture data are not available and ground-based methods (e.g. neutron 310 

thermalization, oven-dry method) are far too labor-intensive to maintain for the large 311 

area (e.g., the entire southern Qilian Mountains). Therefore, it is very important to 312 

develop more descriptive models of the soil moisture status. We can draw some 313 

conclusions from the approach: 314 

1. Equation (3) was used to predict the variability of the soil moisture status in 315 

the study area and the model was validated by Pailugou catchment. The results of 316 

validation assured our confidence in the spatially-modeled results of the soil moisture 317 

Figure 7 Distribution of monthly mean soil moisture status in southern Qilian 
Mountains from May to August. 
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status. But one important factor affecting soil moisture is vegetation types which was 318 

excluded in the model.   319 

2. Equation (3) includes two terms, the wetness index and precipitation. The 320 

model of the wetness index in Eq. (2) is universal. So accurate estimations of 321 

precipitation are very important to estimate the soil moisture state. We thus selected 322 

five methods to simulate the temporal-spatial distributions of precipitation in the study. 323 

By comparison, the best performance of the linear regression in the study area made 324 

this model the best choice. 325 

3. A series of soil moisture status maps were obtained by Eq. (3). Generally, the 326 

gentle bases of long hill-slopes had more moisture than the steep short sites because 327 

they had larger catchment areas. The south-facing slope had less moisture than the 328 

north-facing slope because it got more insolation on the dryness of the matrix soil 329 

water. The driest sites occurred on some ridges in the northern part and the western 330 

part of the study area, where have small accumulating flow areas and small 331 

precipitation. The wettest sites were registered in the low valleys of the Heihe River 332 

and its major tributaries in the eastern part due to large accumulating flow areas and 333 

more precipitation. 334 

4. Care must be exercised in appling the equation (3) to predict the distribution of soil 335 

moisture status at large scale in Chinese Loess Plateau due to three natural factors: 336 

steeply-sloped topography with gullies, fine-textured loessial soils and most 337 

importantly, unique hydrogeomorphic conditions. The unique hydrogeomorphic 338 

conditions refer to the rainfall intensity often exceeds the soil infiltration capacity. 339 
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Gullies are ubiquitous landscape features on natural slopes, which affect water 340 

divergence and convergence. It is impossible to obtain high accuracy of DEM to 341 

depict slope (β), aspect (A), and the contributing area (α). The unique 342 

hydrogeomorphic conditions can not make initial surface saturation occurs. 343 
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Table 1. Monthly linear regression coefficients and RP

2
P needed to calculate monthly 436 

mean precipitation using altitude (H), latitude (Y) and longitude (X) for the southern 437 
Qilian Mountains (P = a + bH + cY + dX). 438 

time a b c d R P

2
P
 

Jan. -19.811 0.000260 -0.051 0.231 0.207

Feb. -70.701 0.001103 0.221 0.626 0.331

Mar. -249.545 0.003390 0.433 2.336 0.406

Apr. -16.862 0.004009 -4.289 1.879 0.584

May 408.331 0.009569 -12.540 0.869 0.810

Jun. 530.716 0.021000 -13.656 0.016 0.863

Jul. 689.699 0.029650 -12.485 1.018 0.870

Aug. 495.902 0.018520 -19.839 2.869 0.879

Sep. 196.940 0.009100 -15.049 4.003 0.856

Oct. -5.170 0.002153 -5.737 2.341 0.841

Nov. -136.015 0.000984 0.240 1.283 0.455

Dec. -81.180 0.000480 0.493 0.627 0.166

Annual 1742.001 0.097260 -87.915 17.197 0.861

 439 

 440 

 441 
 442 
 443 
 444 
 445 
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Table 2. Validation errors averaged across 13 test sites for the five interpolation methods in each month. 1 

 Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

IDW 0.20 0.95 2.56 0.83 -1.2 5.97 -2.58 1.28 -4.56 0.3 -0.68 0.59 
TREND 0.31  0.72  1.32  5.33 0.40 0.64  0.31  0.72  1.32  5.33 0.40 0.64 

OK 0.22 0.97 2.54 1.48 0.35 6.73 -2.23 2.66 -3.78 0.75 -0.65 0.58 

SPLINE 0.42 1.16 3.65 2.59 1.27 9.98 -0.94 4.5 -3.3 1.02 -0.38 0.7 

ME 

REGRESSION 0.32 1.04 2.3 0.36 -1.51 6.15 -3.56 -0.23 -6.09 -0.57 -0.75 0.7 

              

IDW 0.84 1.56 4.46 5.34 6.84 11.41 12.68 9.98 6.47 3.1 1.52 1.15 

TREND 1.06 2.09 5.24 6.10 6.34 11.89 10.93 8.44 7.53 3.17 1.67 1.33 

OK 0.84 1.89 5 4.85 4.57 8.15 8.18 7.06 4.8 1.63 1.41 1.18 

SPLINE 0.97 1.81 7.29 6.99 7.04 12.18 12.57 9.71 6.68 2.79 1.51 1.47 

MAE 

REGRESSION 1.05 1.98 4.94 5.86 5.03 7.46 6.07 4.6 7.41 2.92 1.72 1.3 

              

IDW 1.19 1.94 5.65 6.53 8.56 13.50 15.47 12.72 8.23 3.51 1.71 1.35 

TREND 1.28 2.22 8.13 8.88 8.52 15.01 15.80 10.52 8.23 3.88 1.88 1.79 

OK 1.18 2.16 6.16 6.21 5.54 10.78 9.75 8.62 6.05 2.18 1.65 1.37 

SPLINE 2.22 8.13 8.88 8.52 15.01 15.80 10.52 8.23 3.88 1.88 1.79 2.22 

RMSE 

REGRESSION 1.27 2.32 6.16 6.63 6.10 9.47 8.33 7.39 9.21 3.51 2.08 1.53 

2 
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 1 

Figure 1. The location of the study area, meteorological stations and rain gauges. 2 
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Figure 2. Distribution of monthly mean precipitation in Zhamashike meteorological 3 

station (1957-1995). 4 
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Figure 3. The distribution of wetness indexes (INB1 B and INB2 B) in the southern Qilian 3 
Mountains. 4 
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Figure 4. Validation RMSE for monthly mean precipitation averaged across 13 test 5 

stations for five methods. 6 
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Figure 5 The distribution of monthly mean precipitation in southern Qilian Mountains 3 

from May to August. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 



 27

May

y = 0.9103x - 154.81
R2 = 0.601

-400

-300

-200

-100

0

100

200

300

400

0 100 200 300 400 500

Observed soil water content (%)

So
il 

w
at

er
 st

at
us

 (m
3 /m

.m
on

th
)

 1 

June

y = 1.8669x - 149.24
R2 = 0.7591

-300

-200

-100

0

100

200

300

0 50 100 150 200

Observed soil water content (%)

So
il 

w
at

er
 st

at
us

 (m
3 /m

.m
on

th
)

 2 

July

y = 4.377x - 340.48
R2 = 0.6719

-500

-400

-300

-200

-100

0

100

200

300

400

0 50 100 150 200

Observed soil water content (%)

So
il 

w
at

er
 s

ta
tu

s 
(m

3 /m
.m

on
th

)

 3 



 28

August

y = 5.3937x - 404.56
R2 = 0.6874

-600

-400

-200

0

200

400

600

0 50 100 150 200

Observed soil water content (%)

So
il 

w
at

er
 st

at
us

 (m
3 /m

.m
on

th
)

 1 
Figure 6. Scatter plots of observed soil moisture content and modeled soil moisture 2 

status from May to August 3 
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Figure 7. The distribution of monthly mean soil moisture status in southern Qilian 2 
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Mountains from May to August. 1 
 2 
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