Interactive comment on "Technical Note: Linking soil - and stream-water chemistry based on a riparian flow-concentration integration model" by J. Seibert et al.

J. Seibert et al.

jan.seibert@geo.uzh.ch
Received and published: 8 October 2009

We want here to directly respond to the error found in the equations by reviewer \#3. First of all we thank reviewer \#3 for making us aware of this obvious error in our equation. While this is an embarrassing error, luckily the error is rather a typographical mistake than a substantial error. The apparent error in equation 5 arises when replacing the profile depth z by the argument stated in equation 3 . The actual error is not in equation 5 but in equation 3 where we transposed a and b.
Please see next pages for a detailed response including the equations.

```
We want here to directly respond to the error found in the equations by reviewer #3. Firs
of all we thank reviewer #3 for making us aware of this obvious error in our equation.
While this is an embarrassing error, luckily the error is rather a typographical mistake
than a substantial error. The apparent error in equation 5 arises when replacing the profil 
depth z by the argument stated in equation
Equation 3 was erroneously written as
z=b
The correct version of equation 3 is
z=b}\mp@subsup{b}{}{-1}\operatorname{ln}(bQ/a)\quad(3.correct
Inserting the correct expression for z from equation 3 into equation 2 results in the
In
Equation 3 implies a lower integration limit of minus infinity ( }\mp@subsup{Z}{0}{}->-\infty)\mathrm{ . This did not
cause any error in the end because after deriving Eq. 5 the lower integration bound was 
the manuscript consistent, this lower integration bound should be defined earlier (i.e.
We will of course correct Equation 3 and make the above change in the revised
manuscript.
Below is a more detailed derivation that we undertook to recheck the equations. Please
see the article for explanations of the variables and for the assumptions behind the
mavdual steps in the derivation below.
The water flux at a certain depth z is
q=a\cdote
Q is linked to q and z (with the lower integration limit being minus infinity) by
Q= = zqdu= = a a e euvdu=a/b}\cdot\mp@subsup{e}{}{k
Expressing z as a function of Q results i
```

Fig. 1.

```
z= - - }\operatorname{ln}(b/a\cdotQ
(3.correct)
(This is how equation 3 should have looked in the first place)
Equation 4 is found by forming the derivative of z by Q of equation 3
dz}=\frac{d[\mp@subsup{b}{}{-1}\operatorname{ln}(b/a}{dQ}\cdotQ]] =\mp@subsup{b}{}{-1}\cdotb/a\cdot\frac{1}{dQ}=\frac{1}{b/a\cdotQ}=(bQ\mp@subsup{)}{}{-1}=>dz=(bQ\mp@subsup{)}{}{-1}d
Inserting (3) and (4) into (2) one can find (doing some additional rearrangement steps
here) the third step as it is in the article
```



```
=acoc}\mp@subsup{0}{0}{Q}\mp@subsup{\int}{0}{0}(\frac{bQ}{a}\mp@subsup{)}{}{\frac{b+I}{b}}\cdot(bQ\mp@subsup{)}{}{-1}d
Followedeverem,
L=a\mp@subsup{c}{0}{}\mp@subsup{\int}{0}{Q}
= 京c
=(\frac{a}{b}\mp@subsup{)}{}{\frac{1}{2+f}}\cdot\mp@subsup{c}{0}{\prime}}\cdot\frac{b}{b+f}\cdot[\mp@subsup{Q}{}{\frac{b}{b+f}}\mp@subsup{]}{\mp@subsup{Q}{0}{}}{\mp@subsup{Q}{T}{}
This is the same as the last step of equation 5.
```

Fig. 2.

