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General comments

The work by A. Bárdossy and G. Pegram proposes (i) a new multisite approach for
modeling and simulating daily rainfall series, and (ii) an entropy-based criterion for
assessing the spatial clustering exhibited by rainfall fields. In particular, the multisite
rainfall model accounts for spatial association of the at-site rainfall sequences by using
multivariate copulas (de facto bivariate) to jointly model the spatial structure of rainfall
amounts and occurrences. The entropy-based criterion provides an interesting alter-
native to bivariate measures of association (e.g., Pearson’s or Kendall’s correlations)
for evaluating the spatial structure of rainfall fields. In my opinion, the ideas developed
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in this paper are attractive, and the overall quality of the work is good. However, I have
some remarks about the partitioned copula model, which I discuss in the next section.
Moreover, some inferential aspects are not completely clear to me, and the compari-
son between rainfall observations and simulations can be improved in order to better
highlight the potentialities of the model.

Specific comments

In Sect. 1.1, the authors state that their model generalizes the meta-Gaussian ap-
proach introduced by Herr and Krzysztofowicz (2005) (henceforth HK05) moving from
a bivariate to a multivariate framework. Nevertheless, the model is described and ap-
plied in a bivariate framework, even though it can be extended to many dimensions
(> 2). However, in my opinion, the most important concern is that the rationale of
the HK05 approach is different from the bivariate approach suggested by the authors.
The HK05 mixed distribution for a bivariate zero-inflated vector (X,Y ) can be written
in terms of copulas as (Serinaldi, 2008; 2009a):

Ω(x, y) = p00 + p10HX(x) + p01HY (y) + p11C(F (x), G(y)), (1)

with marginals:

ΩX(x) = (1− p10 − p11) + p10HX(x) + p11F (x), (2)

ΩY (y) = (1− p01 − p11) + p01HY (y) + p11G(y), (3)

where p00, p10, p01, p11 are the probabilities P (X = 0, Y = 0), P (X > 0, Y = 0),
P (X = 0, Y > 0), P (X > 0, Y > 0), respectively; HX(x) = P (X ≤ x|X > 0, Y = 0),
HY (y) = P (Y ≤ y|X = 0, Y > 0), F (x) = P (X ≤ x|X > 0, Y > 0), G(y) = P (Y ≤
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y|X > 0, Y > 0), and C is the copula of positive pairs. In Eq. 1, the copula describes
the dependence structure of contemporaneous positive pairs at both sites, whenX and
Y denote vectors of contemporaneous observations at two sites. On the other hand,
the partitioned copula introduced by the authors seems to implicitly assume that the
full sample (zero and non zero values) comes from a continuous bivariate distribution
describing a continuous process, and the ties (that is, the poles of probability in the unit
square) related to pairs (X = 0, Y = 0), (X > 0, Y = 0), (X = 0, Y > 0) arise as a kind
of rounding-off process. In other words, the model described by the authors seems to
be the generalization of the bivariate distribution implied by the Guillot’s rainfall model
(Guillot, 1999). As discussed by HK05 (in Section 7.4), the Guillot’s distribution looks
like a meta-Gaussian distribution with discrete-continuous marginals. It can be written
in term of copulas as:

Ω(x, y) = C(ΩX(x),ΩY (y)), (4)

which is the model proposed by the authors. HK05 state that this distribution “is nei-
ther structurally correct nor empirically valid” (except when p11 = 1 so that Ω(x, y) =
C(F (x), G(y))), and “It may be useful, though, as an approximate simulator when p11 is
near one (Guillot and Lebel, 1999)”. Even though HK05 refer to a meta-Gaussian dis-
tribution, their remarks about the structure of the model apply to copula-based models
as well, since the meta-Gaussian distribution is simply a Gaussian-copula-based distri-
bution. Figure 1 provides an example which highlights the differences between the two
models. An explanation of graphical details is omitted as the figure is similar to Fig. 2 in
the paper in discussion, and to Fig. 13 in HK05. The panel on the upper left shows the
scatter plot of contemporaneous daily rainfall pseudo-observations measured at two
sites from a dataset described in Serinaldi (2009b). The density of positive pairs (lower
left panel) displays a behavior similar to that shown in Fig. 2 of the paper in discussion.
As an example, a Gumbel copula was fitted to the positive pairs and introduced in the
two models to simulate a sample with the same size and probabilities p00, p10, p01, p11
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of the observed series. The panels in the middle show the scatter plot and the density
of positive pairs obtained by the mixed model in Eq. 1, while the panels on the right
refer to the partitioned copula model. As shown by the density plots, the copula-based
HK05 distribution reproduces the upper right quadrant better than the partitioned cop-
ula model (note that the Gumbel copula is not the “best possible” one, as it was chosen
without performing any comparative analysis with other families). The difference be-
tween the two models is related to their structures and not to the chosen copula: in the
partitioned copula model, only the upper tail of the copula describes the joint behavior
of positive pairs, showing the same shortcomings of the Gaussian copula discussed
by the authors; while, in the copula-based HK05 distribution, the whole copula models
positive pairs. Thus, the introduction of the V -copula could not solve modeling prob-
lems which are due to the model structure. In other words, the mixed model introduced
by HK05 assumes that the four types of possible pairs from a bivariate rainfall vector
(namely, (X = 0, Y = 0), (X > 0, Y = 0), (X = 0, Y > 0), (X > 0, Y > 0)) explicitly
represent the four components of a really intermittent process (where a proper con-
tinuous bivariate distribution is only associated to positive pairs), while the partitioned
copula model implicitly describes the rainfall as a continuous process where the inter-
mittency arises when the rainfall amount is smaller than the measurement resolution of
the instrument. In this sense, the zero values assume the same meaning of the other
tied values resulting from the instrument rounding-off. Since the two models imply two
very different ways of considering the rainfall structure, in my opinion, these issues
should be discussed in depth by the authors.

At pp. 4888-4489, the authors state that an element of novelty in the proposed copula-
based model is that the occurrence and amount processes are jointly modeled without
splitting the analysis (as it is usual in the traditional Markov chain approaches). This ad-
vance in the rainfall modeling was already proposed by Serinaldi (2009) who describes
a multisite daily rainfall generator based on a bivariate mixed model which exploits
copulas. The approach suggested by Serinaldi (2009b) is different from that proposed
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by the authors, and focuses more in detail on the intermittent temporal rainfall struc-
ture. However, it already avoids the split between occurrence and amount processes.
The paper was published few days before the submission of the work in discussion.
Perhaps it can be of interest to the authors.

At p. 4493, the authors state that “In contrast to the work by (Serinaldi, 2008) who
concentrated on the upper-tail dependence structure of 2-copulas, we are concerned
about the joint interdependence of clusters of rainfall stations.”. Perhaps, it can be more
appropriate to say that the work by Serinaldi (2008) focuses on pairwise association
properties, as it investigates the Kendall’s correlation, pairwise occurrence probabilities
of rainfall as well as the upper-tail dependence, and their variability with the inter-gauge
distances and the aggregation time scale.

The structure of the model described in Section 3.1 is quite clear from the simulation
viewpoint. However, it is not very clear to me how the maximum likelihood method
allows estimating space-time correlations of the continuous hidden y-variate so that
the corresponding space-time correlations of the simulated rainfall match the observed
ones. Perhaps, Sect. 3.3 can be extended (or an appendix can be added) to further
explain the inference procedure. Moreover, even if the model is validated by the pro-
posed entropy-based criterion, it can be worth showing the observed and simulated
spatial correlations (e.g., Kendall’s or Pearson’s coefficients) of the complete rainfall
sequences.

In Section 3.2, the authors fit the exponential and Weibull distributions to the rainfall
amounts. Given the structure of their model, they do not distinguish between the four
marginals which appear in Eq. 1. In particular, the distributions Fg(ui, 0) and Fg(0, uj)
can be very different from the marginal distributions of positive pairs and from the
unconditional marginals (e.g., HK05; Serinaldi, 2009a), and their correct modeling can

C1798

be important as, in some climates, Fg(ui, 0) and Fg(0, uj) are mainly related to intense
and short convective storms that hit one site but not the neighbors.

At p. 4502, the authors discuss the behavior of the serial and spatial correlations driving
the y-variate of the hidden AR(1) model. As mentioned above, it can be interesting to
show a comparison between the serial and spatial correlations of the simulated rainfall
sequences (obtained by Eq. 11 in the paper) and the measured series, as the final
aim is to reproduce these ones. Similarly, at p. 4503, instead of comparing the spatial
correlation of the hidden y-variate with those of the rainfall amounts and occurrences
process resulting from the Srikantan and Pegram (2009) model, it can be better to
compare the final rainfall sequences. Moreover, nothing is said about the ability of the
model to preserve the temporal structure of the rainfall. It can be worth showing the
performances in terms of capability to preserve the distributions of wet/dry spells and
storm volumes.

Finally, Section 5.1 could be slightly improved by adding the information about the
variability around the simulated mean values reported in Figs. 13 to 19. Moreover, the
unconditional probabilities in Figs. 14 to 17 do not provide an effective illustration of
the model performance in the multivariate sense, as they only describe the marginal
behavior, so that similar results can be easily obtained by simulating from univariate
mixed distributions at each site without introducing spatial and temporal dependences.
The distributions of wet/dry spells and storm volumes as well as the log-odds ratios
can be more representative.

To summarize, the paper is an interesting work. The model and the validation criterion
proposed by the authors are promising. In my opinion, some theoretical aspects of the
model need to be clarified; a more detailed discussion of the inference procedures and
the introduction of additional statistics, able to highlight the spatio-temporal properties
of the simulations, can increase the confidence of the reader in the proposed methods.
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Once the issues raised in the review have been addressed to the Editor’s satisfaction,
I recommend publication in HESS.

Technical corrections

Fig. 8, caption: “Sect. 3.4”
”References” section: “Serinaldi, F.: Analysis of inter-gauge dependence by Kendall’s
τK , upper tail dependence coefficient, and 2-copulas with application to rainfall fields,
Stoch. Env. Res. Risk A., 22, 671–688, 2008.”
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Fig. 1. Scatter plots and upper-right quadrant densities of daily rainfall pseudo-observations
(left), simulations from a copula-based mixed distribution (middle), and from a partitioned cop-
ula model (right).
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