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In this paper, 7 years (during the growing season (April-October) of 2002-2008) of 

the Advanced Microwave Scanning Radiometer for the Earth Observing System  

(AMSR-E) data taken at a frequency of 6.9 GHz for night observations at both 

polarizations are processed and used to obtain 7 years of surface soil moisture dataset 

for an arid area, in northwestern China. This soil moisture dataset can contribute to 

better understanding the climate change and forecast modeling for this area. Based on 

the first-order radiative transfer model calculation, a unique model for estimating 

surface soil moisture over the study area is developed. Considering extremely 

complex topography over the study area, we present a parameterization of surface 

roughness at the 6.9 GHz and spatial resolution of the AMSR-E using the annual 

minimum MPDI (Microwave Polarization Difference Index). For validation, the 

comparisons of soil moisture patterns with precipitation fields are made. The results 

indicate the evolution of soil moisture estimated from the developed model and 

antecedent ground daily precipitations are in a good agreement. Comparisons of the 

estimated values of soil moisture with the ground observations are also made for two 

representative sites over 2002-2004. The results indicate there is a good agreement 

between them, with higher correlation coefficients (R=0.649, 0.604) and RMSE (3.5, 

5.4%), and the soil moisture product derived from the AMSR-E is realistic and 

acceptable. This new long time series of the estimated soil moisture will prove 

valuable for other studies of climate change and model evaluation.  
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Surface soil moisture is a key variable of water and energy exchanges at the land 

surface/atmosphere interface and thus has potential applications in hydrology, 

meteorology, and climate change studies. For climate applications, soil moisture is 

considered as the most important indicator of the effect of increase in greenhouse 

gases on the climate (Rowntree and Bolton, 1983). Real-time soil moisture 

measurements are vital for crop monitoring and drought warning. Previous research 

has shown that passive microwave remote sensing sensors can be used to monitor soil 

moisture over land surfaces (Choudhury and Golus, 1988; Paloscia et al., 1993; 

Drusch et al., 2001; Jackson, 1993; Lakshmi et al., 1997; Njoku et al., 2005; Owe et 

al., 2008). Investigations have established the fundamentals of passive microwave 

remote sensing for monitoring temporal and spatial variations of regional soil 

moisture (Kerr and Njoku, 1990; Mo et al., 1982). Ground-based soil moisture 

network can not be built reasonably without consideration of huge cost. However, 

satellite observations are available in real-time and provide good temporal and spatial 

coverage. The effects of vegetation cover and surface roughness play a significant role 

in the microwave emission from the surface (Jackson and Schmugge, 1991; Njoku 

and Chan, 2006). Therefore, good parameterization schemes of these two effects are 

prerequisite for retrieving surface soil moisture information. Low frequencies are 

preferable for soil moisture estimates since perturbing factors such as atmospheric 

moisture, vegetation canopy, and surface roughness are less significant (Ulaby et al., 

1982; Choudhury et al., 1979). Consequently, recent advances in science and 

technology have resulted in space agency commitments to L-band (1.4 GHz) missions 

in the near future (Kerr, 2001; Kerr et al., 2007). There are several microwave 

 3



radiometers operating in space now (Jackson et al., 2005). Though their frequencies 

are higher than L-band, they have potential for estimating surface soil moisture in 

regions with low level of vegetation. The Advanced Microwave Scanning Radiometer 

for the Earth Observing System (AMSR-E) is one of them. In the current investigation, 

an alternative retrieval technique utilizing the AMSR-E 6.9 GHz observations and 

based upon the work of Njoku and Li (2003) is implemented and tested for an arid 

area.  
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Some typical techniques available for the estimation of surface soil moisture from 

the passive microwave observations are given below. 

1.1  Single channel algorithm 

Several significant examples of this algorithm have been performed by Jackson et al. 

(Jackson, 1993; Jackson et al., 1995; Jackson and Le Vine, 1996; Jackson et al., 1999), 

which are based on the radiative transfer equation and use a channel that is most 

sensitive to soil moisture. This algorithm uses volumetric Vegetation Water Content 

(VWC) approximating the optical depth and incorporates soil texture, surface 

roughness and temperature using h-polarized brightness temperature, and is then used 

with a dielectric model to obtain the soil moisture. 

1.2  Multichannel iterative algorithm 

This approach is successfully used for AMSR-E estimates to carry out three 

parameters simultaneously: surface soil moisture, soil temperature and vegetation 

water content (Jackson, 1993; Njoku and Li, 1999; Njoku et al., 2003). However 

unanticipated Radio Frequency Interference (RFI) problem is encountered at the 6.9 

GHz frequency (Njoku et al., 2005; Li et al., 2004), requiring modification of this 
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approach. A radiative transfer model, the ω-τ model, is used for this algorithm. First, 

the higher frequencies in terms of 18 and 37 GHz are used for surface classification. 

Next, the ω-τ model is employed in comparing with measured and computed 

brightness temperatures at four channels (6.9 and 10.7 GHz, dual polarization). 

Finally, the three parameters are obtained until the difference between the computed 

and observed brightness temperatures is minimized in a least squares sense. The 

principal of this algorithm is to discriminate between the three parameters considering 

the sensitivity differences between horizontal (H) and vertical (V) polarizations, and 

between frequencies.  
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1.3  Polarization index algorithm 

Owe et al. (2001, 2008) has shown the potential of this algorithm for developing a 

historical climatology of continuous satellite-derived global land surface soil moisture. 

The Microwave Polarization Difference Index (MPDI) can effectively eliminate or 

minimize the effects of surface temperature. This algorithm uses a nonlinear iterative 

procedure in a forward modeling approach to separate the surface emission from the 

vegetation emission, and then optimizes on the vegetation optical depth and the soil 

dielectric constant. Once convergence between the computed and the observed 

brightness temperatures is achieved, the model uses a global database of soil physical 

properties together with a soil dielectric mixing model to solve for the surface soil 

moisture. 

Arid and semi-arid land accounts for 40% of the earth’s surface. From 

climatological, ecological and anthropogenic perspectives, the spatio-temporal 

distributions of soil moisture over arid and semi-arid land are very important. 

Nowadays, climate change in arid areas is one of the main focuses in global warming 
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which the international community is most concerned about. Desertification and arid 

ecosystem deterioration induced by arid climate variation and their impacts on the 

natural environment and anthropogenic activities have been given priority in recent 

years.  
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An arid region in northwestern China, Xinjiang, is focused on in this paper. Our 

research into microwave land surface soil moisture for the study area here has been 

motivated by a need to better understanding the climate change and forecast modeling 

for this area. The study area is also interesting because of diversity of its surface types 

and complexity of its topography. So far, no such attempt has been made exclusively 

for this region from literatures. 

The existing models for estimating soil moisture need more ancillary parameters. 

Among them, the model developed by Owe et al. (2001, 2008) need least ancillary 

parameters. A key to their Land Parameter Retrieval Model (LPRM) is deriving 

surface temperature using from 37 GHz vertical polarization brightness temperature 

observations. However, Owe et al. indicated that deriving daytime surface 

temperature was a significant problem in arid and semiarid locations because of more 

intense surface heating. In our practice, the “significant problem” occurs heavily over 

the study area, even during night time. Thus we attempt to develop a specialized 

model for monitoring soil moisture over the study area. 

2 Study area and data descriptions 

2.1 Description of study area 

The Xinjiang Uygur Autonomous Region of China is located in the hinterland of the 

Eurasian continent. Lying in northwestern China (Fig. 1), Xinjiang covers a huge area 

of 1,660,000 km2 with 49.5% mountains, 28% plains and 22.5% deserts, occupying 
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one-sixth of China’s total territorial area and larger than any other Chinese province or 

autonomous region.  
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The Xinjiang region is characterized by its unique topography with an extremely 

large elevation range from -154 m in the Turfan Basin to 8611 m at the summit of 

Qiaogeli. The Altay and Kunlun Mountain ranges lie in the north and the south of 

Xinjiang, respectively. The magnificent Tianshan Mountain, with an elevation of 3000 

to 5000 m, stretches from east to west in the middle of the region, dividing Xinjiang 

into north and south sections. The Junggar Basin between the Tianshan and the Altay 

ranges contains the Gurbantunggut Desert in the middle. The Tarim Basin is enclosed 

by the Tianshan and the Kunlun ranges with the Taklimakan Desert in the middle.  

Due to its unique geography, this area has a conspicuous continental arid climate, 

with large diurnal temperature range, abundant sunshine, very large potential 

evaporation and low precipitation. It has annual average temperatures of 4.1-7.8 ºC 

and 10.2-12.3 ºC for the north and the south of Xinjiang, respectively. The rainfall is 

concentrated mainly in the summer season, with annual precipitation of about 146 

mm. 

2.2 Description of datasets 

2.2.1 AMSR-E brightness temperature observations 

In this paper，the AMSR-E brightness temperature (TB) observations are employed 

for estimating soil moisture. The AMSR-E instruments onboard the EOS/Aqua 

platform have been a component of the Defense Meteorological Satellite Program 

since June, 2002. The AMSR-E instruments are a conical scanning total power 

microwave radiometer system operating at a constant incidence angle of 54.8° across 

a 1445-km swath at six frequencies: 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz. All the 
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channels operate in both V and H polarization. Spatial resolution ranges from 

approximately 60 km at 6.9 GHz to 5 km at 89 GHz. The orbital period is about 102 

min, which results in 14.1 orbits per day. For a given satellite, coverage is possible 

twice a day approximately 12 hr apart on the ascending and descending passes. The 

orbit is sun-synchronous with equator crossings at about 01:30 and 13:30 LT. 

Additional information can be found in Njoku et al. (2003).  
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The AMSR-E measurements used here are AMSR-E/Aqua Daily Girded Brightness 

Temperatures available at the National Snow and Ice Data Center (NSIDC) (Knowles, 

2006). They are in the north EASE-Grid projection, with all channels having 25 km 

resolution and equidistant latitude-longitude projection at 0.25° resolution.  

The 2002-2008 daily rain-gauge data from 95 meteorological stations operating in 

Xinjiang are used for validations. The data are available from the Xinjiang Climate 

Center of China. The stations, however, are most installed in the well-populated zones 

on the front plains of the mountains and the outskirts of the deserts (Fig. 1).  

2.2.2 Ground soil moisture observations  

For further validation, we take advantage of soil moisture observations, consisting of 

2 stations (Altay (88.08°E，47.73°N) and Shache (77.27°E，38.43°N)) in the study 

area, for the period 2002-2004, to evaluate the estimated soil moisture from the 

AMSR-E. These observations were taken using the gravimetric technique for each 

10-cm layer down to a depth of 0.5 m. The data were observed three times a month on 

the 8, 18 and 28th days, generally for the growing season (April to October). The data 

were originally recorded as percent wetness by mass of dry soil. Using soil density 

information available for each layer at each site, we determined the volumetric soil 

moisture. Only the data of the top layer (0-10 cm) are used for comparison purpose. 
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2.2.3 Ground rainfall observations 1 
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The 2002-2008 daily rain-gauge data from 95 metrological stations operating in 

Xinjiang are also used for validations. The data are available from the Xinjiang 

Climate Center of China. The stations, however, are most installed in the 

well-populated zones on the front plains of the mountains and the outskirts of the 

deserts (Fig. 1). Among of them, six representative stations—Tazhong (83.67°E, 

39.00°N), Mosuowan (86.10°E, 45.02°N), Yutian (81.65°E, 36.85°N), Altay 

(88.08°E，47.73°N), Qinghe (90.38°E, 46.67°N), and Hetian (79.93°E, 36.85°N) (see 

Fig. 4)，were selected according to the consistency of their classifications of land use 

in 2000 with those using the subsequent MPDI method. The first three locations 

represent bare soil condition, particularly Tazhong just lying in the center of the 

Taklimakan Desert. The others represent vegetated soil condition. 

2.2.4 Soil properties 

The dielectric mixing model developed by Hallikainen et al. (1985) is used to convert 

volumetric soil moisture (VSM) into soil dielectric constant. This mixing model 

requires percent of sand and clay as inputs, in addition to VSM. A 1-degree resolution 

global soil texture dataset (Webb et al., 1991) is used (http://daac.ornl.gov/). This 

dataset consist of 2 files. One file contains the depth and particle size (percent sand, 

silt, and clay) information for each major continent, soil type, and soil horizon. The 

other file contains ocean/continental coding and Zobler soil type classifications 

(Zobler, 1986). 
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2.2.5 Land use classification map 1 
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For the study, WESTDC_Land_Cover_Products1.0, the 1-km land use map, from 

Environmental & Ecological Science Data Center for West China 

(http://westdc.westgis.ac.cn) is used to validate the result of classifying vegetation and 

bare soil using the MPDI. This data follow Resource and Environment Classification 

System of Chinese Academy of Sciences. The groups include cropland, forest, 

grassland, permanent glacier and snow, water body, urban and built-up and unused 

land. To be compatible to the AMSR-E resolution (25-km), the 1-km land use map 

was resampled to an EASE-Grid 25-km resolution (Fig. 4). 

2.2.6 ERA-interim daily volumetric soil water 

Alternative data for validation in the study are atmospheric model interim_daily 

Surface Analysis ERA Interim Volumetric soil water layer 1, obtained from the 

ECMWF data server. They are at 1.5° resolution, with time coverage 2002-2008, soil 

depth is corresponding to 7 cm. Because the water content is standardized to the 7 cm 

depth of the top layer, to convert soil water content to volumetric soil moisture is just 

divided by 0.07.  

Additionally, soil moisture can not be estimated under snow cover or frozen soil 

conditions because the soil moisture dependence on the dielectric constant become 

small when surface soil temperature is below 0 ℃ (Hallikainen et al., 1985). 

Therefore, days with snow cover or frozen soil are eliminated from the present study. 

The period from the beginning of April to the end of October is, in general, 

historically free-frozen and snow-free for entire study area except for mountains. Thus, 

this period is taken into account for analysis, and hereinafter referred as to an “annual 

cycle”. 
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3  Theoretical background and methodology 1 
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Passive microwave remote sensing is based on the measurement of thermal radiation 

from the land surface in the centimeter wave band. This radiation is largely 

determined by two components: physical temperature and emissivity of the 

underlying radiating body. Many land parameters have distinct properties that affect 

microwave emissivity in various ways. Dielectric properties and surface roughness 

may describe the properties. 

The approach for this paper is based on the first-order radiative transfer theory. The 

influence of atmospheric moisture and the multiple scattering in the vegetation layer 

are assumed to be neglected. Furthermore, if the soil and vegetation temperatures are 

approximately equal and represented by a single surface temperature TS (K), the 

primary relationship between surface parameters and microwave brightness 

temperatures Tb can be expressed (Kerr and Wigneron, 1995; Njoku et al., 2003; Mo 

et al., 1982):                                                               

(1) ]})e1(1)[1)(1(e{ ss ppppppSpb TT Γ−+Γ−−+Γ= ω

where ω is single scattering albedo of the vegetation, and the subscript p is 

polarization of the measurement, H or V, es is emissivity of the soil surface which is 

related to the reflectivity rs by： 

                                                              (2) pp ss r1e = −

The transmissivity (г) of the vegetation and can be expressed as a function of the 

vegetation opacity along the observation path: 

(3) )cos/exp( θτ pcp −=Γ

where θ is the incidence angle, τc is the vegetation opacity along the observation path 

which could be linearly related to the total VWC using the so called bP  parameter 
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(Jackson and Schmugge, 1991): 1 
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                                                              (4) VWCbppc =τ

   The investigators have shown that the use of lower frequencies results in far less 

canopy attenuation of the soil emission. At lower frequencies, a value 0.15 of the 

parameter for b is appropriate for most agriculture crops. Methods for estimating the 

VWC have also been developed by passive microwave remote sensing. Investigators 

have explored relationships between the MPDI and vegetation parameters for a given 

vegetation type (Paloscia et al., 2001; Wen et al., 2005; Choudhury and Tucker, 

1987).  

The soil reflectivity at a given incidence angle is mainly related to soil moisture 

through the complex permittivity of the soil (Wang and Schmugge, 1980; Dobson et 

al., 1985). However, in general, surface roughness also affects the surface reflectivity 

because of scattering. To account for soil roughness, the h-Q formulation (Wang et al., 

1983) is often used, and then the reflectivity of a rough surface, rsp, is related to that of 

an equivalent smooth surface, rop, as follows: 

                                                             (5) )exp(])1[( QrQr p += hr oqops −−

where p and q denote orthogonal polarizations. The surface roughness parameter h is 

proportional to the quantity (ks) 2, where k is the wave number (k =2π/λ) and s is 

standard deviation of the surface height (cm). The parameter Q contains information 

on both the vertical and the horizontal roughness correlation length, l.  

The MPDI is defined as:  

                                                           (6) 
bHbV

bHbV

TT +
=

TTMPDI −

The MPDI is frequently used to minimize or eliminate the effects of variable 

surface temperature dependence, leading to a close relationship to the dielectric 

properties of the emitting surfaces. The MPDI decreases with increasing vegetation 
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water content because denser vegetation usually depolarizes the soil emission. For 

bare soil, the MPDI decreases with decreasing soil moisture because the soil emission 

is less polarized when the free water content in the soil is reduced. 
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For clarity, the theoretical relationship between the MPDI and the vegetation 

optical depth is simulated with the radiative equation (Fig. 2). For bare soil, Fig. 2(a) 

shows the MPDI increases nonlinearly with increasing soil moisture, while for 

vegetated soil MPDI has a more complex relationship to soil moisture. The two 

effects of soil moisture and vegetation water content on the MPDI are synergistic in 

general. The MPDI decreases when vegetation water content increases and/or soil 

moisture decreases. When vegetation water content increases the MPDI sensitivity to 

soil moisture decreases rapidly. Additionally, when MPDI is less than 0.01 or the 

vegetation optical depth is approximately greater than 0.8, the information of soil 

moisture is attenuated by high vegetation biomass and therefore can not be derived. 

Additionally, Fig. 2(b) depicts the relationship between the MPDI and the vegetation 

optical depth for a range of surface roughness. The two effects of surface roughness 

and vegetation water content on the MPDI are also interactive. It can be seen that 

sensitivity of the MPDI to soil moisture decreases nonlinearly very rapidly with 

surface roughness. This nonlinear attenuation effect of surface roughness is very 

similar to that of vegetation water content. Therefore, some investigators combined 

the two effects into one parameter to conduct temporal dynamics of vegetation water 

content (Njoku and Chan, 2006) and surface soil moisture (Jin and Yan, 2007).   

3.1 Parameterization of vegetation opacity 

In this study, we use a numerical solution for the vegetation optical depth developed 

by Meesters at al. (2005) instead of using ancillary data or other surrogates (e.g. NDVI 
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and LAI). Using a retrieval methodology, the optical depth is derived from the MPDI 

and the dielectric constant of the soil, which improves the accuracy and overall 

efficiency of the soil moisture estimates.  
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From Meesters at al., the numerical solution for the vegetation optical depth is: 

                                                             (7) )1)(ln(cos +++= aθτ 2adad

Then, according to Eq. (3)           

                                                             (8) 
1)( +++

=Γ
aad

1
2ad

where a and d are defined as 

                                                             (9) )0 ee
MPDI

a −−= (5. HV
HV ee −

and                                                 

)1(2 ω
ω
−

=d (10)  

 The assumption that the vegetation single scattering has minimal effect on emissivity 

is widely accepted (Jackson et al., 1982). For simplification, we neglect the effect of 

the single scattering. Thus, for an incidence angle, the vegetation opacity is ultimately 

expressed a function of the MPDI, the soil emissivity which highly related to soil 

dielectric properties and the surface roughness. So, if the surface roughness is known, 

the vegetation opacity can be obtained by an interactive method related to the MPDI, 

soil moisture, and its soil texture information. 

3.2 Parameterization of Surface Roughness 

Parameterization of the surface roughness is a key problem in this paper. First, we 

rewrite (6) by Eq. (1), (7)-(10) as:     

                                       (11)       1]}1)221){1 −+
−

e
Qee

HVHV

HV [exp(2( −+
+

−
+

= h
eee

MPDI τ

This equation can be rework to the expression of the combined surface parameters 

of the surface roughness and the vegetation opacity, using Eq. (5): 
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1*5.0 1
VoHoVoHo MPDIrQh − ]))(

In Eq. (11), besides soil moisture, there are only two parameters unknown: the two 

parameters of surface roughness. Note that the vegetation opacity can be solved by the 

method described in the above section. Thus，if the values of surface roughness 

corresponding to Q and h are available, we can readily estimate the soil moisture. 

However, the ancillary data of surface roughness are sparse. For lower frequency (at 

1.4 GHz), Q would have a minimum effect on the surface moisture calculations, while 

h is usually set with a lower value. Some investigators usually use a fixed value for 

roughness parameterization and assume the remainder of roughness can be 

automatically coupled with the vegetation effects (Owe et al., 2001; Njoku et al., 2003; 

Owe et al., 2008). Generally, when surface roughness conditions are unknown, a 

value of zero is often assigned to Q, and a value between 0 and 0.3 is typically 

assumed for h (Jackson, 1993). At the 6.9 GHz frequency, Njoku and Chan (2006) 

used Q as a fixed global calibration factor leaving h to incorporate the roughness 

spatial variability. For the desert region in Saudi Arabia, with a global minimal 

topographic variation, a value of Q (0.174) was adopted as a fixed parameter to 

calibrate the AMSR-E data globally to the microwave model for a baseline minimum 

roughness level, assuming h=0. 

The challenge for us is to separate these variables from the emitting signal by using 

a minimum of ancillary data. Apart from the brightness temperature data, we have 

only the ancillary data of soil texture. As previously mentioned, the study area is 

characterized by its extremely complex topography. Assuming the value of Q 

assigned as 0.174, if the value of h was assigned a fixed value (e.g., 0.2), the soil 

moisture estimates could not be made for many places of this study area except for 

desert regions. The reason for this explanation is that the uniform value of surface 
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roughness is probably much lower for the regions of complex topography. We have 

therefore realized using a uniform value of h for entire area is not reasonable.  
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As there are minimal human activities over the study area, the roughness is 

practically less disturbed for the AMSR-E footprint size，so it could have a fairly 

invariant distribution with long time. First, we assumed the roughness is unchanging 

during an annual cycle. We further supposed the driest soil to have ~5.5% volumetric 

soil moisture. The later assumption was probably somewhat higher for desert regions 

while lower for other regions. Note that the penetration depth at 6.9 GHz is only 

approximately 1.0-2.0 cm (Jackson and Schmugge, 1989). There are no soil moisture 

measurements in this depth, although, it is self-evident that the soil moisture at this 

depth is in general lower than that at deeper depth (e.g. 5cm). Njoku et al. (2006) 

speculated the value of VSM in dry soil condition in the desert region of Al-Hadidah 

is round 5.0%. 

For bare surface, the minimal VSM corresponds to the minimal MPDI (MPDImin) 

from the AMSR-E observed over an annual cycle. Wang et al. (2006) found the MPDI 

could be used to roughly classify the vegetation and bare soil by analyzing the MPDI 

at 6.9GHz in 5 experiment fields in China, 2003, and the data of land use. They 

concluded the threshold for distinguishing between vegetated and bare soil surfaces 

using the MPDI was about 0.04 at 6.9 GHz. We assumed the values of the VSM for 

the driest bare soil in this study area are slight higher than that in region of 

Al-Hadidah, thus 5.5% was a reasonable value of volumetric soil moisture in driest 

surface soil condition. This baseline minimum value was used ultimately to compute h 

at each footprint for bare soil (MPDImin >0.04). As a consequence, total footprints for 

bare soil account for 62.3% in this study area. The others involved vegetated soil, 

frozen soil, snow cover, glacier etc. Fig. 3 is the map of the MPDImin for 2005. 
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Compared to the map of land use (Fig. 4), the regions of vegetated/bear soil 

distinguished by MPDI are more continuous. This may be 
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closer to the reality of the 

land cover for 2005. The accuracy of interpretation at the vegetated/bare soil level is 

satisfactory since this simple MPDI classification method makes the correct 

interpretation 87.8%.  

Ignoring a very few abnormal negative values, the areas corresponding to the 

MPDImin not greater than 0.01 may be the glaciers lying on the mountains of Tianshan 

and Kunlun mountain. The areas corresponding to the MPDImin ranging from 0.01 to 

0.02 are usually characterized by perennial snow covers on mountains or some dense 

forests. As for the areas corresponding to the MPDImin ranging from 0.02 to 0.04, 

they indicate the ever presence of vegetation. Note throughout this paper that the areas 

ranging from 0.02 to 0.04 only indicate that there were covered by vegetations all the 

time or just at times. That is to say, there were less vegetations or bare soils covering 

the same areas at some or even long time for a given annual cycle.  

Figure 5 shows the map of the h parameter in 2005 over the study area derived by 

Eq. 12. All the h patterns for other years are almost the same as this one. Note that the 

lower values of h correspond to the areas of dry, flat, and comparably homogeneous 

soil conditions, especially the Taklimakan Desert and the Gurbantunggut Desert.          

The maximum value of h in bare soil areas is 0.73 and higher values of h mostly 

exist in the transition zones between deserts and mountains (purple color) where are 

characterized by great gradients of DEM. Except for the regions of glacier, perennial 

snow and dense forest (MPDImin<0.02), the no-bare regions are most the transition 

belts between mountains and deserts where are particularly rugged. Thus, considering 

large areas of high mountain where soil moisture can not be estimated due to glacier, 

perennial snow and dense forest covers (even though given a normal h value, the soil 
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moisture can not be retrieved there), the h value is set to 0.6. We tested the h values 

ranging from 0.2 to 1.3 for the no-bare region for deriving soil moisture, and the value 

0.6 for h was empirically appropriate.  
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4  Algorithm implementation, results and validations  

4.1  Implementation 

The previously described methodology has been applied to the historical dataset of 

nighttime AMSR-E brightness temperatures for the study area. A 7-year time series of 

estimated daily soil moisture dataset was obtained. Considering the greater stability of 

nighttime surface temperatures, only nighttime data were used in the study. 

Additionally, days with snow cover or frozen soil were also eliminated from the 

analysis, and therefore we just have selected the growing season (April to October).    

An iterative procedure was developed for the forward radiative transfer model that 

iteratively computes the simulated MPDI for VSM ranging from 5.5% to 45%, in 0.1 

% increments. The single-scattering albedo of the vegetation was set as 0.0 for both H 

and V polarization. At each iteration step, for 6.9 GHz, the computed MPDI values 

were compared to the satellite observations. If the absolute value of the differences 

between the computed and observed MPDI was less than 0.0015, then the input soil 

moisture would be saved in array. During the iteration process, the dielectric mixing 

model developed by Hallikainen et al. (1985) was used to convert VSM into soil 

dielectric constant. This mixing model requires percent of sand and clay as input, in 

addition to VSM. The soil texture classification of the surface soil on a 1-degree grid 

for this study area was used here (Webb et al., 1991).  
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4.2  Results 1 
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4.2.1 Mean annual soil moisture patterns 

Figure 6 depicts the 7-year estimated mean annual soil moisture patterns. In general, 

the mean annual soil moisture is around 9%. The lower values exist in desert regions 

especially in the Taklimakan Desert, and higher values are present on northeastern 

Kunlun Mountain and in the transition zones between deserts and mountains, where 

are drainage regions. Significantly, the glaciers and/or snow covers distributed on the 

tops of mountains are automatically computed as no-value regions where the 

convergence between the calculated and the observed MPDI was no longer achieved 

because of the extremely low MPDI resulting from depolarization prosperities of 

glaciers and snow covers.  

To further explore the dynamic characteristics of soil moisture, the year 2005 was 

selected for this investigation.  

4.2.2 Annual maximum soil moisture pattern 

For arid areas, actually, annual maximum soil moisture pattern reflects the soil 

moisture information resulting from a maximum (or accumulative) precipitation in a 

(or a series of) rainfall event(s). From Fig. 7, there are three obvious characteristics: 1) 

The desert regions (both the Taklimakan Desert and the Gurbantunggut Desert) are 

characterized by higher soil moisture values. For the Taklimakan Desert, the 

maximum soil moisture range is from 25% to 30% and for the Gurbantunggut Desert, 

the maximum soil moisture is 25-40%. Another area of higher soil moisture values 

shows on northeastern Kunlun Mountain with values ranging of 30-40%. 2) The 

eastern part of the study area is characterized by low values with ranging of 6-8%, 
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meaning little chance and few rainfall events took place in this region. 3) On the 1 
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transition zones between mountains and deserts are apparently high values, probably 

resulting from topographic effects on large precipitations. 

 

4.2.3 Typical rainfall traces captured   

There are comparatively sparse meteorological stations in the huge area, although, a 

series of typical rainfall events were found (Fig. 8). The events occurred on August 

4-6, 2005 (DOY of 216-218), which were characterized in the IR images by a long 

belt of frontal cloud crossing the study area from north to south. High estimated soil 

moisture conditions were captured during the rainfall period. The frontal system 

traveled the Taklimakan Desert from west to east , producing light to moderate rainfall. 

Dry conditions (10% VSM) prevailed at the beginning of the rainfall events over the 

Taklimakan Desert. During the rainfall period, The Taklimakan Desert shows a series 

of rainfall traces with three sequential center regions of increased soil moisture 

conditions. The maximum values of estimated soil moisture reaches 22.0%, 29.2 % 

and 37.8% for these three center regions, respectively. Note that the soil moisture 

conditions in these regions became rapidly dry after these meteorological events.  

4.3  Validations 

We validate surface soil moisture products from the AMSR-E because the model for 

estimating soil moisture by utilizing formulations and with assumed or parameterized 

parameters have not been or are even impossible to be thoroughly developed and 

verified. Many of these procedures have been qualitative in nature. These limitations 

must result in uncertainties on the accuracy of the estimated surface soil moisture.  

However, there are no reliable and spatially averaged ground-measured surface 
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moisture measurements for validation purposes, especially at the satellite scale. In 

addition, although ground measurements are precise, each of them represent at only a 

specific point and hence can not be used to calculate the mean that the large satellite 

field of view (FOV) can accomplish, unless they are densely measured. we compare 

the AMSR-E estimates of VSM and ground observations for two representative sites, 

the Altay site and Shache site, on the 8, 18 and 28th days over 2002-2004. 

Comparison with precipitation fields is often a validation option available. Although 

this method can not validate the estimated soil moisture quantitatively, it can at least 

provide qualitative trend information. To do this, we selected 6 meteorological 

stations for point validation. For each of the locations, matches between estimated soil 

moistures and antecedent measured daily precipitations were made. Moreover, 

ERA-interim daily volumetric soil water field was applied to validate, though the 

results is not satisfactory. 
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4.3.1  Comparison with in situ observations 

Validation of the soil moisture retrieval algorithm here is based on comparisons of the 

AMSR-E estimates of VSM and ground observations for two sites, the Altay site and 

Shache site, on the 8, 18 and 28th days over 2002-2004. Fig. 9 shows comparisons of 

measured soil moisture with the estimated soil moisture for the two sites. Generally, 

the estimated soil moisture has temporal scale comparable to observations, but has 

small amplitude of variation. This small amplitude can be attributed to low sensitivity 

of soil moisture at FOV scale compared to that at point scale. In spite of some 

dispersion in data, higher correlation coefficients (R=0.649, 0.604 for the two sites, 

respectively) and RMSE (3.5, 5.4%) are shown in Table 1. we can conclude that the 

algorithm is quite able to estimate the correct value of VSM. Fig. 10 shows plots of 
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estimated verse measured soil moisture for the two sites. Generally, the algorithm 

overestimates the soil moisture amount on the dry condition (below 14%) and, on the 

contrary, underestimates the soil moisture amount on the wet condition (above 14%), 

with positive average differences on the order of 2 %. 
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These results clearly demonstrate that the estimated VSM from the AMSR-E is 

consistent with the ground observations and strongly supports the developed retrieval 

algorithm.  

4.3.2 Temporal variability of estimated soil moisture 

Six stations were selected as the representatives for different surface types (vegetated 

surface, desert surface, bare arid surface) and climatic characteristics (the north and 

the south climate, separately). Figure 11 shows time series of estimated VSM and 

antecedent observed precipitation in 2005 for six representative locations—Tazhong, 

Mosuowan Yutian, Altay, Qinghe, and Hetian. In general, the temporal patterns of 

precipitation and soil moisture for both bare and vegetated soil condition are 

characteristically coincident. It can be seen that Tazhong is mostly associated with 

extremely low soil moisture condition (5.5% VSM) except for the rainy days when 

soil moisture increases up sensitively and afterwards decreases to original lever 

quickly. This must be a result of very high evaporative demand in this region. 

Mosuowan, Yutian show the characteristic behavior of soil moisture where it also 

increases up responding to rainfall event evidently. Soil moistures at Altay, Qinghe, 

and Hetian also response to rainfall event evidently. However, they show high 

dispersions compared to the locations of bare soil. Highly variable surface 

temperature could be responsible for this reason. After rainfall event, soil moisture 

gradually decreases. This lag is largely attributed to the retention capacity of soil 
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moisture of vegetated soil. 1 
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4.3.3 Comparison with ERA-interim daily volumetric soil water 

To be compatible to the ERA-interim product, the estimated soil moisture from the 

AMSR-E was resampled to a 1.5° resolution. Unfortunately, we found the 

ERA-interim daily volumetric soil moistures varied little over the study area. Here, 

we present the comparisons of the AMSR-E soil moisture with the ERA-interim soil 

moisture for only three locations in 2004. The three location are Altay, Shache, and 

Tazhong lightened in Fig. 4. From Fig. 12, the ERA-interim product loses its strength 

over the study area, maintaining a low lever with low dispersion compared to the 

AMSR-E product. We have not understood why the ERA-interim product over the 

study area has such behavior. This needs our further investigation. However, from the 

above section, the AMSR-E product is more convincing.    

5  Conclusion and discussions 

A model for estimating surface soil moisture over the arid area of Xinjiang, northwest 

China, from the AMSR-E brightness temperatures at 6.9 GHz was developed. This 

model was based on first-order radiative transfer model calculation and applied to 

conduct 7-year period (2002–2008) of soil moisture dataset. We compared the 

estimated moisture soil with the measured precipitation. Results clearly demonstrated 

the performance of the model for soil moisture estimates in the study area. The 

temporal patterns of rainfall and soil moisture for either bare or vegetated soil 

condition were characteristically coincident and soil moisture also responded to 

rainfall event evidently, especially for bare soil condition. Furthermore, we captured a 

series of rainfall traces over the Taklimakan Desert. To quantitatively analysis the 
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accuracy of the product derived from the AMSR-E, comparisons of the estimated soil 

moisture with the ground observations were also made for two representative sites. 

The results indicated the estimated soil moisture followed well this ground 

observations at temporal scale. Moreover, higher correlation coefficients (R=0.649, 

0.604) were obtained, indicating there has a good agreement between them and the 

soil moisture product derived from the AMSR-E is realistic and acceptable. 
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Two important model parameters were calibrated a priori. One was vegetation 

optical depth which was calibrated using an excellent numerical solution which 

made it possible to separate the effects of surface roughness and vegetation over the 

vegetated soil regions. The other was surface roughness which was fine-tuned with 

elaborate assumptions for bare soil and vegetated soil, respectively. The later is 

worth further discussing as follows. 

Surface roughness parameterization is needed prior to surface soil moisture 

estimates, particularly in complex topographic region. We have supposed the soil 

moisture corresponds 5.5% for the driest bare soil. Additionally, for vegetated soil, 

we empirically assigned the parameter h with a uniform value 0.6. These 

assumptions allow possible and even reliable h parameterization, which has not been 

possible until now in this study area. However, these guesses would be not right for 

some footprints. On the other hand, the previous assumption of a value of zero for 

the single scattering for various vegetations is also unrealistic. In practice, to some 

extent, the higher assigned h value can offset the effect of underestimation of the 

single scattering, and then improve the quality of soil moisture estimates. 

In addition, the assumed minimum value of 5.5% VSM, for example, must be some 

higher for some desert soils. ~ 3% may be a realistic guess. However, this input could 

lead to a negative h value. Volume scatting can account for this issue. This uncertainty 
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in the h parameterization will propagate into the retrieval algorithm as part of the soil 

moisture biases, although, the present study shows progress in the characterization of 

the surface roughness, and proves potential for surface moisture estimates.  
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Moreover, the model is mathematically well behaved, so convergence is normally 

fast and the glaciers and/or snow covers distributed on the tops of mountains can be 

computed as no-value regions automatically. The estimated soil moisture dataset now 

has been made available for climate analysis and forecast modeling for the study area. 
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Fig. 1. Map of the study area combined with digital elevation model (DEM) and 
distribution of the meteorological obviation network. 

Fig. 2.  Theoretical relationship between the MPDI and the vegetation optical 
depth ,(a) a range of soil dielectric constants (Q=0.174, h=0, and ω=0) ,(b) surface 
roughness (Q=0.174, h=0, and k=12). 

Fig. 3. Distribution of the calculated minimal MPDI for 2005. 

Fig. 4.  Map of the land use, Xinjiang, 2000. Color points represent the locations for 
validation (1: Altay, 2: Qinghe, 3: Mosuowan, 4: Shache, 5: Hetian, 6: Yutian and 7: 
Tazhong). 

Fig. 5. Distribution of the estimated h parameter for 2005. 

Fig. 6. Patterns of annual mean surface soil moisture estimated from the AMSR-E at 
night orbit for years from 2002 to 2008.  

Fig. 7. Map of maximum surface soil moisture for year of 2005. 

Fig. 8. Dynamics of surface soil moisture resulting from a series rainfall events during 
216 to 218 of 2005. 

Fig. 9. Time series of estimated VSM corresponding to on the 8, 18 and 28th days 
(Beijing Time) for the growing season (April to October) from 189 of 2002 through 
2008. Left is for the Altay site and right is for Shache site. 
 
Fig. 10. Estimated VSM versus measured VSM for the Altay site (left) and the Shache 
site (right) over 2002-2004. The black line represents the 1:1 line and the red one 
represents the fit line. 
 
Fig. 11. Comparisons of estimated soil moisture and measured precipitation at six 
representative locations. Left are representative to bare soil condition (from top to 
bottom, corresponding to locations Tazhong, Qinghe, Shache, and right to vegetated 
soil condition for Yutian, Hetian, and Mosuowan. 
 
Fig. 12. Comparisons of estimated soil moisture and ERA-interim volumetric soil 
moisture at 3 locations for the growing season (April to October) of 2004. 
 
 
 
Table caption 

Table 1. Statistics of estimated and measured VSM for the Shache site and the Altay 
site over 2002-2004. 
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Fig. 1. Map of the study area combined with digital elevation model (DEM) and 
distribution of the meteorological observation network. 
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Fig. 2. Theoretical relationship between MPDI and vegetation optical depth ,(a) a 
range of soil dielectric constants (Q=0.174, h=0, and ω=0) ,(b) surface roughness 
(Q=0.174, h=0, and k=12).
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Fig. 3.  Distribution of the calculated minimal MPDI for 2005. 
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Fig. 4.  Map of the land use, Xinjiang, 2000. Color points represent the locations for 
validation (1: Altay, 2: Qinghe, 3: Mosuowan, 4: Shache, 5: Hetian, 6: Yutian and 7: 
Tazhong). 
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Fig. 5. Distribution of the estimated h parameter for 2005. 
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Fig. 6.  Patterns of annual mean surface soil moisture estimated from the AMSR-E at 
night orbit for years from 2002 to 2008 
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Fig. 7.  Map of maximum surface soil moisture for year of 2005. 
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Fig. 8.  Dynamics of surface soil moisture resulting from a series rainfall events 
during 216 to 218 of 2005 (from left to right). 
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Fig. 9. Time series of estimated VSM corresponding to on the 8, 18 and 28th days 
(Beijing Time) for the growing season (April to October) from 189 of 2002 through 
2008. Left is for the Altay site and right is for Shache site.
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Fig. 10. Estimated VSM versus measured VSM for the Altay site (left) and the Shache 
site (right) over 2002-2004. The black line represents the 1:1 line and the red one 
represents the fit line. 
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Fig. 11. Comparisons of estimated soil moisture and measured precipitation at six 
representative locations. Left is representative to bare soil condition (from top to 
bottom, corresponding to locations Tazhong, Mosuowan and Yutian), and right to 
vegetated soil condition (Qinghe, Hetian, and Altay)
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Fig.12. Comparisons of estimated soil moisture and ERA-interim volumetric soil 
moisture at 3 locations for the growing season (April to October) of 2004 . 
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Table 1. Statistics of estimated and measured VSM for the Shache site and the Altay 
site over 2002-2004. 

1 
2 

Mean of 
Estimated 

VSM 

Mean of 
Measured 

VSM 
Difference

Standard 
Deviation 

of 
Difference

RMSE
Location 

(%) 

Correlation 
Coefficient 
Between 

Estimated and 
Measured VSM 

Record 
Number 

Shache 10.1 8.3 1.8 3.02 3.5 0.649 37 

Altay 11.5 9.3 2.2 2.79 5.4 0.604 48 

3  
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