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Abstract 10 

Soil apparent thermal diffusivity is a crucial physical parameter that affects soil temperature. 11 

Six prevalent algorithms to calculate soil apparent thermal diffusivity are inter-compared by using 12 

soil temperature data collected at the depths of 0.05 m and 0.10 m at a bare site in the China 13 

Loess Plateau from DOY 201 through DOY 207 in 2005. Five of the six algorithms (i.e., 14 

Amplitude, Phase, Arctangent, Logarithm, and Harmonic or HM algorithms) are developed from 15 

the traditional one-dimensional heat conduction equation. The other algorithm is based on the 16 

one-dimensional heat conduction-convection equation which considers the vertical heterogeneity 17 

of thermal diffusivity in soil and couples thermal conduction and convection processes 18 

(hereinafter referred to as the Conduction-convection algorithm). To assess these six algorithms, 19 

we (1) calculate the soil apparent thermal diffusivities by using each of the algorithms, (2) use the 20 

soil apparent thermal diffusivities to predict soil temperature at the 0.10 m depth, and (3) compare 21 

the estimated soil temperature against direct measurements. Results show that (1) HM algorithm 22 

gives the most reliable estimates among the traditional five algorithms; and (2) generally, the 23 

Conduction-convection algorithm provides the second best estimates. Among all of the algorithms, 24 

the HM algorithm has the best description of the upper boundary temperature with time, but it 25 

only includes conduction heat transfer in the soil. Compared to the HM algorithm, the 26 

Conduction-convection algorithm has a less accurate description of the upper boundary 27 

temperature, but by accounting for the vertical gradient of soil diffusivity and the water flux 28 

density it includes more physics in the soil heat transfer process. The Conduction-convection 29 

algorithm has potential application within land surface models, but future effort should be made 30 

to combine the HM and Conduction-convection algorithms in order to make use of the advantages 31 
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of each. 1 

 2 

 3 

 4 

1. Introduction 5 

Soil temperature plays an important role in land surface processes, and it is critical in energy 6 

balance applications such as land surface modeling, numerical weather forecasting, and climate 7 

prediction (Holmes et al., 2008). It is especially true for the soil surface. Accurate prediction of 8 

soil surface temperature requires a realistic understanding of the soil thermal properties, i.e., 9 

volumetric heat capacity ( gC , J m
-3 
K
-1
), thermal conductivity (λ , W m

-1 
K
-1
), , and thermal 10 

diffusivity ( gCk /λ= , m
2 
s
-1
). The volumetric heat capacity gC  can be estimated as follows (De 11 

Vries, 1963), 12 

wssg CCC θθ +−= )1( ,                      (1) 13 

where θ  is the volumetric water content, sθ  is the saturated value of θ , and sC  and wC  are 14 

the volumetric heat capacities of dry soil and water respectively. If gC  is known, only thermal 15 

conductivity, λ , or thermal diffusivity, k , must be determined to characterize the thermal 16 

properties of a soil (Passerat et al., 1996). k  is of primary importance in determining soil 17 

temperature propagation (Zhang and Osterkamp, 1995). Thermal diffusivity is based solely upon 18 

conduction heat transfer. However, in soils, both conduction and convection heat transfer occur 19 

simultaneously to impact soil temperature change. Often a single parameter conduction-alone 20 

model is used to describe soil temperature changes. Since conduction and convection must be 21 

accounted for by a single parameter, the parameter must be broader than conduction alone.  The 22 

parameter, often referred to as the soil thermal diffusivity, is more precisely the soil apparent 23 

thermal diffusivity, because it accounts for conduction and convection heat transfer processes that 24 
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affect soil temperature change. Several algorithms have been proposed to estimate soil apparent 1 

thermal diffusivity. Most of the algorithms are based on solutions of the one-dimensional 2 

conduction heat transfer equation. Lettau (1971) calculated the apparent thermal diffusivity as a 3 

function of depth below the soil surface. In order to utilize this algorithm, measurements of soil 4 

temperature with time are required at the soil surface and at several subsurface depths. However, 5 

the lack of soil temperature data at several subsurface depths often limits the utility of this 6 

algorithm (Horton et al., 1983). Assuming that the apparent thermal diffusivity is independent of 7 

depth, and considering that temperature at the upper boundary is well described by a sinusoidal 8 

function, the analytical solution of the one-dimensional heat conduction equation can be used to 9 

estimate apparent k . Based on this solution, the apparent thermal diffusivity can be estimated by 10 

the Amplitude algorithm and Phase algorithm. Errors due to the assumption of single sinusoidal 11 

temperature wave at the soil surface can be reduced by using a Fourier series to accurately 12 

describe the diurnal variation in surface soil temperature (Van Wijk, 1963). In this way, the 13 

apparent thermal diffusivity is estimated by the Arctangent algorithm (Nerpin and Chudnovskii, 14 

1967) with two harmonics. It was shown by Seemann (1979) that, in analogy to the Arctangent 15 

algorithm, the apparent thermal diffusivity can also be calculated by the Logarithmic algorithm. 16 

These two algorithms are analogous to the Amplitude algorithm and Phase algorithm but take 17 

advantage of greater number of temperature observations to approximate a potentially 18 

nonsinusoidal behavior (Horton et al., 1983). However, a two-harmonic function cannot describe 19 

the surface temperature very well, and a series of harmonics for the upper boundary offers 20 

advantages. Based on this boundary, the solution of the one-dimensional heat conduction equation 21 

is developed from the assumption of a sinusoidal function. According to the solution, the apparent 22 
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thermal diffusivity can be selected to minimize the sum of squared differences between the 1 

calculated and measured soil temperature values (Horton et al., 1983). And it can also be 2 

estimated from an iteration process by fitting the amplitude and phase of soil temperature at one 3 

depth (Heusinkveld et al., 2004). All algorithms mentioned above are based on solutions of the 4 

one-dimensional conduction heat equation and constant diffusivity, and thus apply to uniform 5 

soils only. In fact, soil heat transfer is caused by a combination of conduction and intra-porous 6 

liquid and vapor convection (Passerat et al., 1996). Verhoef et al.(1996) described the course of 7 

topsoil thermal conductivity, diffusivity, and heat capacity during two measurement campaigns, 8 

conducted in semi-arid areas—the EFEDA-I experiment and HAPEX-Sahel. In the derivation of 9 

apparent thermal diffusivity five methods (the Amplitude, Phase, Arctangent, Logarithmic and 10 

Harmonic equation) were compared. Gao et al. (2003) pointed out that soil temperature changes 11 

in response to both conduction and convection processes, where convection was understood as 12 

‘vertical heat transfer caused by the vertical movement of liquid water in the soil’. They solved 13 

analytically the equation for one-dimensional conduction-convection, and derived a simple 14 

algorithm to accurately estimate soil thermal diffusivity. 15 

Few efforts have been made to quantitatively test the various k  algorithms by using an 16 

identical soil temperature data set. The land-air interaction over the Loess Plateau located in 17 

mid-western China affects the weather and climate in northwest China. A realistic description of 18 

soil temperature helps better understanding the land-air interaction over the Loess Plateau 19 

however few attempts have been made to determine the Loess Plateau soil thermal parameters for 20 

soil temperature algorithms. The measurements of soil temperature and soil water content during 21 

the LOess Plateau land surface process field EXperiment (LOPEX) in 2005 provided us an 22 

opportunity to evaluate the k  algorithms for use on Loess Plateau soil. In order to improve the 23 

accurate knowledge of the soil apparent thermal diffusivity in this area, the objective of this paper 24 

is to compare six algorithms for determination of the soil apparent thermal diffusivity by using the 25 
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direct measurements of soil temperature restricted to the upper 0.1 m of soil. 1 

 2 

 2.  Theoretical considerations 3 

Previous algorithms to calculate soil apparent thermal diffusivity k  are listed in Table 1. 4 

2.1. Classical thermal conduction equation for soil temperature 5 

Conduction heat transfer in a one-dimensional isotropic medium is described by  6 
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where T  is the soil temperature (K), t  the time (s), z  the depth (m), gC  the volumetric heat 8 

capacity (J m
-3 
K
-1
), and λ  the thermal conductivity (W m

-1 
K
-1
). Assuming that a soil is 9 

vertically homogeneous, in this case that gC  and λ  are independent of depth, provides 10 
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where k for soil is referred to as the apparent thermal diffusivity The following five algorithms 12 

based on the solution of Eq. (3) have been used to estimate k . 13 

2.1.1. Amplitude Algorithm 14 

Given the surface boundary condition: 15 

)0(),sin(0 ≥Φ++== ttATT z ω ,               (4) 16 

where T  is the mean soil surface temperature, A  is the amplitude of the diurnal soil surface 17 

temperature wave, and ω  is the angular velocity of the Earth’s rotation and P/2πω =  (rad s
-1
) 18 

with P  representing the period of the diurnal cycle. The soil temperature (T ) at a depth z  can 19 

be calculated via    20 

               )/sin()/exp(),( Φ+−−+= dztdzATtzT ω ,           (5) 21 

here ω/2kd =  is the damping depth of the diurnal temperature wave. 22 

Soil temperature measured at two different depths ( 1z  and 2z ) are often assumed to be 23 

approximated by a sinusoidal function when estimating k . The sinusoidal functions are given by 24 

)sin( 1111
Φ++== tATT zz ω ,                  (6) 25 
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and )sin( 2222
Φ++== tATT zz ω ,                 (7) 1 

where 1A  ( 2A ), 1Φ  ( 2Φ ) and 1T  ( 2T ) are the amplitude, phase and mean soil temperature at 2 

the depth 1z  ( 2z ). 1T  ( 2T ) is the arithmetical average of the daytime maximum soil temperature 3 

and the nighttime minimum soil temperature; and 1A  ( 2A ) is half of the difference between the 4 

daytime maximum value and the nighttime minimum value for soil depth of 1z  ( 2z ); and 1Φ  5 

( 2Φ ) is the initial phase of soil temperature at depth 1z  ( 2z ), obtained by using the best fit 6 

algorithm (Horton et al., 1983). Then the apparent thermal diffusivity k  is determined by the 7 

Amplitude algorithm  8 
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2.1.2. Phase Algorithm 10 

   If the time interval between the measured occurrences of maximum soil temperature at the 11 

depths of 1z  and 2z  is 12 ttt −=∆ , the Phase algorithm stemming from Eq. (4) is (Horton et al., 12 

1983) 13 
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2.1.3. Arctangent Algorithm 15 

   Soil surface temperature can be described by a Fourier series: 16 
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1

tibtiaTT i

n

i

i ωω ++= ∑
=

,                 (10) 17 

where n  is the number of harmonics, and ia  and ib  are the amplitudes. Setting 2=n , k  18 

can be calculated by the Arctangent algorithm 19 
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where temperatures jT  and 'jT  are recorded each 6 h ( 4,3,2,1 andj = ) at two different depths 21 

1z  and 2z , respectively. The first reading is taken at 02:00 (Local time, hereinafter, referred to as 22 
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LT), then 08:00 (LT), 14:00 (LT), 20:00 (LT). 1 

2.1.4. Logarithmic Algorithm 2 

Using the same assumption of the Arctangent algorithm, k  is expressed by 3 
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2.1.5. Harmonic Algorithm  5 

Eq. (10) can also be changed into another form as 6 
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=
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)sin( ω ,               (13) 7 

where iC  is the amplitude of the harmonic i : 8 

         
22

iii baC += ,                    (14) 9 

and iΦ  is the phase of the harmonic i : 10 

                      )/arctan( iii ba=Φ .                        (15) 11 

Given the following boundary condition: 12 
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the solution of Eq. (3) is 14 
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iiii dztidzCTtzT
1

0 )/sin()/exp(),( ω ,          (17) 15 

where iC0  and i0Φ  are the amplitude and phase of the harmonic i  for the upper depth, 16 

respectively, and )/(2 ωikd i =  corresponds to the depth at which the signal is propagated 17 

during a period iP / . Based on Eq. (17), the apparent thermal diffusivity k  can be determined 18 

by the Least Squares Algorithm (Horton et al., 1983). On the other hand, iC1  ( iC2 ) and i1Φ  19 

( i2Φ ) at the depth of 1z  ( 2z ) can be obtained by the approximation of the observed data at these 20 

two depths with the harmonic curve fit. In addition, according to Eq. (17), the amplitude iC2  and 21 

initial phase i2Φ  at the depth of 2z  can be predicted from 22 
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)/exp(12 iii dzCC −= ,                    (18) 1 

   and iii
dz /12 −Φ=Φ .                     (19) 2 

After an initial guess of k , the predicted results of amplitude and initial phase are compared with 3 

the fitted ones, and the parameter is adjusted depending on the differences in amplitude and initial 4 

phase (Heusinkveld et al., 2004).  5 

 6 

2.2. Soil temperature rate equation with vertical heterogeneity of soil thermal diffusivity coupled 7 

with thermal conduction and heat transfer by water flux 8 

Eq. (3) assumes that k  is independent of depth, however, k  can vary (increase or decrease) 9 

from the surface downward in the shallow surface layer of most soils. Eq. (2) can therefore be 10 

improved as follows (Gao et al., 2008): 11 
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Neglecting the vertical heterogeneity of k , Gao et al. (2003) incorporated thermal conduction 13 

and convection together as follows:  14 

z

T
w

C

C

z

T
k

t

T

∂
∂−

∂
∂=

∂
∂ θ

s

w

2

2

.                  (21) 15 

where w  is the liquid flow rate (positive downward) and θ  is the volumetric water content of 16 

the soil. wC  is the heat capacity of water. Assuming these three parameters are also independent 17 

of z  for a thin soil layer in present work, θw
C

C

s

w−  was defined as water flux by Gao et al. 18 

(2003). Based on Eqs. (19) and (21), Gao et al. (2008) presented the following equation 19 
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With the boundary condition Eq. (7), the expression of the soil temperature at the depth 1z  is 1 
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They also gave the expression of k  and W  4 
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6 

We call it as Conduction-convection algorithm in this paper. Applying 0=W  to Eq. (25) results 7 

in )/ln( 1212 AA−=Φ−Φ  or 1212 )/ln( Φ−Φ=− AA , then Eq. (24) reduces to be Eq. (8) or Eq. 8 

(9). 9 
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3. Field Experiments 11 

The experiment was conducted on soil in the China Loess Plateau during an intensive 12 

observation period from DOY 197 through 241 in LOPEX in 2005. The soil measurements were 13 

collected at a bare soil site located at 106.42
o
E, 35.35

o
N at an altitude of 1592 m in Pingliang 14 

county of Gansu Province in western China. 15 

The ground surface of this site was bare, flat and homogeneous. The soil at the site was 16 

predominantly medium loam with a high proportion of silt. The site is located within a semiarid 17 

climate zone. The maximum air temperature was 307 K and the lowest was 249 K, the annual air 18 

temperature and precipitation were 279K and 510 mm with 2425 hours of sunshine, and 170 19 

frost-free days per year all averaged over the last 50 years (Gao et al., 2008). The bulk density 20 

was 1250 kg m
-3
, and soil solid heat capacity was 61040.1 ×  J m

-3 
K
-1
. 21 

Soil temperature was measured with four TCAV averaging soil thermocouple probes 22 

(Campbell Scientific Inc., U.S.A.) at 0.05 and 0.10 m depths. The volumetric water content of the 23 

soil was measured at 0.05 and 0.10 m depths by two soil moisture reflectometers (CS615, 24 

Campbell Scientific Inc. USA). All of the sensor outputs were recorded and averaged over 10 min 25 
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intervals. 1 

 2 

4. Results 3 

The data used in this paper were collected in a 7-day period from (DOYs 201 through 207 (i.e., 4 

20 through 26 July), 2005. The soil temperature measured at 0.05 and 0.10 m depths changed 5 

diurnally during DOYs 203-207, as shown in Figure 1a. The amplitudes of the soil temperature 6 

decreased and the phases shifted ahead when the soil depth increased. The soil temperature at 7 

0.05 m changed in response to intermittent cloudiness during DOYs 202 and 203. The maximum 8 

soil temperature reached 310.78 K on DOY 204, and the minimum soil temperature was 287.77 K 9 

at 0.05 m depth on DOY 203. Figure 1a also shows that the soil vertical temperature gradient 10 

reached 191.20 K m
-1 
for the soil layer from 0.05 to 0.10 m depths at 14:45 (LT) on DOY 204 at 11 

this site.  12 

The temporal variations in volumetric soil water content at 0.05 and 0.10 m depths during 13 

the same period are shown in Figure 1b. Precipitation occurred from DOYs 199 to 201 with an 14 

amount of 15.7 mm. Since then, owing to evaporation from the bare soil surface, the soil 15 

volumetric water content was decreasing gradually at both depths from DOYs 202 through 207. 16 

Gao et al. (2008) pointed out that under evaporation conditions there is a net upward flux of water 17 

(liquid and vapor) that responds to the progressively drying surface condition. The net flux of 18 

water causes an associated net convective heat flux. The soil physics implies that the heat transfer 19 

should incorporate a vertical convective heat transfer component.  20 

After using a 2-hour smoothing technique for soil temperature measured at the depth of 0.05 21 

m, 1A , 2A , 1Φ , 2Φ , 1T , 2T , T , iC  and iΦ  are obtained by using the approximation of 22 

soil temperature collected at the depths of 0.05 m and 0.10 m for each day, respectively. 23 

Smoothing reduces amplitudes, but we are concerned with . The reduction in both  and  24 

does not influence  much. The temporal variations of k  are calculated by using the 25 

Amplitude, Phase, Conduction-convection and HM algorithms (Horton et al., 1983, Heusinkveld 26 

et al., 2004, Gao et al., 2008) for the soil layer from 0.05 m to 0.10 m. Temperatures at each depth 27 

for the arbitrary times of 02:00 (LT), 08:00 (LT), 14:00 (LT), and 20:00 (LT) were used for 28 
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Arctangent algorithm and Logarithmic algorithm. Results are shown in Figure 2. The Amplitude, 1 

Arctangent, Logarithmic and HM algorithms provided relatively low values of k  during this 2 

period. This is especially true for the Arctangent algorithm. The Phase algorithm and the 3 

Conduction-convection algorithm provided k  values approximately twice as large as the other 4 

algorithms. The two HM algorithms provided similar values of k . The thermal diffusivity 5 

estimated by the Logarithmic algorithm changed from day to day in the drying period. The 6 

maximum, minimum and mean values of k  calculated by these six algorithms are listed in Table 7 

2. The smallest value of k  is 7106.0 −× m
2 
s
-1
, and it is obtained from the Arctangent algorithm 8 

on DOY 202. The maximum value is 71047.5 −× m
2 
s
-1
, and it is obtained from the Phase 9 

algorithm on DOY 207. The maximum, minimum and mean values of k  calculated by the Phase 10 

algorithm and by the Conduction-convection algorithm are larger than the values derived by the 11 

other algorithms. The two HM algorithms and the Amplitude algorithm provide similar estimates 12 

of the mean values of k . 13 

 14 

5. Discussion  15 

The variations of the apparent thermal diffusivity k  obtained by the six algorithms with the 16 

volumetric soil water content θ  for the 0.05 m to 0.10 m layer are shown in Figure 3. Estimates 17 

of k  from five of the six algorithms change in a narrow range with θ  during this drying period 18 

( %25<θ ). The exception is the Logarithmic algorithm. The values of k  from the Phase 19 

algorithm and the Conduction-convection algorithm have similar trends with θ . The variations 20 

of k  shown by the other four algorithms show a similar trend with θ . These results make sense 21 

because values of k  from the Phase and the Conduction-convection algorithms mainly depend 22 

on 21 Φ−Φ , while estimates of k  with the other algorithms mainly depend on the amplitude. 23 

All of the algorithms indicate that the largest value of k  does not occur at the largest soil water 24 

content. Gao et al. (2008) showed that k  does not monotonically increase with increasing θ . It 25 

tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as 26 

the soil continues to wet. 27 

In the Conduction-convection algorithm, another parameter W  is needed and is calculated 28 
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with Eq. (25) (see values in Table 3).  1 

The measured and modeled soil temperatures at the 0.10 m depth from DOY 201 through 207 2 

are presented in Figure 4. It is obvious that the fitted temperature by using Arctangent, 3 

Logarithmic and the two HM algorithms gave poor approximation in the early morning of DOY 4 

203 because the assumption of repeating surface periodic temperature is not valid between DOY 5 

202 and 203. To better show the model outputs, we take DOY 204 as an example (see Figure 5). 6 

Overall, The Phase algorithm reasonably estimated the soil temperature phases but overestimated 7 

the amplitudes, and the amplitude algorithm reasonably estimated the soil temperature amplitudes 8 

but overestimated the phase shift. In fact, as shown in Table 4, the values of )ln( 21 AA are larger 9 

than 21 Φ−Φ  for the whole 7-day period. Using the Phase algorithm to estimate k  implies 10 

forcing )ln( 21 AA  to be equal to 21 Φ−Φ , which overestimates the soil temperature amplitude 11 

by about 0.74 K on average for DOYs 201 to 207. Similarly, using the Amplitude algorithm to 12 

estimate k  implies that 21 Φ−Φ  is equal to )ln( 21 AA , which overestimates the soil 13 

temperature phase shift by −)ln( 21 AA 2397.021 =Φ−Φ ）（ rad (55 minutes) on average for 14 

DOYs 201 to 207. 15 

The Logarithmic and Arctangent algorithms require four pairs of soil temperature 16 

measurements. The modeled k  values are very sensitive to the measurement time of four pairs 17 

of soil temperatures, so we have to average the calculated values of k for different selections of 18 

four pairs of soil temperatures for each day.  19 

The two HM algorithms generated similar values of k . For most of the study days, the HM 20 

algorithm gave realistic estimations of soil temperature at the depth of 0.10 m. However, as 21 

mentioned above, it did not give a good estimation in the early morning of DOY 203 because of 22 

the invalid assumption of the repeating periodic for soil temperature. Results obtained by two HM 23 

algorithms indicate that fitting measurements of soil temperature by using the Least Squares 24 

approach directly and simultaneously determining the amplitude and initial phase of the soil 25 

temperature may provide realistic values of k . Comparison of the results obtained by the HM 26 

algorithms, Phase algorithm, Amplitude algorithm, Logarithmic algorithm and Arctangent 27 

algorithm shows that the HM algorithms gave the most accurate values of k . This conclusion 28 
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agrees with those by both Horton et al. (1983) and Verhoef et al. (1996). 1 

The Conduction-convection algorithm provided realistic daytime soil temperature values. 2 

However, it underestimated the soil temperature during the period from 18:00 (LT) to 08:00 (LT), 3 

and a noteworthy difference between the measurements and the model output occurred around 4 

00:00 (LT) for all days in this study. A similar underestimation was also encountered by Lin (1980) 5 

and Gao et al. (2008). Our explanation is that the model always keeps W  constant although the 6 

actual W  may decrease to zero or even become negative during the nighttime, and also the 7 

model does not account for water phase changes that usually happen in shallow soil during the 8 

nighttime. 9 

Scatter plots of soil temperature modeled by using the six algorithms against the measured 10 

soil temperature at the depth of 0.1 m are given in Figure 6. The results show that the HM 11 

algorithms and Conduction-convection algorithm generated larger correlation coefficients ( r ), 12 

than did the other algorithms. All of the regression lines had slopes of 1. 13 

Statistical analyses are also used to examine the error of model output as follows, 14 
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Where n is the total number of data points; SEE  is the standard error of the estimate; and 0SEE  17 

is a normalized SEE  which denotes an estimate of relative uncertainty. The statistical indices 18 

SEE  and 0SEE  are presented in Table 5 for the modeled period. It is obvious that the HM 19 

algorithm has the lowest values both of SEE  and 0SEE . The Conduction-convection algorithm 20 

has the second lowest values of SEE and 0SEE  21 

   Another comparison of the accuracies of the six algorithms is shown in Figure 7 using the 22 

empirical probability distribution functions (PDF) of difference between the modeled and 23 

measured soil temperatures at the depth of 0.10 m. The differences between the modeled and 24 

measured soil temperatures using the HM algorithm ranged between -1 K and 1 K, and most were 25 

near zero. The Conduction-convection algorithm generated the second best results.  26 
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 1 

6. Conclusions 2 

Six algorithms for calculating soil apparent thermal diffusivity are evaluated with shallow soil 3 

measurements collected during LOPEX in 2005. The Phase algorithm and the Amplitude 4 

algorithm overestimated the phase and overestimated the amplitude of the soil temperature, 5 

respectively. Although the Arctangent algorithm and the Logarithmic algorithm only required four 6 

measures of temperature spaced equally in time at two depths, the timing of the four measures of 7 

temperature affected the values of soil apparent thermal diffusivity greatly. The HM algorithm 8 

gave a reasonable result for most days. However, the assumption of repeating periodicity for soil 9 

temperature is invalid on cloudy or rainy days. The algorithms mentioned above are based upon 10 

the one-dimensional conduction equation. The Conduction-convection algorithm which is based 11 

on the one-dimensional conduction-convection equation, provided satisfactory results for daytime 12 

temperatures, but it systematically underestimated nighttime soil temperatures. Overall, the 13 

Conduction-convection algorithm provided better results than all of the other algorithms except 14 

for the HM algorithm. Future efforts should focus on combining the HM and the 15 

Conduction-convection algorithms in order to develop an improved method that combines the 16 

advantages of each algorithm.  The new method should include multiple harmonics to describe 17 

the upper boundary temperatures and include conduction and convection heat transfer processes. 18 

 19 
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 1 

Figure 1. Temporal variations of (a) soil temperature (K) and (b) soil water content (%) measured 2 

at depths of 0.05 m and 0.10 m at a bare soil site over the Loess Plateau from DOY 201 through 3 

DOY 207, 2005.  4 

 5 

Figure 2. Temporal variation of soil apparent thermal diffusivity k  (m
-2
 s

-1
) at a bare soil site 6 

over the Loess Plateau from DOY 201 through 207, 2005. 7 
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 1 

Figure 3. Variation of soil apparent thermal diffusivity k  (m
2
 s

-1
) with volumetric soil water 2 

content θ  (%) at a bare soil site over the Loess Plateau from DOYs 201 through 207, 2005. 3 

 4 

 5 

Figure 4. Comparisons of soil temperature modeled by using Phase algorithm, Amplitude 6 

algorithm, Arctangent algorithm, Logarithmic algorithm, algorithm by Horton et al.(1983), 7 

algorithm by Heusinkveld et al.(2004), and Conduction-convection algorithm, against 8 

measurements of soil temperature at 0.10 m depth at a bare soil site over the Loess Plateau from 9 

DOYs 201 through 207, 2005. 10 

 11 
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 1 

Figure 5. Comparisons of soil temperature modeled by using Phase algorithm, Amplitude 2 

algorithm, Arctangent algorithm, Logarithmic algorithm, algorithm by Horton et al.(1983), 3 

algorithm by Heusinkveld et al.(2004), and Conduction-convection algorithm, against 4 

measurements of soil temperature at 0.10 m depth at a bare soil site over the Loess Plateau on 5 

DOY 204, 2005. 6 

 7 



 20

Figure 6.  Scatter plots of the temperature modeled by using Phase algorithm, Amplitude 1 

algorithm, Arctangent algorithm, Logarithmic algorithm, Horton et al.(1983), Heusinkveld et 2 

al.(2004), and Conduction-convection algorithm for the soil depth of  0.10 m against the soil 3 

temperature at 0.10 m depth from DOY 201 to DOY 207, 2005.  4 

 5 

Figure 7. Empirical probability distribution function, PDF, of subtraction between the temperature 6 

modeled by using the  Phase algorithm, Amplitude algorithm, Arctangent algorithm, 7 

Logarithmic algorithm, Horton et al.(1983), Heusinkveld et al.(2004), and Conduction-convection 8 

algorithm for the soil layer ranging from 0.05 m to 0.10 m with the soil temperature at 0.10 m 9 

depth from DOY 201 to DOY 207, 2005.  10 
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Tables 12 

Table 1. See another independent file named as “Table 1.doc” 13 

Table 2 The maximums, minimums and mean values of k  calculated by six algorithms for the 14 

layer of 0.05-0.10m on the Loess Plateau from DOY 201 to DOY 207, 2005. 15 

Name 

Max 

( k 710× ) 

Min 

( k 710× ) 

Mean 

( k 710× ) 

Phase algorithm 5.47 2.45 4.24 

Amplitude algorithm 2.65 1.69 2.06 

Arctangent algorithm 1.60 0.60 1.07 

Logarithmic algorithm 3.93 1.50 2.34 

HM(Horton et al.,1983) 3.02 1.42 2.22 



 21

HM(Heusinkveld et al., 2004) 2.73 1.66 2.30 

Conduction-convection 

algorithm 
4.65 2.43 3.92 

 1 

Table 3 The values of W  calculated by Conduction-convection algorithm for the layer of 2 

0.05-0.10m on the Loess Plateau from DOY 201 to DOY 207, 2005. 3 

DOY W ( 710×  m s
-1
) 

201 0.722 

202 2.755 

203 1.454 

204 3.112 

205 2.453 

206 3.669 

207 4.696 

 4 

Table 4 The values of the phase shift and the logarithm of amplitude ratio of soil temperature 5 

obtained by using one sine function approximation algorithm at the 0.05m and 0.10m depths on 6 

the Loess Plateau from DOY 201 to DOY 207, 2005. 7 

DOY 21 Φ−Φ  )ln( 21 AA  

201 0.6008           0.6875        

202 0.4788 0.7001 

203 0.4819 0.5858 

204 0.4367 0.6468 

205 0.4587        0.6316     

206 0.4367 0.7008 

207 0.4078 0.7323 

 8 

Table 5 Computed Standard Error of the Estimate (SEE) and Normalized Standard Error of the 9 

Estimate (NSEE) of soil temperature at 0.10m depth on the Loess Plateau from DOY 201 to DOY 10 

207, 2005. 11 

Name SEE NSEE 

Phase algorithm 0.8288 0.0028 

Amplitude algorithm 0.6481 0.0022 

Arctangent algorithm 1.2693 0.0043 



 22

Logarithmic algorithm 0.9796 0.0033 

HM(Horton et al., 1983) 0.1963 0.0006 

HM(Heusinkveld et al., 2004) 0.2132 0.0007 

Conduction-convection 

algorithm 
0.5091 0.0017 

 1 


