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Abstract

Unsaturated flow of soils in unsaturated soils is an important problem in geotechni-
cal and geo-environmental engineering. Richards’ equation is often used to model
this phenomenon in porous media. Obtaining proper solution to this equation there-
fore provides better means to studying the infiltration into unsaturated soils. Available5

methods for the solution of Richards’ equation mostly fall in the category of numerical
methods, often having restrictions for practical cases. In this research, two analyti-
cal methods known as Homotopy Perturbation Method (HPM) and Variational Iteration
Method (VIM) have been successfully utilized for solving Richards’ equation. Results
obtained from the two methods mentioned show a remarkably high precision in the10

obtained solution, compared with the existing exact solutions available.

1 Introduction

Modeling of multi-phased flow through porous media presents an important problem
of practical interest for geotechnical and geo-environmental engineering as well as
many other areas of science and engineering. Study of this phenomenon requires15

proper formulation of the governing equations and constitutive relations involved. Cur-
rent equations used for describing fluid flow through porous media are based mainly
on semi-empirical equations first derived by Buckingham (1907) and Richards (1931).
Specifically, despite limitations and drawbacks, Richards’ equation is still the most
widely used equation for modeling unsaturated flow of water through soil (porous me-20

dia) (Hoffmann, 2003). Due to the importance and wide applications of the problem,
many researches have been devoted in the past to proper addressing of different forms
of Richards’ equation. Both analytical and numerical solutions have been investigated
in the literature. Analytical solutions to Richards’ equation are rather scarce and are
generally limited to only special cases (Ju and Kung, 1997; Arampatzis, 2001). This is25

mainly due to the dependence of hydraulic conductivity and diffusivity – two important
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parameters in the equation – on moisture content, combined with the non-trivial forc-
ing conditions that are often encountered in engineering practice (Ju and Kung, 1997;
Arampatzis et al., 2001; Kavetski et al., 2002). As a result, application of many numeri-
cal methods to the solution of Richards’ equation with various engineering applications
has been investigated in the literature. Finite element5

and finite difference methods have been adopted by several researchers (Clement et
al., 1994; Baca et al., 1997; Bergamaschi et al., 1999; Milly, 1985). Mass lumping was
employed in these studies to improve stability. Time stepping schemes such as the
Douglas-Jones-predictor-corrector method, Runge-Kutta method and backward differ-
ence formulae should also be mentioned in this context (Kavetski et al., 2001; Miller10

et al., 2005). Tabuada et al. (1995) used an implicit method and presented equations
governing two-dimensional irrigation of water into unsaturated soil based on Richards’
equation. The Gauss-Seidel method was then effectively used to solve the result-
ing equations. Ross (2003) introduced an efficient non-iterative solution for Richards’
equation using soil property descriptions as proposed by Brooks and Corey (1964). In15

his method, Ross used a space and time discretization scheme in order to derive a
tridiagonal set of linear equations which were then solved non-iteratively. Varado et
al. (2006) later conducted a thorough assessment of the method proposed by Ross
and concluded that the model provides robust and accurate solutions as compared
with available analytical solutions (Basha, 1999). In geo-environmental applications,20

Bunsri et al. (2008) solved Richards’ equation accompanied by advective-dispersive
solute transport equations by the Galerkin technique. Witelski (1997) used perturba-
tion methods to study the interaction of wetting fronts with impervious boundaries in
layered soils governed by Richards’ equation. Through comparison with numerical so-
lutions, Witelski concluded that perturbation methods are able to yield highly accurate25

solutions to Richards’ equation (Witelski, 1997).
Each method mentioned above encounters Richards’ equation in a certain way. Of-

ten, assumptions are made and empirical models are implemented in order to over-
come difficulties in solving the equation due to high interdependence of some of the
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parameters involved. In the present research, two analytical methods known as Homo-
topy Perturbation Method (HPM) (He, 1999a, 2003; Ganji and Sadighi, 2006; Choob-
basti et al., 2008; Barari et al., 2008a; Ghotbi et al., 2008a, 2008b) and Variational Itera-
tion Method (VIM) (He, 1997, 1999b, 2006; Ganji et al., 2007; Ganji and Sadighi, 2007;
Barari et al., 2008b) have been employed to solve the problem of one-dimensional5

infiltration of water in unsaturated soil governed by Richards’ equation. In the next sec-
tions, Richards’ equation and the relative models involved are introduced, followed by a
thorough explanation of the analytical methods used to solve the equation. Illustrative
examples are also given in order to demonstrate the effectiveness of the method in
solving Richards’ equation.10

2 Richards’ equation

The basic theories describing fluid flow through porous media were first introduced
by Buckingham (Buckingham, 1907) who realized that water flow in unsaturated soil
is highly dependent on water content. Buckingham introduced the concept of “con-
ductivity”, dependent on water content, which is today known as unsaturated hydraulic15

conductivity (after Rolston, 2007). This equation is usually known as Buckingham law
(Narasimhan, 2005). Buckingham also went on to define moisture diffusivity which is
the product of the unsaturated hydraulic conductivity and the slope of the soil-water
characteristic curve. Nearly two decades later, Richards (1931) applied the continuity
equation to Buckingham’s law – which itself is an extension of Darcy’s law – and ob-20

tained a general partial differential equation describing water flow in unsaturated, non-
swelling soils with the matric potential as the single dependent variable (Philip, 1974).
There are generally three main forms of Richards’ equation present in the literature
namely the mixed formulation, the h-based formulation and the θ-based formulation,
where h is the weight-based pressure potential and θ is the volumetric water content.25

Since Richards’ equation is a general combination of Darcy’s law and the continuity
equation as previously mentioned, the two relations must first be written in order to
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derive Richards’ equation. Herein, one-dimensional infiltration of water in vertical di-
rection of unsaturated soil is considered and accordingly, Darcy’s law and the continuity
equation are given by Eqs. (1) and (2) respectively:

q = −K ∂H
∂z

= −K
∂(h + z)

∂z
= −K

(
∂h
∂z

+ 1
)

(1)

and5

∂θ
∂t

= −∂q
∂z

(2)

where K is hydraulic conductivity, H is head equivalent of hydraulic potential, q is flux
density and t is time. The mixed form of Richards’ equation is obtained by substituting
Eq. (1) in Eq. (2):

∂θ
∂t

=
∂
∂z

[
K
(
∂h
∂z

+ 1
)]

(3)10

Equation (3) has two independent variables: the soil water content (θ) and pore water
pressure head (h). Obtaining solutions to this equation therefore requires constitutive
relations to describe the interdependence among pressure, saturation and hydraulic
conductivity. However, it is possible to eliminate either θ or h by adopting the concept
of differential water capacity, defined as the derivative of the soil water retention curve:15

C(h) =
dθ
dh

(4)

The h-based formulation of Richards’ equation is thus obtained by replacing Eq. (4) in
Eq. (3):

C(h) =
∂h
∂t

=
∂
∂z

(
K
∂h
∂z

)
+

∂K
∂z

(5)

This is a fundamental equation in geotechnical engineering and is used fore modeling20

flow of water through unsaturated soils. For instance, the two-dimensional form of the
3815
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equation can be used to model seepage in the unsaturated zone above water table in
an earth dam.

Introducing a new term D, pore water diffusivity defined as the ration of the hydraulic
conductivity and the differential water capacity, the θ-based form of Richards’equation
may be obtained. D can be written as:5

D =
K
C

=
K
dθ
dh

= K
dh
dθ

(6)

It should be noted that both D and K are highly dependent on water content. Combining
Eq. (6) with Eq. (3) gives Richards’ equation as:

∂θ
∂t

=
∂
∂z

(
D
∂θ
∂z

)
+

∂K
∂z

(7)

In order to solve Eq. (7), one must first properly address the task of estimating D and K ,10

both of which are dependent on water content. Several models have been suggested
for determining these parameters. The Van Genuchten model (Van Genuchten, 1980)
and Brooks and Corey’s model (Brooks and Corey, 1964; Corey, 1994) are the more
commonly used models. The Van Genuchten model uses mathematical relations to re-
late soil water pressure head with water content and unsaturated hydraulic conductivity,15

through a concept called “relative saturation rate”. This model matches experimental
data but its functional form is rather complicated and it is therefore difficult to implement
it in most solution schemes. Brooks and Corey’s model on the other hand has a more
precise definition and is therefore adopted in the present research. This model uses
the following relations to define hydraulic conductivity and water diffusivity:20

D(θ) =
Ks

αλ (θs − θr )

(
θ − θr

θs − θr

)2+ 1
λ

(8)

K (θ) = Ks

(
θ − θr

θs − θr

)3+ 2
λ

(9)
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where Ks is saturated conductivity, θr is residual water content, θs is saturated water
content and α and λ are experimentally determined parameters. Brooks and Corey
determined λ as pore-size distribution index (Brooks and Corey, 1964). A soil with
uniform pore-size possesses a large λ while a soil with varying pore-size has small
λ value. Theoretically, the former can reach infinity and the latter can tend towards5

zero. Further manipulation of Brooks and Corey’s model yields the following equations
(Witelski, 1997; Corey, 1986; Witelski, 2005):

D(θ) = D0 (n + 1)θm m ≥ 0 (10)

K (θ) = K0θ
k k ≥ 1 (11)

where K0, D0 and k are constants representing soil properties such as pore-size distri-10

bution, particle size, etc. In this representation of D and K , θ is scaled between 0 and
1 and diffusivity is normalized so that for all values of m, ∫D(θ)dθ=1 (after Nasseri et
al., 2008).

Several analytical and numerical solutions to Richards’ equation exist based on
Brooks and Corey’s representation of D and K . Replacing n=0 and k=2 in Eqs. (10)15

and (11) yields the classic Burgers’ equation extensively studied by many researchers
(Basha, 2002; Broadbridge and Rogers, 1990; Whitman, 1974). The generalized Burg-
ers’ equation is also obtained for general values of k and m (Grundy, 1983).

As seen previously, the two independent variables in Eq. (7) are time and depth. By
applying the traveling wave technique (Wazwaz, 2005; Abdoul et al., 2008; Elwakil et20

al., 2004), instead of time and depth, a new variable which is a linear combination of
them is found. Tangent-hyperbolic function is commonly applied to solve these trans-
form equations (Soliman, 2006; Abdou, and Soliman, 2006). Therefore the general
form of Burgers’ equation in order of (n, 1) is obtained as (Wazwaz, 2005):

θt + αθnθz − θzz = 0 (12)25
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The exact solution to Eq. (12) can be found to be:

θ(z, t) =
(γ

2
+

γ
2

tanh([A1(z − A2t])
)1/n

A1 =
−αn + n|α|

4(1 + n)
γ (n 6= 0)

A2 =
γα

1 + n

(13)

In this study, nonlinear infiltration of water in unsaturated soil has been studied using
Richards’ equation and by employing Brooks and Corey’s model to represent hydraulic
conductivity and diffusivity. The conductivity term has been selected in two indepen-5

dent example cases as θ2/
2 and θ3/

3 and respective n-values of one and two were

associated with these conductivities. Homotopy perturbation method (HPM) (He, 1999,
2003; Abdoul et al., 2008a, b; Ganji and Sadighi, 2006; Choobbasti et al., 2008; Barari
et al., 2008) and variational iteration method (VIM) (He, 1997, 1999, 2006; Ganji et al.,
2007; Ganji and Sadighi, 2007; Barari et al., 2008) described below have been used to10

solve Eq. (12). HPM and VIM are first introduced briefly, and are then implemented in
order to solve Richards’ equation as described by Eq. (7) and supported by Eqs. (10)
and (11).

3 Basic idea of He’s homotopy perturbation method (HPM)

To illustrate the basic ideas of HPM, we consider the following nonlinear differential15

equation:

A(u) − f (r) = 0, r ∈ Ω , (14)
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with the boundary conditions of

B
(
u,

∂u
∂n

)
= 0, r ∈ Γ , (15)

where A,B, f (r) and Γ are a general differential operator, a boundary operator, a known
analytical function and the boundary of the domain Ω, respectively.

Generally speaking the operator A can be divided into a linear part L and a nonlinear5

part N(u). Equation (14) can therefore, be rewritten as:

L(u) + N(u) − f (r) = 0 , (16)

By the Homotopy technique, we construct a homotopy v(r, p) : Ω×[0,1]→R, which
satisfies:

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f (r)] = 0, p ∈ [0,1], r ∈ Ω , (17)10

or

H(v, p) = L(v) − L(u0) + pL(u0) + p[N(v) − f (r)] = 0 , (18)

where p∈[0,1] is an embedding parameter, while u0 is an initial approximation of
Eq. (14), which satisfies the boundary conditions. Obviously, from Eqs. (17) and (18)
we will have:15

H(v,0) = L(v) − L(u0) = 0 , (19)

H(v,1) = A(v) − f (r) = 0 , (20)

The changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r).
In topology, this is called deformation, while L(v) − L(u0) and A(v) − f (r) are called
homotopy.20
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According to the HPM, we can first use the embedding parameter p as a “small
parameter”, and assume that the solution of Eqs. (17) and (18) can be written as a
power series in p:

v = v0 + pv1 + p2v2 + . . . (21)

Setting p=1 yields in the approximate solution of Eq. (17) to:5

u = lim
p→1

v = v0 + v1 + v2 + . . . (22)

The combination of the perturbation method and the homotopy method is called the
HPM, which eliminates the drawbacks of the traditional perturbation methods while
keeping all its advantage.

The Series (22) is convergent for most cases. However, the convergent rate depends10

on the nonlinear operator A(v). Moreover, He (1999) made the following suggestions:
(1) The second derivative of N(v) with respect to v must be small because the pa-

rameter may be relatively large, i.e. p→1.
(2) The norm of L−1 ∂N

∂v must be smaller than one so that the series converges.

4 Basic idea of variational iteration method (VIM)15

To clarify the basic ideas of VIM, we consider the following differential equation:

Lu + Nu = g(t) , (23)

Where L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous
term.

According to VIM, we can write down a correction functional as follows:20

un+1(t) = un(t) +
∫ t
0
λ(Lun(τ) + Nũn(τ) − g(τ))dτ (24)
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Where λ is a general lagrangian multiplier which can be identified optimally via the vari-
ational theory. The subscript n indicates the n-th approximation and un is considered
as a restricted variation, i.e. δũn=0.

5 Implementation of HPM to solve Richards’ equation

5.1 Case 1: if n=15

To solve Richard equation when n=1 by means of HPM, we consider the following
process after separating the linear and nonlinear parts of the equation.

A homotopy can be constructed as follows:

H(v, p) = (1 − p)
(
∂
∂t

v(z, t) − ∂
∂t

u0(z, t)
)
+ p

(
∂
∂t

v(z, t) + v(z, t)
∂
∂z

v(z, t) − ∂2

∂z2
v(z, t)

)
, (25)

substituting v=v0+pv1+ . . . in to Eq. (25) and rearranging the resultant equation based10

on powers of p-terms, one has:

p0 :
∂
∂t

v0(z, t) = 0 , (26)

p1 :
∂
∂t

v1(z, t) + v0(z, t)
∂
∂z

v0(z, t) − ∂2

∂z2
v0(z, t) = 0 , (27)

p2 :
∂
∂t

v2(z, t) − ∂2

∂x2
v1(z, t) + v1(z, t)

∂
∂z

v0(z, t) + v0(z, t)
∂
∂z

v1(z, t) = 0 , (28)

With the following conditions:15

v0(z,0) = 0.5 − 0.5 tanh(0.25z) ,

vi (z,0) = 0 , i = 1,2, . . .
(29)
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With the effective initial approximation for v0 from the conditions of Eq. (29) and solu-
tions of Eqs. (26–28) may be written as follows:

v0(z, t) = 0.5 − 0.5 tanh(0.25z) , (30)

v1(z, t) =
1

16
t − 1

16
t tanh(0.25z)2 , (31)

v2(z, t) = − 1
128

t2 tanh(0.25z)(−1 + tanh(0.25z)2) . (32)5

In the same manner, the rest of components were obtained using the Maple package.
According to the HPM, we can conclude that:

θ(z, t) = lim v(z, t) = v0(z, t) + v1(z, t) + ... ,
p → 1

(33)

Therefore, substituting the values of v0(z, t), v1(z, t), v2(z, t) from Eqs. (30–32) in to
Eq. (33) yields:10

θ(z, t) = 0.5−0.5 tanh(0.25z) +
1

16
t− 1

16
t tanh(0.25z)2− 1

128
t2 tanh(0.25z)(−1+ tanh(0.25z)2), (34)

5.2 Case 2: if n=2

To solve Richard equation if n=2 by means of HPM, we consider the following process
after separating the linear and nonlinear parts of the equation.

A homotopy can be constructed as follows:15

H(v, p) = (1 − p)
(
∂
∂t

v(z, t) − ∂
∂t

u0(z, t)
)
+ p

(
∂
∂t

v(z, t) + v(z, t)2 ∂
∂z

v(z, t) − ∂2

∂z2
v(z, t)

)
. (35)

Substituting v=v0+pv1+ . . . in to Eq. (35) and rearranging the resultant equation based
on powers of p-terms, one has:

p0 :
∂
∂t

v0(z, t) = 0 , (36)
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p1 :
∂
∂t

v1(z, t) + v0(z, t)2 ∂
∂z

v0(z, t) − ∂2

∂z2
v0(z, t) = 0 , (37)

p2 : − ∂2

∂z2
v1(z, t) +

∂
∂t

v2(z, t) + 2v0(z, t)v1(z, t)
∂
∂z

v0(z, t) + v0(z, t)2 ∂
∂z

v1(z, t) = 0 , (38)

With the following conditions:

v0(z,0) = (0.5 − 0.5 tanh(0.333 3333z))0.5 ,

vi (z,0) = 0 , i = 1,2, . . .
(39)

With the effective initial approximation for v0 from the conditions of Eq. (39) and solu-5

tions of Eqs. (36–38) may be written as follows:

v0(z, t) = (0.5 − 0.5 tanh(0.333 3333z))0.5 , (40)

v1(z, t) =

9t


463 tanh

( 333 333
1 000 000z

)3 −
308 641 821 tanh

( 333 333
1 000 000z

)2 −
463 tanh

( 333 333
1 000 000z

)
+ 308 641 821


50 000 000 000

√
2 − 2

( 333 333
1 000 000z

) , (41)

v2(z, t) =
1

0.4 × 1024
√

2 − 2 tanh
( 333 333

1 000 000z
)


t2



6.4819 × 1015 tanh
( 333 333

1 000 000z
)5

+

8.3336 × 1015 tanh
( 333 333

1 000 000z
)4 −

1.8518 × 1021 tanh
( 333 333

1 000 000z
)3

+

6.1727 × 1020 tanh
( 333 333

1 000 000z
)2

+

1.8518 × 1021 tanh
( 333 333

1 000 000z
)1 −

6.172820




(42)
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In the same manner, the rest of components were obtained using the Maple package.
According to the HPM, we can conclude that:

θ(z, t) = lim v(z, t) = v0(z, t) + v1(z, t) + . . . , p → 1 (43)

Therefore, substituting the values of v0 (z, t), v1 (z, t), v2 (z, t) from Eqs. (40–42) in to
Eq. (43) yields:5

θ(z, t) = (0.5 − 0.5 tanh(0.333 3333z))0.5 +

9t


463 tanh

( 333 333
1 000 000z

)3 −
308 641 821 tanh

( 333 333
1 000 000z

)2 −
463 tanh

( 333 333
1 000 000z

)
+ 308 641 821


50 000 000 000

√
2−2( 333 333

1 000 000z)

+ 1

0.4×1024
√

2−2 tanh( 333 333
1 000 000z)


t2



6.4819 × 1015 tanh
( 333 333

1 000 000z
)5

+

8.3336 × 1015 tanh
( 333 333

1 000 000z
)4 −

1.8518 × 1021 tanh
( 333 333

1 000 000z
)3

+

6.1727 × 1020 tanh
( 333 333

1 000 000z
)2

+

1.8518 × 1021 tanh
( 333 333

1 000 000z
)1 −

6.172820





(44)

The obtained solution has been drawn in Figs. 1 and 2 for n=1 and n=2 respectively,
along with the results of VIM from the following section, as well as the exact solution
available.

3824

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/3811/2009/hessd-6-3811-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/3811/2009/hessd-6-3811-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 3811–3833, 2009

Assessment of water
penetration problem
in unsaturated soils

A. Barari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

6 Implementation of VIM to solve Richards’ equation

6.1 Case 1: n=1

To solve the Eq. (12) by means of VIM, one can construct the following correction
functional:

θn+1(z, t) = θn(z, t) +
∫ t
0
λ

(
∂
∂τ

θn(z, τ) + θn(z, τ)
∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (45)5

Its stationary conditions can be obtained as follows:

λ′ | τ=t = 0 ,

1 + λ | τ=t = 0 .
(46)

We obtain the lagrangian multiplier:

λ = −1 (47)

As a result, we obtain the following iteration formula:10

θn+1(z, t) = θn(z, t) −
∫ t
0

(
∂
∂τ

θn(z, τ) + θn(z, τ)
∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (48)

Now we start with an arbitrary initial approximation that satisfies the initial condition:

θ0(z, t) = 0.5 − 0.5 tanh(0.25z) . (49)

Using the above variational formula (48), we have:

θ1(z, t) = θ0(z, t) −
∫ t
0

(
∂
∂τ

θ0(z, τ) + θ0(z, τ)
∂
∂z

θ0(z, τ) − ∂2

∂z2
θ0(z, τ)

)
dτ (50)15

Substituting Eq. (49) in to Eq. (50) and after simplifications, we have:

θ1(z, t) =
0.0625(8 cosh(0.25z)2 − 8 sinh(0.25z) cosh(0.25z) + t)

cosh(0.25z)2
(51)
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6.2 Case 2: if n=2

To solve the Richards’ equation by means of VIM, once again the following correction
functional may be constructed:

θn+1(z, t) = θn(z, t) +
∫ t
0
λ

(
∂
∂τ

θn(z, τ) + θn(z, τ)2 ∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (52)

Its stationary conditions can be obtained as follows:5

λ′ | τ=t = 0,

1 + λ | τ=t = 0.
(53)

We obtain the lagrangian multiplier:

λ = −1 (54)

As a result, we obtain the following iteration formula:

θn+1(z, t) = θn(z, t) −
∫ t
0

(
∂
∂τ

θn(z, τ) + θn(z, τ)2 ∂
∂z

θn(z, τ) − ∂2

∂z2
θn(z, τ)

)
dτ (55)10

Now we start with an arbitrary initial approximation that satisfies the initial condition:

θ0(z, t) = (0.5 − 0.5 tanh(0.3333z))0.5 (56)

Using the above variational formula (55), we have:

θ1(z, t) = θ0(z, t) −
∫ t
0

(
∂
∂τ

θ0(z, τ) + θ0(z, τ)2 ∂
∂z

θ0(z, τ) − ∂2

∂z2
θ0(z, τ)

)
dτ (57)
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Substituting Eq. (56) in to Eq. (57) and after simplifications, we have:

θ1(z, t) = − 1

(2 − 2 tanh(0.3333z))
3
2


1.6 × 10−11



−1.25 × 1011 + 2.5 × 1011 tanh(0.3333z)−

1.25 × 1011 tanh(0.3333z)2 − 6.9444 × 109

t + 6.9444 × 109t tanh(0.3333z) + 6.9444

×109t tanh(0.3333z)2 − 6.9444 × 109t

tanh(0.3333z)3 + 4t tanh(0.3333z)4




(58)

and so on. In the same way the rest of the components of the iteration formula can be
obtained. Figs. 1 and 2 show the results obtained from VIM and HPM along with the
exact solution, revealing a high level of agreement between the three results shown.5

It is evident from the curves plotted that the exact solution and the obtained solutions
from HPM and VIM almost completely overlay each other and the level of agreement
between the results is therefore excellent.

7 Concluding remarks

In this study, Analytical solution to Richards’ equation was explored using Homotopy10

Perturbation Method (HPM) and variational iteration method (VIM). Richards’ equation
is used for modeling infiltration in unsaturated soils. HPM and VIM have been suc-
cessfully utilized for solving Richards’ equation. Illustrative examples proved the high
accuracy of the results obtained using HPM and VIM. The results of this study prove
the robustness of the analytical method presented. It can be concluded that HPM and15

VIM may be effectively used for solving many other problems of practical interest in
geotechnical and geo-environmental engineering
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Fig. 1. Plot of θ(z) for different values of time (t=0, 1, 3, 5) considering n=1 – solid lines
represent results from VIM and HPM, while dashed lines depict the exact solution.
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4- 
Fig. (2) in better quality: 
 

 
 
 
5- 
Note: the corrections of references are cited in the main text as follows: 

 
In the present research, two analytical methods known as Homotopy Perturbation Method 
(HPM) (He, 1999a, 2003; Abdoul et al., 2008; Ganji and Sadighi et al., 2006; Choobbasti 
et al., 2008; Barari et al., 2008a; Ghotbi et al., 2008a,2008b) and Variational Iteration 
Method (VIM) (He, 1997, 1999b, 2006; Ganji et al., 2007a, 2007b; Ganji and Sadighi, 
2007; 5 Barari et al., 2008b) have been employed to solve the problem of one-
dimensional infiltration of water in unsaturated soil governed by Richards’ equation. 
 
6- 

Assessment of water penetration problem 
in unsaturated soils 

A. Barari1, M. Omidvar2, A. R. Ghotbi3, and D. D. Ganji1 
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Fig. 2. Plot of θ(z) for different values of time (t=0, 1, 3, 5) considering n=2 – solid lines
represent results from VIM and HPM, while dashed lines depict the exact solution.
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