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Abstract

Accurate lead-time forecast of ice breakup is one of the key aspects for ice flood pre-
vention and reducing losses. In this paper, a new data-driven model based on the Sta-
tistical Learning Theory was employed for ice breakup prediction. The model, known as
Support Vector Machine (SVM), follows the principle that aims at minimizing the struc-5

tural risk rather than the empirical risk. In order to estimate the appropriate parameters
of the SVM, Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM-UA) al-
gorithm is performed through exponential transformation. A case study was conducted
in the reach of the Yellow River. Results from the proposed model showed a promising
performance compared with that from artificial neural network, so the model can be10

considered as an alternative and practical tool for ice breakup forecast.

1 Introduction

Ice flood is a common phenomenon in river of north china every year. It often occurs
during the period of thaw when river discharge increases due to snowmelt that causes
the forces on an ice cover exceed its strength. Ice jams are often formed when the15

broken ice is transported along the river and accumulated in the river bed. It can
cause many hazards, such as bridge or levee failure, structural damage of dams, and
erosion of riverbed and banks (Massie et al., 2002). Ice breakup prediction can be
used to increase warning time and to minimize damage caused by ice floods or ice
jams. Therefore, it is of great importance to make an accurate ice breakup forecast.20

Ice breakup prediction is much difficult because the formation of breakup result from
a complex interaction between hydrologic, hydraulic, and meteorological processes.
Due to the complexity of physical processes that cannot currently be described with
deterministic models, there are no reliable methods to predict the date of breakup
with a significant lead time (White, 2003). Many models have been developed for
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predicting the ice breakup, including empirical methods, mathematical models, and
statistical models et al.

White provided examples of existing breakup ice jam prediction methods and dis-
cussed their potential advantages and disadvantages (White, 2003). Most advances
in river ice hydrology were reviewed in other literatures (Beltaos, 2000; Morse and5

Hicks, 2005). Beltaos calculated the threshold flows that can result in significant jam
flooding using a numerical model named RIVJAM (Beltaos, 2003). For statistical mod-
els, logistic regression was widely used for predicting breakup, ice jam occurrence
(White, 1996). Massie pointed out that breakup ice jam prediction models had his-
torically been limited to classical empirical single-variable threshold-type analyses to10

statistical methods. He employed neural network for ice jam prediction and improved
the forecast accuracy (Massie et al., 2002). Instead of using neural network alone,
fuzzy logic and artificial neural networks were applied for modeling the maximum wa-
ter level during river ice breakup for both flood and non-flood event years (Mahabir et
al., 2006). A fuzzy optimization neural network approach was also developed for fore-15

casting freeze-up date and break-up date (Chen and Ji, 2005). In China, the index
method was firstly used for ice breakup forecast in the 1950’, it is a empirical method
which has the disadvantages of short lead time and poor accuracy. To solve problems
aforementioned, empirical correlation method is developed based on certain physical
processes, it improved the forecast accuracy but usually was restricted to the appli-20

cation conditions. In the 1990’, some mathematical models were developed which is
effective and efficient, but it is often failed due to some parameters can not be achieved
in practice which limited their wide applications.

In summary, although physically based models have several advantages, but they
are so complex and require many hypothesis for establishment, so black box model25

have gained much popularity in recent years. It doesn’t need to understand the com-
plex process and the only thing is to establish the relationship between input and out-
put variables which make it ease of use. In the past decade, artificial neural network
(ANN), as one of the famous black-box models, has been increasingly applied to vari-
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ous hydrological problems for it can dealing with complex nonlinear processes (ASCE,
2000b).

But there are some limitations for the widely application of ANN, such as the network
architecture selecting, training algorithm selecting, and the most serious problems is
that it do not lead to one global or unique solution (ASCE, 2000a).5

In this paper, an alternative data-driven model based on statistical learning theory
called Support Vector Machine (SVM) is used for the task of ice breakup prediction.
It has originally been used for classification purpose and later was been extended for
regression and prediction (Huang et al., 2005; Ye et al., 2005; Niu et al., 2006; Sun
and Yang, 2006). SVM follows the principle of structural risk minimization. The key10

property of SVM is that it prevents the overfitting (or overtraining) and the solution is
always unique and globally optimal. As for the optimal parameters selecting of SVM,
the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm is em-
ployed.

The remainder of the paper is organized as follows: Sect. 2 provides a briefly intro-15

duction to the SVM and its parameters identification method (MOSCEM). A description
of study area and data used is presented in Sect. 3. In Sect. 4, the implementation
of SVM for ice breakup prediction is described and results are shown compared with
ANN. The paper closes with a summary and some problems to be studied.

2 Support vector machine for regression (SVR)20

2.1 Introduction to SVR

Here, a brief description of SVM for regression is given below. Detailed descriptions of
SVR can be found in Vapnik (1995).

The SVR maps the input data x into a high-dimensional feature space F by linear
or nonlinear mapping, in which the training data may exhibit linearity, and then to per-25

form linear regression in this feature space. The regression estimation is to construct
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a function according to a given data set {(xi , yi )}n, where xi denotes the input vec-
tor; yi denotes the output value and n is the total number of data sets. The aim is
to identify a regression function y=f (x), which can accurately predict the outputs {yi}
corresponding to a new set of input–output examples, {(xi , yi )}. The linear regression
function using the following function:5

f (x) = ω ·φ(x) + b , (1)

where φ(·) is a nonlinear function by which x is mapped into a feature space, b de-
notes the bias. Linear regression is performed in the high-dimensional feature space
by ε-insensitive loss function. To prevent over-fitting, in other words, improve the gen-
eralization ability, objective function (2) is established, which is minimizing summation10

of the empirical risk and a complexity term ‖ω‖2/2. The coefficients ω and b can thus
be estimated by function (2).

R =
1
2
‖ω‖2 + C

n∑
i=1

Lε(f (xi ), yi ) (2)

Lε(f (x), y) =

{
|f (x) − y | − ε|f (x) − y | ≥ ε

0 otherwise ,
(3)

where ‖ω‖2/2 is the regularization term which denotes the Euclidean norm, and Lε(·)15

is called ε-insensitive loss function that measuring the empirical risk, C is a positive
constant that determines the trade-off between the model complexity and the amount
up to which error larger than ε are tolerated.

The points lying on or outside the ε-bound of the decision function are support vec-
tors (black points). On the right, the ε-insensitive loss function is shown in which the20

slope is determined by C.
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To estimate ω and b, Eq. (2) is converted to the primary function given by Eq. (4),

minR =
1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i )

subjected to


yi −ω ·φ(x) − b ≤ ε + ξi

ω ·φ(x) + b − yi ≤ ε + ξ∗i
ξi , ξ

∗
i ≥ 0

, (4)

where ξi and ξ∗i are slack variables that specify the upper and the lower training errors
subject to an error tolerance ε. In this optimization problem, most data examples are5

expected to be in the ε-tube as show in Fig. 1. If a data example {(xi , yi )} is outside the
tube, then an error ξi or ξ∗i exists. From Eq. (4), some characters of SVR can be found:
(i) the training error is minimized by minimizing ξi and ξ∗i and (ii) ‖ω‖2/2 is minimized
to raise the flatness of f (x).

Equation (4) is a standard optimal problem which can be solved by applying La-10

grange theory. By introducing Lagrange multipliers αi , α
∗
i , Eq. (4) can be converted to

the following form:

maxR(αi , α
∗
i )=−

1
2

n∑
i ,j=1

(αi−α∗
i )(α

∗
j−αj )(φ(xi ), φ(xj ))+

n∑
i=1

α∗
i (yi−ε)−

n∑
i=1

αi (yi+ε) . (5a)

Subject to constraints
n∑

i=1

(αi − α∗
i ) = 0 , 0 ≤ αi , α∗

i ≤ C . (5b)15

To solve the optimal problem above, the Lagrange multipliers αi , α
∗
i are calculated,

and the optimal desired weight vector of the regression hyperplane is

w =
n∑

i=1

(αi − α∗
i )K (φ(x), φ(xi )) . (6)
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Thus, the regression function can be written as,

f (x, α, α∗) =
n∑

i=1

(αi − α∗
i )K (φ(x), φ(xi )) + b . (7)

Herein, K (φ(x), φ(xi )) is called the Kernel function. The value of the Kernel is the
inner product of the two vectors xi and xj in the feature space φ(xi ) and φ(xj ). Any
function that satisfies Mercer’s condition (Vapnik, 1998) can be used as the Kernel5

function.
By using different kernel functions listed in Table 1, the SVR algorithm can construct

a variety of learning machines.
In Eq. (5), only some of (αi − α∗

i ) will be held as non-zero values, they are called the
support vector. That is, these data points lie on or outside the ε-tube (Fig. 1).10

The parameters of SVR are the cost constant C, the radius of the insensitive tube ε,
and the kernel parameters. These parameters are mutually dependent. Parameter C
controls the smoothness of the approximation function. A greater C value indicates
that the objective is mainly to minimize the empirical risk, which makes the learning
machine complex. On the contrary, a smaller C value makes learning machine yield15

poor approximation. The parameter ε also affects the smoothness or complexity of
the approximation function. In addition, ε determines the number of support vectors
because it controls the accuracy of the approximation function. Smaller values of ε
may lead to more support vectors and result in a complex learning machine and vice
visa. So it is very critical to set the appropriate SVR parameters.20

2.2 SVR parameters selection

Many algorithms have been recorded in literature for SVM parameters selection, such
as genetic algorithm (GA), particle swarm algorithm (PSO) and Shuffled Complex Evo-
lution algorithm (SCE-UA) (Duan, 1992). Single objective functions are widely used for
SVM training, however, practical experience suggests that single-objective functions,25
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no matter how carefully chosen, are often insufficient to measure all the characteristics
of the training error (Vrugt et al., 2003). In this study, an effective and efficient algorithm
for multiobjective optimization, entitled the Multiobjective Shuffled Complex Evolution
Metropolis (MOSCEM) algorithm developed by Vrugt (2003), was employed for SVM
parameters selection. MOSCEM is an improvement over the Shuffled Complex Evo-5

lution (SCE-UA) algorithm, using Pareto dominance concept to evolve the population
toward Pareto optimal solutions and merging the strengths of Metropolis algorithm.

In this section, for optimizing the following multiobjective function, the implementation
framework of MOSCEM algorithm (Vrugt, 2003) is briefly introduced below.

min
θ

F (θ) = {F1(θ), F2(θ), . . . , Fn(θ)} , (8)10

in which Fi (θ) is a single objective function, θ is the parameter set to be optimal se-
lected.

Steps:

(1) Generate sample: Generate s samples {θ1, θ2, . . ., θs} randomly from the feasible
parameter space and compute the multiobjective vector F (θi ) at each point θi .15

(2) Ranking points: Compute the fitness fi for each individual of the sample using the
Pareto concept, sort the s points in order of decreasing fitness value and store
them in an array D[1:s,1:n+M+1], where n is the number of parameters, and
the remaining M+1 columns are used to store the multiobjective vector and the
fitness values.20

(3) Complexes generating: Partition D into q complexes C1, C2, . . ., Cq, each con-
taining m points.

(4) Sequence evolution: A new candidate point in each sequence k is generated
using a multivariate normal distribution centered around the current draw of se-
quence (k) augmented with the covariance structure induced between the points25

in complex k. Metropolis acceptance rule is used to decide whether the offspring
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should be added to the current sequence or not. If it is accepted, then the worst
member of the current complex k will be replaced with it, otherwise, the worst
member should be replaced with the last member of Sk . Finally, when predefined
number of iterations reached, new complexes are formed by means of shuffling
process.5

(5) Unpack all complexes C back into D and calculating the fitness of all points, sort
the points in order of increasing fitness value.

(6) Check the convergence criteria. Once convergence criteria are satisfied, stop;
Otherwise, go to step 3.

MOSCEM algorithm guarantees convergence toward the Pareto set of solutions10

which reflect the model structure uncertainty, so the probability forecasts can be made
rather than point forecasts by traditional method. In MOSCEM algorithm, there are
three algorithm parameters to be defined by user, which is maximum iteration times t,
population size s and the number of complexes p.

3 Study area and data used15

The ice breakup prediction in the Bayangaole gauging station was performed in this
study, the gauging station located in the Inner Mongolia section of the Yellow River, as
shown in Fig. 2. The Inner Mongolia reach lies in the top north of the Yellow River,
with the altitude of more than 1000 m, it has a cold and long winter. Usually, the Inner
Mongolia reach has about the 4–5 months ice period every year. Due to the variation20

of the time and strength of the cold wave intrusion and the influence of wind, annual ice
flood date always varied greatly. The ice-break often occurs in the second and last ten
days of March, and seldom occurs in the first ten days of April. During every spring,
ice floods occur frequently and bring huge loss, especially with the development of the
social economy, the loss will be greater.25
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The breakup date are calculated from the reference date (1 May), for example,
breakup date of 46 days means that the river ice break up 46 days before 1 May, i.e. on
15 March. By using the correlation analysis, three factors are selected as the forecast
factors, that is, accumulated positive air temperature from the date that temperature
goes above zero to the break-up date, average water level and average streamflow of5

break-up period. Data used for ice breakup forecast was collected by Ji (2002). The
first 29 samples are used for training and the rest 5 samples for validation.

4 Application of SVM to ice breakup predictior

4.1 Prediction model

The implementation of SVM for forecasting ice breakup can be generalized as the10

following form:

Y = f (X |θ ) , (9)

where Y is N×1 vector of model predictions, X is N×3 matrix of input variables and θ is
a vector of n unknown SVM parameters. In this case, Y is the annual ice breakup date,
X including the following input variants: accumulated daily positive air temperature,15

average water level and average streamflow, θ refers to two SVM parameters (C and
ε) and kernel function parameters.

The most widely used kernel function is the Gaussian radical basis function (RBF)
as follows, which has one parameter σ:

K (xi , x) = exp

(
−0.5‖x − xi‖

2

σ2

)
. (10)20

Once the suitable SVM parameters are selected, training should be conducted for
forecasting. The SVM software developed by Steve Gunn (2001) was used in this
study.
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4.2 Data preprocessing

Before training the SVM, data (both the input and output data) should be preprocessed
for the two reasons. Firstly, preprocessing can ensure that all variables receive equal
attention during the training process. Secondly, preprocessing is important for the
efficiency of training algorithms (Wang et al., 2006). In general, there are two types5

of preprocessing methods. The first one is to rescale the data to a small interval,
for example, [−1,1], [−0.9,0.9], [0.1,0.9] or [0,1]. Another is to standardize the data
by subtracting the mean value and then dividing by the standard deviation, that is
rescale the data to a Gaussian function with a mean of 0 and standard deviation of 1.
The advantage of using rescaled interval of [0.1,0.9] is that extreme events occurring10

outside the range of the calibration data may be accommodated (Dawson and Wilby,
1999). In this study, all data is rescaled to the interval of [0.1,0.9] using the equation

x′
i = 0.8 ·

xi − xmin

xmax − xmin
+ 0.1 , (11)

where x′
i is the scaled value, xi is the original value, xmin, xmax is the minimal and

maximum value of x, respectively.15

4.3 Performance measures

There are many literatures on model forecasting evaluating indices. The following nu-
merical performance statistics that are defined here are used to evaluate the forecast-
ing results.

1. Mean absolute error (MAE)20

MAE =

n∑
i=1

|yi − ŷi |i

n
. (12)

3185

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/3175/2009/hessd-6-3175-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/3175/2009/hessd-6-3175-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 3175–3198, 2009

The support vector
machines approach

H. Zhou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2. Root mean squared error (RMSE)

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 . (13)

3. Correlated coefficient (CC)

CC =

1
n

n∑
i=1

(
yi − y

) (
ŷi − ŷ

)
√

1
n

n∑
i=1

(
yi − y

)2 ·√1
n

n∑
i=1

(
ŷi − ŷ

)2
. (14)

4. Mean relative error (MRE)5

MRE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (15)

In Eqs. (12)–(15), yi is the observed value, y is the mean observed value, ŷi is

the predicted value, ŷ is the mean predicted value, n is the total number of predicted
values.

4.4 Prediction steps10

Procedure for ice breakup forecasting can be summarized as the following:

(1) Setting parameters of MOSCEM algorithm. In this study, t, s and p use the value
of 1000, 5000 and 10, respectively.
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(2) Define the SVM parameter search space. Gaussian kernel function was em-
ployed in this paper, so there are three parameters to be optimized, C, ε, σ. Hsu
et al. (2003) suggested trying exponentially growing sequences of C and σ is
a practical method to identify good parameters, for example, C∈[2−5,25]. Search
space of the parameters in this study is C∈[20,210], ε∈[0,0.5], σ∈[2−10,20].5

(3) SVM training using MOSCEM algorithm. Two objective functions were consid-
ered:

min F 1(θ) = RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 , (16)

max F 2(θ) = CC =

1
n

n∑
i=1

(
yi − y

) (
ŷi − ŷ

)
√

1
n

n∑
i=1

(
yi − y

)2 ·√1
n

n∑
i=1

(
ŷi − ŷ

)2
, (17)

where n is the number of testing samples.10

The MOSCEM algorithm software developed by Vrugt et al. (2003) was used in
this study. For this case, the three parameters value was selected through running
the MOSCEM algorithm, the optimal values are C=75.35, ε=0.0375, σ=0.2199.

(4) Prediction using the SVM with optimal parameters.

4.5 Comparing model15

Artificial neural network (ANN) was also used for comparing in this study. The key
problem for constructing the ANN is to determine the number of hidden layer neurons
and training algorithm. Three layers of ANN is constructed, input and output variables
are same to the SVM. Tan-sigmoid transfer function and linear transfer function were
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employed for hidden layer and output layer, respectively. Training epoch is set to 500.
To prevent overtraining and improve the generalization ability, Bayesian regularization
method was used for training the ANN. No unified theory exits for determining the num-
ber of hidden layer neurons. A trial and error procedure is generally used to determine
the optimal numbers. In this study, four hidden layer neurons was selected that yielding5

the best performance.

4.6 Results and discussions

To facilitate comparison, same training and testing samples are used for SVM and ANN.
Figure 3 depicts the training and testing performance of the two models. The scatter
plots of observed versus forecast day of the ice breakup are shown in Fig. 4. Fore-10

cast results are listed in Tables 2 and 3 compares the performance indices obtained
with the forecasting results of the SVM and ANN. It is show that SVM outperforms
ANN considerably both in training period and testing period, it also proved that SVM is
more suitable for small samples prediction than ANN. Figure 4 shows that the errors of
training and testing period of SVM are smaller than that of ANN.15

The major drawback of ANN is the fact that it do not lead to one global or unique so-
lution compared with the SVM. It is mainly due to the differences of the initial weights of
the ANN. Furthermore, the SVM training process always seeks a global optimized so-
lution and avoids overfitting that eventually leads to better generalization performance
than neural network models. Despite its superior features, SVM also have some limi-20

tations.

(1) In order to construct an efficient SVM model, hyper-parameters must be selected
properly. Otherwise, it may lead to over-fitting or under-fitting. Different param-
eter sets may make a great difference in performance. In this study, MOSCEM
algorithm is used for hyper-parameters selecting, the forecast result shows the25

effectiveness of the algorithm. But experiences shows that in order to find the
optimal hyper-parameter set, the number of random samples should be set to
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a large number, when the number of training samples is very large, it will be very
time consuming. Therefore, the effectiveness and efficiency of the MOSCEM
algorithm depends on the parameters of its own. So in order to get an ideal
performance, these parameters of MOSCEM should be determined by trial and
error.5

(2) Many functions can be used as the kernel function for SVM, as Table 1 showed.
In this study, only radial basis kernel function is used, and no comparison is made
for the performances of different kernel function for SVM. It should be the future
research work.

(3) In this study, due to the limitation of data, there are only 34 samples for training10

and validation. As the number increasing, the model should be further investi-
gated.

5 Conclusions

In this study, SVM is employed for ice breakup prediction in Bayangaole gauging sta-
tion. To build reliable forecasting models, MOSCEM algorithm is implemented for se-15

lecting optimal parameters for SVM in a multiobjective framework. This multi-criteria
method can be used to determine the optimal model structure. Compared with the
ANN model, SVM model appears to be more suitable for ice breakup forecast. Due to
the limitation of the data set, only 34 samples are used for forecast in this work, as the
increasing of data set number, the proposed model based on SVM should be further20

investigated in the ongoing study.
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Table 1. Kernel functions for SVR.

Kernels Functions Parameters

Linear < x, xi >
Polynomial (< x, xi > +1)d d

Radial basis function exp
(
−‖x−xi‖

2/2σ2
)

σ

Sigmoid tanh(b<x, xi>+c) b, c
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Table 2. Forecasting results of the SVM and ANN.

No. Year Observed value (d) Forecast value (d) Error (d) MAE (d)
ANN SVM ANN SVM ANN SVM

1 1997–1998 41 44 42 3 1 2.6 1.8
2 1998–1999 51 53 51 2 0
3 1999–2000 54 53 51 1 3
4 2000–2001 54 59 51 5 3
5 2001–2002 45 47 43 2 2
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Table 3. Comparison of the forecasting results from each model.

Model Training period Testing period
RMSE CC MRE (%) RMSE CC MRE (%)

ANN 6.6 0.84 12.8 2.95 0.93 10.9
SVM 3.82 0.95 6.8 2.14 0.96 3.6
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Fig. 1. Soft margin loss setting for a linear SVR.
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 10

the cold wave intrusion and the influence of wind, annual ice flood date always varied greatly. 

The ice-break often occurs in the second and last ten days of March, and seldom occurs in the 

first ten days of April. During every spring, ice floods occur frequently and bring huge loss, 

especially with the development of the social economy, the loss will be greater.  

 

Figure 1 The location of Bayangaole gauging station 

The breakup date are calculated from the reference date (1 May), for example, breakup date 

of 46 days means that the river ice break up 46 days before 1 May, i.e. on 15 March. By using 

the correlation analysis, three factors are selected as the forecast factors, that is, accumulated 

negative air temperature from the date that temperature goes below zero to the freeze-up date, 

average water level and average streamflow of freeze-up period. Data used for ice breakup 

forecast was collected by Ji(2002). The first 29 samples are used for training and the rest 5 

samples for validation. 

APPLICATION OF SVM TO ICE BREAKUP PREDICTIOR 

Prediction model  

The implementation of SVM for forecasting ice breakup can be generalized as the following 

form: 

( | )Y f X θ=  (9)

Fig. 2. The location of Bayangaole gauging station.
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SVM. Tan-sigmoid transfer function and linear transfer function were employed for hidden 

layer and output layer respectively. Training epoch is set to 500. To prevent overtraining and 

improve the generalization ability, Bayesian regularization method was used for training the 

ANN. No unified theory exits for determining the number of hidden layer neurons. A trial and 

error procedure is generally used to determine the optimal numbers. In this study, four hidden 

layer neurons was selected that yielding the best performance.  

Results and discussions 

To facilitate comparison, same training and testing samples are used for SVM and ANN. Fig. 

depicts the training and testing performance of the two models. The scatter plots of observed 

versus forecast day of the ice breakup are shown in Figure 2 and Figure 3. Forecast results are 

listed in Table 2 and Table 3 compares the performance indices obtained with the forecasting 

results of the SVM and ANN. It is show that SVM outperforms ANN considerably both in 

training period and testing period, it also proved that SVM is more suitable for small samples 

prediction than ANN. Figure 3 shows that the errors of training and testing period of SVM are 

smaller than that of ANN. 

 

Figure 2. Models performances for breakup prediction during training and testing period. Fig. 3. Models performances for breakup prediction during training and testing period.
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Figure 3. Scatter plots of forecast versus observed ice breakup date for the training and 

validation data sets: (a) SVM (b) ANN 

The major drawback of ANN is the fact that it do not lead to one global or unique solution 

compared with the SVM. It is mainly due to the differences of the initial weights of the ANN. 

Furthermore, the SVM training process always seeks a global optimized solution and avoids 

overfitting that eventually leads to better generalization performance than neural network 

models. Despite its superior features, SVM also have some limitations.  

(1) In order to construct an efficient SVM model, hyper-parameters must be selected 

properly. Otherwise, it may lead to over-fitting or under-fitting. Different parameter sets may 

make a great difference in performance. In this study, MOSCEM algorithm is used for 

hyper-parameters selecting, the forecast result shows the effectiveness of the algorithm. But 

experiences shows that in order to find the optimal hyper-parameter set, the number of 

random samples should be set to a large number, when the number of training samples is very 

large, it will be very time consuming. Therefore, the effectiveness and efficiency of the 

MOSCEM algorithm depends on the parameters of its own. So in order to get an ideal 

performance, these parameters of MOSCEM should be determined by trial and error.  

(2) Many functions can be used as the kernel function for SVM, as Table 1 showed. In this 

Fig. 4. Scatter plots of forecast versus observed ice breakup date for the training and testing
data sets: (a) SVM (b) ANN.

3198

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/3175/2009/hessd-6-3175-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/3175/2009/hessd-6-3175-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

