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Abstract

Near-term consumption of groundwater for irrigated agriculture in the High Plains
Aquifer supports a dynamic bio-socio-economic system, all parts of which will be im-
pacted by a future transition to sustainable usage that matches natural recharge rates.
Plants are the foundation of this system and so generic plant models suitable for cou-5

pling to representations of other component processes (hydrologic, economic, etc.)
are key elements of needed stakeholder decision support systems. This study ex-
plores utilization of the Environmental Policy Integrated Climate (EPIC) model to serve
in this role. Calibration required many facilities of a fully deployed decision support
system: geo-referenced databases of crop (corn, sorghum, alfalfa, and soybean), soil,10

weather, and water-use data (4931 well-years), interfacing heterogeneous software
components, and massively parallel processing (3.8×109 model runs). Bootstrap prob-
ability distributions for ten model parameters were obtained for each crop by entropy
maximization via the genetic algorithm. The relative errors in yield and water estimates
based on the parameters are analyzed by crop, the level of aggregation (county- or15

well-level), and the degree of independence between the data set used for estimation
and the data being predicted.

1 Introduction

Regionally, short-term consumption of groundwater in the High Plains Aquifer provides
for a dynamic bio-socio-economic system through irrigated agriculture. In the long20

term, transition to sustainable usage that matches natural recharge rates will impact
ecologies, economies, demographics and the landscape. Recharge is that portion of
precipitation not lost as evaporation from foliage, run off (affected by ground cover), or
root uptake. This problem is of global significance as National Geographic (Montaigne,
2002) declared the High Plains Aquifer to be one of 22 worldwide “critical areas” for25

“annual renewable water”.
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This problem has been studied extensively from various disciplinary perspectives
with disparate unaligned concepts, viewpoints, vocabulary, models and data. Stake-
holder decision makers in this system are equally distributed across a mix of govern-
mental agencies, administrative units, and private sector enterprises. Disjoint disci-
plinary science leaves these decision makers ill equipped to understand how conse-5

quences of management actions and policies impact and cascade through the inte-
grated system. Thus, all stakeholders share a common need for integrated, science-
based, quantitative informational tools that, collectively, target their differing individual
responsibilities. Toward this end, researchers at Kansas State University, in conjunc-
tion with stakeholder groups, have begun to integrate economic, agronomic, and hy-10

drologic models, supported by geodatabases, to aid in these diverse decision making
processes (Steward et al., 2005, 2009a; Steward and Bernard, 2006a,b; Bernard et al.,
2004, 2005; Yang et al., 2009).

Plants (Fig. 1) form the foundation of the human-natural system in the High Plains.
Irrigation to meet transpiration needs comprises over 95% of groundwater use in por-15

tions of the High Plains Aquifer (Wilson et al., 2000). Statistical crop yield estimators
used as economic production functions or in data summarization (Berck and Helfand,
1990; Frank et al., 1990; Paris, 1992) often do not explicitly represent physical water
fluxes and may not partition landscapes in ways directly related to hydrological fea-
tures or patterns of diversion. In contrast, physiological, parcel-based crop simulators,20

including the Environmental Policy Integrated Climate (EPIC) model1 (Sharpley and
Williams, 1990; Williams et al., 1990), are well suited for linkage to other models and
to Geographic Information Systems (Lal et al., 1993; Engel et al., 1997; Yang et al.,
2003). Our specific objective is to estimate irrigation needs for large numbers of rep-
resentative, geo-referenced parcels. This flux couples directly to hydrological models.25

We have used Sheridan County, Kansas, as a study area to prototype this estimation
process.

The first step is to calibrate the EPIC model. Although basically a parameter estima-

1Originally named the Erosion Productivity Impact Calculator.
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tion process, heavy computational requirements mandate prototyping of many facilities
required by a fully deployed decision support system. These include geo-referenced
databases of crop, soil, weather, and water-use data, interfacing heterogeneous soft-
ware components (i.e. model, optimizer, data retrieval), and, most importantly, dis-
tributed parallel processing. The latter is required because benchmark runs indicated5

that calibration would require 4 to 14 d on a 40-CPU computing cluster (a significant
underestimate as events later proved). On a computations-per-minute basis, this ap-
peared representative of the computing intensity required for multi-year, spatially dis-
tributed, water policy analyses. The following sections present the elements of our
calibration approach and the results obtained.10

2 The EPIC model

Plant processes have been extensively modeled (Bowen, 1992; Bouman et al., 1996).
The EPIC model simulates the physiology of all major forages and crops in the study
area. Using a daily time step, three major processes are represented: (1) phenological
development; (2) dry matter production and partitioning to plant tissues, resulting in15

growth; and (3) economic yield. Outputs that are relevant to this study are crop yield
and water use reported in t/ha and mm-ha, respectively. The model reproduces the
results of irrigation, fertilization, tillage, variety selection, alternative production calen-
dars, etc. EPIC also includes an economic component for evaluating and optimizing
management outcomes. (In our research, however, a more robust economic forecast-20

ing submodel is being used (Peterson and Steward, 2006) to suggest crop manage-
ment choices for EPIC to simulate.) Because its original focus was erosion-related,
EPIC can simulate decade-scale or longer intervals. These features have suited EPIC
to a broad range of applications, including plant nutrition studies (Cole et al., 1987;
Dautrebande et al., 1999); national and international assessments of agroecological25

change impact (Brown and Rosenberg, 1999; Brown et al., 2000; Bernardos et al.,
2001), including the High Plains Aquifer (Easterling, III et al., 1993); irrigation planning
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and water use (Bryant et al., 1992; Ellis et al., 1993; Evers et al., 1998; Guerra et al.,
2005); and regional studies (Geleta et al., 1994; Cabelguenne et al., 1995; Fortin and
Moon, 2000).

EPIC is able to simulate multiple crops because it embodies a generic plant model
that can be re-parameterized to represent different species. Table 1 describes the sub-5

set of these parameters that were estimated for four major regional crops: corn, grain
sorghum, alfalfa, and soybean2. A priori parameter value ranges are given in Table 2
– the first column contains values suggested in the EPIC Users Manual (Williams et
al., 1990). The other columns are based on authors’ experience within the study area.
The former are wider because of the crop and geographic diversity of EPIC utilization.10

The irrigation-related parameters deserve special mention. The dates and amounts
of individual irrigation applications are rarely available to modelers. Thus, most crop
simulators include “automatic irrigation” options under which irrigations are simulated
on dates when preset soil moisture or water stress levels are reached. We sought
values for the parameters defining this option that reproduce annual water usage for15

wells in the study area – in effect attempting to solve for indexes of irrigator behavior.

3 Calibration data sets

Data on all irrigated land parcels in Kansas are available in a unique database main-
tained by the Kansas Division of Water Resources (KDWR). Irrigators in Kansas are
required to report their yearly water use by parcel to the KDWR. The annual report for20

each parcel also includes the type of irrigation system, the crop(s) grown, the number
of acres irrigated, and the yearly irrigated water volume. These reports are compiled
and distributed via a publicly available GIS data product, the Water Information Man-
agement and Analysis System (WIMAS, Fig. 2). Although WIMAS data are spatially

2Estimation of wheat parameters was deferred because the extra programming complexity
required to split activities across two calendar years was not seen as necessary to evaluate the
approach.

2371

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/2367/2009/hessd-6-2367-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/2367/2009/hessd-6-2367-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 2367–2413, 2009

Calibration of a crop
model to irrigated

water use

T. Bulatewicz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

comprehensive and detailed, they have some shortcomings. First, several variables
needed to identify production relationships (crop yields and the levels of other inputs
such as fertilizers and pesticides) are not included. Second, if multiple crops are grown
on a given parcel, the irrigator is not required to report the subdivision of acreage or
water allocation. Third, although points of diversion are increasingly metered, water5

use reports from un-metered sites may have significant error. These limitations mean
that estimation must be robust in the face of uncertain data (see Sect. 4).

Obtaining good parameter estimates requires multiple years’ of data to overcome
annual weather variation. WIMAS data are sparse before 1990 so the 11-year pe-
riod 1990–2000 was used. Historic weather data collected from five weather stations10

in and around the county were used in the simulations. The simulation of each well
used the weather data from the station nearest the well. Sheridan County soils were
combined into two groups using data from the Soil Survey Geographic (SSURGO,
http://soildatamart.nrcs.usda.gov) database maintained by the Natural Resources Con-
servation Service of the United States Department of Agriculture. Group I contains silt15

loam soils with slopes between 1 and 3%. This group contains ca. 76% of the land
area and 663 of 779 total wells in the county. The second group includes all soils with
slopes greater than 5%. This group consists of loam, silt loam and silty clay loam soils
and accounts for ca. 23% of the land and 93 wells. The remaining ca. 1% of the land
and 23 wells were discarded.20

We ensured that each crop was represented by at least one well in each year. Ta-
ble 3 shows the distribution of all 4931 well-year combinations and the corresponding
breakdown of total irrigation water usage. Irrigation accounted for 98.8% of all water
pumped in Sheridan County during the study period and the well-years in this study
totaled 81.3% of all irrigation usage.25

Because policy analysis will ultimately entail large amounts of computing power
(Steward et al., 2009a), it is desirable to understand the relationship between sample
size and estimation outcomes. Thus, a ca. ten percent sub-sample of corn well-years
was randomly selected from five clusters identified in each soil group via the Getis
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and Ord (1992) G∗
i statistic. The well clusters were based on (1) maximum reported

volumes of water pumped in any of the 11 years and (2) spatial propinquity (Fig. 3).
For a coupled hydrology-crop-economic model to be useful, it is clearly important to

mimic crop yields as well as water use (Steward et al., 2009b). County average annual
yield data by crop were obtained from the National Agricultural Statistics Service Quick5

Stats database (http://www.nass.usda.gov) that contains reports from the Kansas Agri-
cultural Statistics Service. The different aggregation levels for the yield and water use
data reflect a frequent occurrence in interdisciplinary regional studies. Aggregation
effects on model accuracy have been studied both theoretically and empirically (Theil,
1954; Grunefeld and Griliches, 1960; Zellner, 1969; Aigner and Goldfeld, 1974; Sasaki,10

1978; Pesaran et al., 1989). While any level of aggregation is possible, extreme mod-
eling approaches are (1) to aggregate all the data in the study region and perform the
analysis at macro-level or (2) to downscale variables available only in aggregate form
into many small regions and conduct a micro-level analysis with a unique sub-model
for each decision maker. However, the most accurate aggregation level for a real prob-15

lem must be found empirically as it depends on unobservables like data measurement
errors. While cognizant of these issues, we have elected not to investigate them at this
time. Instead, we are utilizing an estimation method that (1) does not require all data to
be at the same scale and (2) yields unambiguous indicators of parameter uncertainty.

4 Maximum entropy estimation20

Maximum entropy (ME) (Golan et al., 1996) estimation entails maximizing an infor-
mation theoretic measure of uncertainty (entropy, H) subject to constraints imposed
by data. The results are probabilistic estimates of parameter values that are as cer-
tain as the data allow, but no more so. ME equations remain solvable even in cases
where sparse data render the corresponding Least Squares (LS) and Maximum Likeli-25

hood (ML) equations indeterminate. ME estimation has become increasingly popular in
many situations, particularly in models where the data are incomplete because the vari-
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ables of interest are measured at high levels of aggregation. In the field of production
economics, several researchers have invoked ME estimation to recover disaggregated
production relationships (e.g., crop yield as a function of field-level inputs) from ag-
gregate data (Howitt and Msangi, 2002; Lence and Miller, 1998; Lansink et al., 2001;
Golan et al., 1994, 1996).5

Analytically, EPIC can be represented as a mapping from the combined spaces of
model inputs and parameters to a space of outputs. More formally, if there are a total of
J input variables (soil characteristics, weather conditions, irrigation amounts, etc.), and
all inputs are real numbers, then EPIC inputs can be represented as a vector x ∈ <J .
Similarly, if there are K parameters, each of which is known to lie in an interval with10

finite bounds, then the parameters are a vector β ∈ B, a hypervolume in <K . For
simplicity, assume initially that the only model output of interest is crop yield, y , which
is always non-negative. EPIC is then a mapping Fy : <J×B→<+, and a yield prediction
for a given situation can be written as y=Fy (x;β).

The ME procedure estimates the probability distributions of the unknown pa-15

rameters β. Let zk be an M-dimensional vector of support points along the
kth dimension of B, and let pk be the corresponding vector of probabilities; i.e.,
pmk=Prob[βk=zmk ],m=1, . . . ,M. For a given pk , the estimated value of βk can
be written as z

T
kpk , where z

T
k is the transpose of zk . The simplest specification is

where there are two support points for each parameter, corresponding to upper and20

lower bounds of the known range. In this case, the estimate of the kth parameter is
βk=pkz1k+(1−pk)z2k . In the general case, the entire parameter vector can be written
compactly as β=Zp, where p=(p1, . . . ,pK ) and Z=diag(zT1 , . . . ,z

T
K ).

If all input data, xi j , and yield data yi j=Fy (xi j ;β) were available for each of i=1, . . . , n
years and ji=1, . . . ,mi wells where K�

∑
i mi , then β could be estimated via ME, LS25

or ML (see Welch et al. (2002) or Steward et al. (2008) for an LS example). However,
in the current situation, only the average yields, y i , for the study area are known, ME
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still provides an estimate of β. One solves

H = max
p>0

(−pT lnp) (1)

subject to:

y i =

 m∑
j=1

ωjFy (xi j ;Zp)

/ m∑
j=1

ωj

 (2)

1 = pT
k1M , k = 1, . . . , K (3)5

where H is entropy and ωj is the area irrigated by well j , and 1M is an M-dimensional
vector of ones. This is solvable no matter how sparse the yield data because the
constraint that probabilities sum to one is, alone, sufficient to determine a p (namely,
the uniform distribution where pmk=(MK )−1). The foundations of entropy estimation
are described in detail in Golan et al. (1996). The ability to handle limited data differs10

drastically from LS and ML where the rank of the governing equations is determined
by the number of observations and must at least equal the dimensionality of the vector
of unknown parameters.

The description just given readily generalizes to the case of multiple dependent vari-
ables (here, crop yield, y (t/ha), and water use, w (mm-ha)) or data statistics (e.g., one15

might also seek to mimic higher moments of inter-annual water use). Additional infor-
mation is simply added as further optimization constraints. This flexibility to tailor the
problem statement to the information available is another reason for ME’s increasing
utilization.

5 Optimization methodology20

The genetic algorithm (GA) (Goldberg, 1989), an optimization procedure based on Dar-
winian evolution that has been applied in various model calibration studies (e.g., Seib-
ert, 2000; Srinivasa and Kumar, 2004; Cheng et al., 2006; Wang, 1997), was applied
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to maximize H . GA operates on a population of trial solutions (100 in this study), each
of which is a vector of probabilities, p. The population was initially seeded with ran-
dom vectors that were normalized to become probabilities summing to unity. In each
of 200 iterations (called generations) per estimation run, the solutions were updated
by means of two operators, mutation and recombination. Mutation was accomplished5

by adding a small, random perturbation to each probability in the solution. The sum
of all perturbations added to any vector was zero so mutated vectors still summed to
one; appropriate limits kept probabilities between zero and one. During recombination,
existing pairs of solutions (called parents) were used to create new ones (offspring)
according to10

1p
′ = (λ)1p + (1 − λ)2p (4)

2p
′ = (1 − λ)1p + (λ)2p (5)

In the above equation, 1p and 2p are the two parent vectors and 1p
′, 2p

′ the offspring.
The quantity λ was randomly distributed in the interval [0, 1].

The selection of parents during crossover was done in a manner motivated by Dar-15

winian survival of the fittest. To obtain each parent, two candidate solutions were drawn
randomly from the population and the fitter one chosen. The fitness of any solution, p,
was

f (p) = −pT lnp − c(p), (6)

where the first term is the entropy and c(p) was a function that penalized solutions20

which violated any data constraint. Although not uncommon in mathematical optimiza-
tion, penalty functions must be carefully designed. Substantial constraint violations
may result when penalties are too mild. Excessively harsh penalties can prevent the
computer from finding any solution, even when one exists. Additionally, (1) variation in
the numerical magnitudes among model outputs will differentially affect the penalty and25

(2) the investigators may prefer to predict some variables more accurately than others.
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To ameliorate differences in numerical magnitudes, the penalty function was defined
as the weighted sum of the relative absolute errors

c(p) = λH


∑n

i=1

∣∣∣∣y i −
(∑m

j=1 ωjFy (xi j ;Zp)
)/(∑m

j=1 ωj

)∣∣∣∣∑n
i=1 y i


+λH

[(
ηw

ηy

) ∑n
i=1

∑m
j=1

∣∣wi j −ωjFw (xi j ;Zp)
∣∣∑n

i=1

∑m
j=1 wi j

]

where (ηw/ηy ) is the ratio of investigator preference for errors in predicted water use5

over errors in yield and λH scales the penalty relative to the entropy. Because c(p)
penalizes the closure error of what are intended to be equality constraints, λH must be
as large as possible while still allowing the entropy to influence the optimizer. Thus
λH was chosen so that entropy accounted for 5% of the total fitness. Although our
procedure imposes only two constraints (zero yield and water-use error) on 10 free10

parameters, an exact solution is not possible because the constraints pull the free
variables in opposite directions: solutions that satisfy the yield constraint result in high
water error (and vice-versa). For this reason, we sought to minimize and balance
the error of both constraints. An arbitrary, but not unreasonable value for (ηw/ηy ) is
one for which the relative error in water use, when aggregated from the well to the15

county level, equals that of yield. To identify a suitable value, a series of 20 estimation
runs with randomized initial conditions was performed for each of 14 different values of
(ηw/ηy ) using the ten percent sample corn data. Figure 4 shows that (ηw/ηy )=14 is
an appropriate weight ratio; it was used in all subsequent runs.

The entire investigation entailed 3.841 billion executions of the EPIC model; the20

pilot study to set (ηw/ηy ), alone, required 616 million simulations. Such numbers
are ca. three orders of magnitude greater than those in studies reported just a few
years ago (e.g., Irmak et al., 2000; Welch et al., 2002). Computation of this scale
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demands the use of high-performance computing. The GA was designed in a master-
slave parallel fashion (Cantu-Paz, 2000) and implemented as a scalable system that
hybridized several software components. The interdisciplinary discussion and design
was facilitated by writing the GA in a high-level mathematical scripting language (Scilab,
http://www.scilab.org/). On the other hand, parallel execution of the model was coordi-5

nated by a client written in C to achieve high-performance. The model itself is a legacy
Fortran code. The system executes on both dedicated clusters via MPI (Graham et al.,
2006) and in a loosely-coupled, distributed fashion via Condor (Thain et al., 2005). The
simulations were performed on a 200 CPU Beowulf cluster at Kansas State University
and a 200 node Condor pool at the University of Oklahoma. Software performance10

measures and scalability were reported in (Bulatewicz et al., 2007).

6 Computations and discussion

There are several general questions to ask in a parameter estimation study of this type.
First, what are the resulting estimates and what can be said about their uncertainty?
Second, how reasonable are the results in terms of both the individual estimates and15

their interrelationships? Third, ME integrates all sources of information in determining
its results, including both the data as well as the prior information available to the
investigators and expressed in the initial ranges set for the parameters. What has
been the relative influence of these two factors on the outcome? Fourth, what level of
predictability has been achieved?20

6.1 Estimates and reasonableness

To address these issues in an integrated way, a bootstrap procedure was used (Efron
and Tibshirani, 1993). For each of 250 replicates, a random sample of 11 years was
selected with replacement from the data and a set of parameter estimates obtained. On
average, each replicate contained ca. seven unique years. To ensure that the variation25
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within the resample structurally reflected that within the original data, the wells in each
year were further re-sampled by soil type and weather station. This was done for all
crops, including separate runs for the ten percent sample and complete corn data sets.
Averaging the best estimates of the 250 replications gives the final estimates (Tables 4
to 7). The standard deviations of the 250 estimates are the bootstrap standard errors5

of the parameters. The shape of the probability distribution for each parameter can be
approximately visualized by plotting a histogram of the estimates from the individual
bootstrap replications. The histograms indicate the number of times that a parameter
value was estimated to be in a given range out of 250 bootstrap replications for each
crop (Figs. 5–9).10

An immediate result is that the parameter values estimated using the complete corn
data were found to closely match the values estimated using only the ten percent sam-
ple of corn data. The difference in each estimated value was less than 1% for most
parameters, with the largest difference being 5% for the maximum volume per irrigation
(ARMX) parameter.15

Optimization of the three variables that are associated with irrigation system man-
agement (IRI, ARMN, and ARMX, Table 1) resulted in similar values across the four
crops (Tables 4 to 7). The minimum application interval (IRI) for all crops was approx-
imately 10.3 d (Tables 4 to 7) and is longer than typically experienced under current
production and environmental constraints. Given sufficient data, EPIC applies reason-20

able total amounts of water on a countywide basis (e.g. corn in Table 8), but appears to
do so in fewer, larger, applications. The average well capacity for all wells considered
is 123 m3 hr−1 and the average field size is 45 ha. Using these values, it is possible
to apply an irrigation depth of 37 mm every 5.4 d. A common practice is for constant
irrigation during critical growth stages so as to maximize yields. Additional model runs25

indicate that EPIC outputs are not particularly sensitive to IRI in the range of 4 to 10 d,
but sensitivity increases above this point (data not shown). A shallow minimum in f (p)
slightly above 10 d could therefore account for our results. To the best of our knowl-
edge, no prior studies have calibrated IRI so this model feature has not previously been
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detected. It is potentially important in that it suggests that irrigation scheduling could
possibly reduce water use while maintaining yields. The minimum and maximum vol-
umes for automatic irrigation (ARMN and ARMX, respectively) resulted in mean values
across all four crops of 10.6 and 37.6 mm per application, respectively. While realistic
in terms of typical irrigation practices, these limits are broad enough to encompass5

a model shift from more numerous smaller applications to fewer, larger ones.
The physiologically-based variables followed trends previously reported from field

and greenhouse experiments as well as other crop modeling efforts. The water stress
level to trigger irrigation (BIR) is specified in terms of biomass production: irrigation
occurs on days where the ratio of biomass produced to potential production (given10

adequate water) falls below BIR. The BIR values for corn, grain sorghum, alfalfa, and
soybean are 0.86, 0.87, 0.87, and 0.85, respectively – not unreasonable for irrigated
cropping conditions where water stress is less likely to occur.

Optimized parameters that not unexpectedly had species-specific ranges are
biomass to energy conversion ratio (WA), optimum temperature for growth (TB), and15

minimum temperature of growth (TG). Optimized values for WA were 47.0 for corn
(complete data), 33.4 for grain sorghum, 29.2 for alfalfa, and 31.2 for soybean. Re-
ported corn WA values ranged from 14.5 to 43.3 t ha−1 MJ−1 m−2 (Cantarero et al.,
1999; Muchow, 1990; Hammer et al., 1998; Kiniry et al., 2004; Idinoba et al., 2002;
Sinclair and Muchow, 1999) with the range being attributed to differences in environ-20

mental conditions and calculation method. Reported WA specifically for use in crop
models for corn have ranged from 43.3 in CERES-Maize (Yang et al., 2004), 39.8 for
ALMANAC (Kiniry et al., 2004) and 35.0 to 40.0 t ha−1 MJ−1 m−2 for CropSyst (Stockle
et al., 2003).

For grain sorghum, reported WA values have ranged from 16.0 to25

28.0 t ha−1 MJ−1 m−2 (Muchow, 1989; Sinclair and Muchow, 1999). However,
values used in sorghum crop models range from 32.0 in SORKAM (Rosenthal et al.,
1989) to 35.0 to 40.0 t ha−1 MJ−1 m−2 in CropSyst (Stockle et al., 2003), which are very
similar to those found here.
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Alfalfa WA measurements and its inclusion in simulation suites are limited compared
with corn, grain sorghum or soybean. Collino et al. (2005) reported WA values between
12.0 and 15.0 t ha−1 MJ−1 m−2 for field grown alfalfa in Argentina and Whitfield et al.
(1986) reported a WA value of 17.2 t ha−1 MJ−1 m−2. Confalonieri and Bechini (2004)
used 30.0 for a WA value after calibrating CropSyst for use in northern Italy. Although5

higher than reported field values, this WA value is nearly identical to the 29.2 value that
resulted from our optimization process.

Soybean WA values from field experiments have been reported to be 20.0 (Sin-
clair and Muchow, 1999). CropSyst initial WA values are reported as 20.0 to
25.0 t ha−1 MJ−1 m−2 which is lower than the WA of 31.2 that resulted from the op-10

timization process we used. The potential radiation use efficiency (WA) in EPIC is
assumed to be for unstressed plants and includes root growth, which are often cited
as reasons for field measured values being lower than those finally published as being
used in most crop simulation models. Soybean WA was the only optimized value that
was higher than reported for use by simulation models.15

The estimated optimum temperatures for growth (TB) were 27.2◦C for corn (com-
plete data), 32.5◦C for grain sorghum, 30.4◦C for alfalfa and 29.1◦C for soybean. Sev-
eral researchers have reported optimum temperatures for growth in corn to be 22.5◦C
(Wilhelm et al., 1999) and 25◦C (Grzesiak et al., 1981). CERES-Maize uses 26◦C as
the optimum temperature for growth (Jones et al., 1986) while Yang et al. (2004) cur-20

rently use 30◦C in the Hybrid Maize model for maximum growth and assimilation. Our
optimized corn temperature for optimum growth is within the range of the values used
by other simulation models and slightly higher than those reported from research trials.
Our estimated TB for grain sorghum (32.5◦C) agrees with the results of Prasad et al.
(2006) and Chowdhury and Wardlaw (1978) who reported optimum temperatures for25

growth in grain sorghum to be 32 and 30◦C, respectively. Our TB value is lower than the
44◦C that is currently used in SORKAM (Rosenthal et al., 1989), a sorghum simulation
model.

The TB estimate of 30.4◦C for alfalfa is higher than the reported values of 20 to 27◦C
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cited by several others (Arbi et al., 1979; Fick, 1984; Bula, 1972; Ueno and Smith, 1970;
Pearson and Hunt, 1972). However, our TB value is similar to the 30◦C used by Con-
falonieri and Bechini (2004) in their optimization of CropSyst. Our estimate of 29.1◦C
for soybean is higher than the 24 to 27.5◦C reported by Seddigh and Jolliff (1984)
and Ghazali and Cox (1981), but is in agreement with Gibson and Mullen (1996) and5

Grimm et al. (1994) who reported optimum temperatures for photosynthesis and growth
to range from 29 to 35◦C. Our TB is less than that used in CROPGRO-Soybean, which
uses 40◦C as an optimum temperature for photosynthesis (Pedersen et al., 2004).

The estimated minimum temperatures for growth (TG) were 8.2◦C for corn (complete
data), 6.2◦C for grain sorghum, 0.5◦C for alfalfa, and 10.7◦C for soybean. These esti-10

mates are similar to those reported by others from field or growth chamber research or
currently being used in other crop simulation models. Reported corn TG values range
from 7.2 to 8◦C (Hesketh and Warrington, 1989; Yang et al., 2004). For grain sorghum,
a TG of 8.5◦C is reported by both Craufurd et al. (1998) and Hammer et al. (1989) while
SORKAM (Rosenthal et al., 1989) uses 7◦C as a base temperature, all of which are15

marginally higher than the 6.2◦C estimated here.
Estimates of TG for alfalfa of 0.5◦C are lower than the 5◦C used by Confalonieri and

Bechini (2004) in calibrating CropSyst for simulating alfalfa in Italy. Our TG of 10.7◦C is
greater than that used in CROPGRO-Soybean, which uses 8◦C as base temperature
for photosynthesis (Pedersen et al., 2004).20

Estimates of when leaf area begins to decline (DLAI), the rate of decline (RLAD) and
the rate at which WA declines (RBMD) could be deemed reasonable based on typical
production scenarios. For all four crops, the values for DLAI indicate that leaf area
begins to decline after around 86% of the growing season has occurred. Leaf area
typically begins a gradual decline in corn and grain sorghum within approximately 125

week of anthesis, but this largely occurs in the lower canopy and the loss represents
older leaves that will not contribute to final yields. However, more rapid leaf loss near
physiological maturity typically happens in all three grain crops and appears to be cap-
tured appropriately in our results for these three variables. In alfalfa, it is difficult to
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determine how these values compare to reality since this perennial crop does not nor-
mally senesce as it is typically harvested at 10% bloom stage. The final harvest timing
recommendation is after cold temperatures induce dormancy in the crop.

6.2 Influence of prior information

Maximum entropy estimation makes use of the complete corpus of available informa-5

tion. Thus, the standard errors reported in Tables 4 to 7 reflect not only the data but
also the prior information implicit in the selected probability support points. As just
documented, the optimizations reported herein did produce reasonable output values.
Even so, it is possible that the data do not constrain the estimates either because (1)
they are too fragmentary or (2) the parameter’s influence on actual outcomes is too10

weak or indirect. It is therefore useful to ask (Q1) do the data detectably influence the
outputs and (Q2) how strongly does prior information affect the estimates?

If a parameter has no influence on the model outputs then it cannot affect the penalty
function values. In this situation f (p) is optimized when H is maximized. In a two-point
distribution this happens when the parameter estimate is the midpoint of the support15

interval no matter where the endpoints are located. Based on this fact, metrics for Q1
and Q2 were developed and applied to the ten percent corn sample. The Q1 metric
calculates a two-tailed, binomial distribution p-value for the null hypothesis that the me-
dian of the 250 re-sampled parameter estimates is the midpoint of the support range.
A p-value of less than 0.05 is interpreted as a significant data influence. The easiest20

way to measure dependence on the support point choice is to make a different choice.
Thus, the Q2 metric is a finite difference estimate of the derivative of the parameter
estimate with respect to the midpoint of the parameter range. Values close to unity are
consistent with the estimate being completely dependent on prior information. Ten sets
of 20 estimations were run with the range of a single parameter changed in each set.25

The ranges were shifted up or down depending on whether the majority of the original
estimates did or did not exceed the midpoint. Range widths were preserved unless
doing so resulted in an endpoint that was (1) outside the range suggested by EPIC, or
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(2) conflicted with the range of another parameter.
The results are in Table 9. All but three parameters (DLAI, RLAD and RBMD) are

influenced by the data with more significant median departures from the support inter-
val midpoints being generally associated with lower sensitivities to prior information. It
is clear, however, that the Q1 and Q2 metrics measure different properties of the esti-5

mation process, as illustrated by ARMN which responds both to prior information and
to data. TG shows a similar pattern but with a lower dependence on prior information.
The unit sensitivity to prior information displayed by RLAD and RBMD coupled with
their close adherence to the support interval midpoint, suggests that these parameters
are poorly constrained by the data.10

6.3 Predictability

To what extent can estimates obtained by the methods reported herein be used to pre-
dict outcomes in other situations? This was analyzed in several ways. First, simulations
were performed using each of the 250 bootstrap estimates to see how well they could
reproduce the complete data and how well they could predict the years that had been15

omitted in each replicate (“Fitted” and “Predictive”, respectively, in Table 8). Depending
on the crop, the variable (yield or water use) and, for water, the level of aggregation
(county- vs. well-level) attempting to predict independent, out-year data increased the
error from 3 to 9% of full scale. The predictive water use errors were quite high at the
well level ranging from 35% for the complete and ten percent corn sample to 49% for20

sorghum. However, for aquifer modeling, accuracy at this fine a geographic scale may
not be needed. Predictive errors at the county level were smaller.

Second, we used the mean parameter estimates obtained from the ten percent corn
sample to estimate the behavior of the remaining 90% of the data. The performance
was essentially identical, confirming the ability of a small sample to enable accurate25

estimation of a much larger set from the same years. The selection procedure for the
ten percent sample was designed to achieve good representation. There are two ways
this could have failed: the estimates might have deviated from those of the larger sam-
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ple or the full data set might have had much greater variability. The latter would have
resulted in larger relative errors even if the mean predictions were accurate. Clearly
neither of these happened. However, the bootstrap relative errors show that the inter-
annual variability is such that samples of 7 out of 11 years can only capture it to the
degree shown in the Predictive columns, at least at the single county scale. Of course,5

incorporating data from more than one county may serve to offset temporal variation.
Finally, the relative error in total county irrigation use for these four crops is 13%, which
is the same as that for corn, due to its heavy preponderance in the county.

Third, the county-level yield and water use errors are within 5% of each other in all
cases but sorghum, in which the error difference was 14%. This suggests that a penalty10

ratio of 14 was effective in balancing the county-level yield and water use error, but that
crop-specific penalty ratios may give better results.

Finally, whereas relative errors are dimensionless fractions, Table 10 reports county-
level yield and water use errors in physical units. The two left columns are the root
mean square errors (RMSE) resulting from running simulations using each of the 25015

estimates against the complete data. The two right columns are the root mean square
errors of prediction (RMSEP) and are calculated in the same way except that the 250
estimates were used to predict the years that had been omitted in each replicate. These
latter numbers may be taken as an indication of expected model performance using
data collected from a single county.20

7 Conclusions

Informatic technology now provides the means to interweave information sources (data
and models) in ways conducive to integrative hydrologic investigations. At one level,
the work reported here relates to fitting an existing model to a set of data. But, from
another perspective, it prototypes the integration of a range of methodologies whose25

cross-disciplinary fusion enables a much broader range of activities. This integration
reaches across diverse disciplines: agronomy, agricultural economics, civil engineer-
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ing, computer science, and electrical engineering. The specific technologies are cor-
respondingly diverse: crop physiological simulation, maximum entropy estimation, ge-
netic algorithm-based optimization, alternative parallel processing methodologies, GIS
databases, and cluster analysis, to name a few.

Through the integration of these technologies, a genetic algorithm that employed5

ME was able to identify realistic values for ten crop model parameters including both
hydrological and physiological inputs. The estimated parameter values were not only
realistic, but they were able to reproduce observed irrigation water use to within 13%
with an estimated predictive accuracy of 19% (complete corn data) given sufficient
data. In addition, several of these parameters represent irrigation practice, effectively10

recovering detailed irrigator behavior from annual water use reports. Knowledge of this
kind is otherwise unavailable yet is essential for the prediction of water use in alternative
scenarios as part of an investigation into effective water policy for sustainable usage.
Such a policy analysis would entail considerable computational requirements. These
demands could be mitigated through the use of carefully selected samples of data with15

only slight increases in error, as demonstrated in this work through the evaluation of the
ten percent sample of corn data. The implementation of these techniques has provided
a framework within which additional models and data will be integrated.

Bordogna (2003) wrote, “The trick in evolving the capability for providing emergent
infrastructure is the selective use of established models and the rapid generation and20

testing of new models. This is a process of institutional and organizational learning,
and the ability to learn rapidly is itself a kind of social infrastructure that is required to
pursue the cyberinfrastructure vision.” We believe that studies such as this one are
important steps along that learning path.
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Table 1. EPIC parameters to be estimated.

Parameter Description Units

IRI Minimum application interval for automatic irrigation d
BIR Water stress factor to trigger automatic irrigation –

irrigation occurs on days where the ratio of biomass
produced to potential production given adequate
water falls below BIR

None

ARMN Minimum volume allowed for automatic irrigation in
a single application

mm

ARMX Maximum volume allowed for automatic irrigation in
a single application

mm

WA Biomass to energy ratio – the amount of plant tissue
(dry weight) produced per unit of solar energy

T ha−1 MJ−1

TB Optimum temperature for plant growth ◦C
TG Minimum temperature for plant growth ◦C
DLAI Fraction of growing season completed when the ra-

tio of leaf area to ground area (LAI) begins to decline
%

RLAD Leaf area decline rate – an index of the rate at which
LAI declines after DLAI

None

RBMD Biomass-energy decline rate – an index of the rate
at which WA declines after DLAI

None
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Table 2. Parameter ranges used in the estimations.

Parameter Units EPIC Corn Alfalfa Sorghum Soybean

IRI d 1–200 3–14 3–14 3–14 3–14
BIR None 0.2–0.95 0.5–0.95 0.5–0.95 0.5–0.95 0.5–0.95
ARMN mm 1–100 7–14 7–14 7–14 7–14
ARMX mm 10–300 25–45 25–45 25–45 25–45
WA T ha−1 MJ−1 10–50 40–60 20–50 10–50 10–40
TB ◦C 10–30 20–35 20–35 20–37 25–35
TG ◦C 0–12 5–15 0–12 0–15 5–15
DLAI % 0.4–0.99 0.75–0.95 0.75–0.95 0.75–0.95 0.75–0.95
RLAD None 0–10 0–10 0–10 0–10 0–10
RBMD None 0–10 0–10 0–10 0–10 0–10
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Table 3. Distribution by crop of well-years by soil group and water use.

Crop Soil Group Irrigation
I II Water (106 m3)

Alfalfa 223 27 19.2
All Corn 3870 374 781.4
10 pct. Corn 521 56 108.9
Sorghum 285 27 30.6
Soybean 116 9 15.0
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Table 4. Parameter estimates for corn.

Parameter Description Units All Data/10 pct. Sample
Estimate Std. Err

IRI Minimum irrigation interval d 10.3/10.3 1.52/1.58
BIR Water stress to trigger irrigation None 0.86/0.85 0.07/0.08
ARMN Minimum volume per irrigation mm 10.5/10.4 0.75/0.87
ARMX Maximum volume per irrigation mm 35.9/37.6 2.99/3.87
WA Biomass to energy ratio T ha−1 MJ−1 47.0/47.6 3.32/3.41
TB Optimum temperature for growth ◦C 27.2/28.1 3.38/3.47
TG Minimum temperature for growth ◦C 8.20/8.23 0.52/0.62
DLAI When LAI begins to decline % 0.86/0.86 0.03/0.03
RLAD Leaf area decline rate None 4.95/5.03 1.03/1.14
RBMD Biomass-energy decline rate None 5.17/5.14 1.11/1.10
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Table 5. Parameter estimates for alfalfa.

Parameter Description Units Estimate Std. Err

IRI Minimum irrigation interval d 10.3 1.56
BIR Water stress to trigger irrigation None 0.87 0.05
ARMN Minimum volume per irrigation mm-ha 10.7 0.99
ARMX Maximum volume per irrigation mm-ha 39.1 3.34
WA Biomass to energy ratio T ha−1 MJ−1 29.2 3.04
TB Optimum temperature for growth ◦C 30.4 3.06
TG Minimum temperature for growth ◦C 0.50 0.81
DLAI When LAI begins to decline % 0.85 0.02
RLAD Leaf area decline rate None 5.08 1.03
RBMD Biomass-energy decline rate None 5.01 0.98
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Table 6. Parameter estimates for sorghum.

Parameter Description Units Estimate Std. Err

IRI Minimum irrigation interval d 10.8 2.59
BIR Water stress to trigger irrigation None 0.87 0.06
ARMN Minimum volume per irrigation mm-ha 10.8 1.14
ARMX Maximum volume per irrigation mm-ha 38.3 5.13
WA Biomass to energy ratio T ha−1 MJ−1 33.4 4.39
TB Optimum temperature for growth ◦C 32.5 3.35
TG Minimum temperature for growth ◦C 6.19 3.36
DLAI When LAI begins to decline % 0.87 0.04
RLAD Leaf area decline rate None 4.99 1.39
RBMD Biomass-energy decline rate None 5.10 1.26
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Table 7. Parameter estimates for soybean.

Parameter Description Units Estimate Std. Err

IRI Minimum irrigation interval d 9.82 2.01
BIR Water stress to trigger irrigation None 0.85 0.07
ARMN Minimum volume per irrigation mm-ha 10.4 0.81
ARMX Maximum volume per irrigation mm-ha 37.3 4.50
WA Biomass to energy ratio T ha−1 MJ−1 31.2 3.38
TB Optimum temperature for growth ◦C 29.1 2.53
TG Minimum temperature for growth ◦C 10.7 1.44
DLAI When LAI begins to decline % 0.86 0.04
RLAD Leaf area decline rate None 4.99 1.10
RBMD Biomass-energy decline rate None 5.02 1.18
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Table 8. Relative errors.

Crop Yield Water
Means Bootstrap Replicates Means Bootstrap Replicates
Fitted Fitted Predictive Fitted Fitted Fitted Predictive
County County County County Well County Well County Well

10 pct. Corn 0.09 0.11 0.14 0.16 0.32 0.15 0.31 0.21 0.35
90 pct. Corn 0.09 a a 0.13 0.33 a a a a

All Corn 0.09 0.10 0.13 0.13 0.32 0.13 0.32 0.19 0.35
Alfalfa 0.16 0.17 0.20 0.21 0.43 0.22 0.43 0.27 0.46
Sorghum 0.10 0.10 0.13 0.25 0.46 0.24 0.44 0.31 0.49
Soybean 0.18 0.20 0.25 0.31 0.42 0.25 0.38 0.34 0.45
All Crops 0.09 b b 0.13 c d d d d

a Not separately bootstrapped.
b Different grains are not commensurate.
c Single wells are single crops.
d Analysis would require averaging (number of bootstrap reps)(number of crops) scenarios (ca. 3.9×109).
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Table 9. Analysis of the influence of prior information on corn parameters.

Parameter Units Ranges Estimates Metrics
Initial Alternate Initial Alternate Q1 Q2

IRI d 3–14 8.5–19.5 10.3 11.5 <10−5 0.22
BIR None 0.5–0.95 0.725–0.95 0.85 0.89 <10−5 0.38
ARMN mm 7–14 3.5–10.5 10.4 6.89 0.0497 1.00
ARMX mm 25–45 35–55 37.6 43.2 <10−5 0.56
WA T ha−1 MJ−1 40–60 30–50 47.6 45.0 <10−5 0.25
TB ◦C 20–35 15–27.5 28.1 23.5 0.0191 0.74
TG ◦C 5–15 0–10 8.23 5.86 <10−5 0.47
DLAI % 0.75–0.95 0.65–0.85 0.86 0.81 0.3428 0.52
RLAD None 0–10 0–5 5.03 2.61 0.9496 0.97
RBMD None 0–10 0–5 5.14 2.55 0.2294 1.04
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Table 10. Standard errors.

Crop RMSE RMSEP
Yield Water Yield Water
(t/ha) (mm-ha) (t/ha) (mm-ha)

10 pct. Corn 1.58 69.7 1.85 93.4
All Corn 1.44 59.8 1.71 82.5
Alfalfa 2.11 78.2 2.38 90.9
Sorghum 0.88 78.3 1.06 99.6
Soybean 0.83 102.8 0.93 130.1
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2 Bulatewicz et. al: Multi-criteria calibration of a crop model using a genetic algorithm

Fig. 1: Plants produce carbohydrates from carbon dioxide,
water, and light energy. They grow and develop at rates that
are nonlinearly dependent on resources and temperature. All
but ca. one percent of water use is for transport or cooling
and is transpired.

to Geographic Information Systems (Lal et al., 1993; Engel
et al., 1997; Yang et al., 2003). Our specific objective is to
estimate irrigation needs for large numbers of representative,
geo-referenced parcels. This flux couples directly to hydro-
logical models. We have used Sheridan County, Kansas, as a
study area to prototype this estimation process.

The first step is to calibrate the EPIC model. Although
basically a parameter estimation process, heavy computa-
tional requirements mandate prototyping of many facilities
required by a fully deployed decision support system. These
include geo-referenced databases of crop, soil, weather, and
water-use data, interfacing heterogeneous software compo-
nents (i.e. model, optimizer, data retrieval), and, most impor-
tantly, distributed parallel processing. The latter is required
because benchmark runs indicated that calibration would re-
quire 4 to 14 d on a 40-CPU computing cluster (a significant
underestimate as events later proved). On a computations-
per-minute basis, this appeared representative of the com-
puting intensity required for multi-year, spatially distributed,
water policy analyses. The following sections present the el-
ements of our calibration approach and the results obtained.

2 The EPIC model

Plant processes have been extensively modeled (Hanks and
Ritchie, 1991; Bouman et al., 1996). The EPIC model sim-
ulates the physiology of all major forages and crops in the
study area. Using a daily time step, three major processes
are represented: (1) phenological development; (2) dry mat-
ter production and partitioning to plant tissues, resulting in

growth; and (3) economic yield. Outputs that are relevant to
this study are crop yield and water use reported in t/ha and
mm-ha, respectively. The model reproduces the results of
irrigation, fertilization, tillage, variety selection, alternative
production calendars, etc. EPIC also includes an economic
component for evaluating and optimizing management out-
comes. [In our research, however, a more robust economic
forecasting submodel is being used (Peterson and Steward,
2006) to suggest crop management choices for EPIC to sim-
ulate.] Because its original focus was erosion-related, EPIC
can simulate decade-scale or longer intervals. These fea-
tures have suited EPIC to a broad range of applications, in-
cluding plant nutrition studies (Cole et al., 1987; Dautre-
bande et al., 1999); national and international assessments of
agroecological change impact (Brown and Rosenberg, 1999;
Brown et al., 2000; Bernardos et al., 2001), including the
High Plains Aquifer (Easterling et al., 1993); irrigation plan-
ning and water use (Bryant et al., 1992; Ellis et al., 1993;
Evers et al., 1998; Guerra et al., 2005); and regional stud-
ies (Geleta et al., 1994; Cabelguenne et al., 1995; Fortin and
Moon, 2000).

EPIC is able to simulate multiple crops because it embod-
ies a generic plant model that can be re-parameterized to rep-
resent different species. Table 1 describes the subset of these
parameters that were estimated for four major regional crops:
corn, grain sorghum, alfalfa, and soybean2. A priori parame-
ter value ranges are given in Table 2 – the first column con-
tains values suggested in the EPIC Users Manual (Williams
et al., 1990). The other columns are based on authors’ expe-
rience within the study area. The former are wider because
of the crop and geographic diversity of EPIC utilization.

The irrigation-related parameters deserve special mention.
The dates and amounts of individual irrigation applications
are rarely available to modelers. Thus, most crop simula-
tors include “automatic irrigation” options under which irri-
gations are simulated on dates when preset soil moisture or
water stress levels are reached. We sought values for the pa-
rameters defining this option that reproduce annual water us-
age for wells in the study area – in effect attempting to solve
for indexes of irrigator behavior.

3 Calibration data sets

Data on all irrigated land parcels in Kansas are available in
a unique database maintained by the Kansas Division of Wa-
ter Resources (KDWR). Irrigators in Kansas are required to
report their yearly water use by parcel to the KDWR. The an-
nual report for each parcel also includes the type of irrigation
system, the crop(s) grown, the number of acres irrigated, and
the yearly irrigated water volume. These reports are com-
piled and distributed via a publicly available GIS data prod-

2Estimation of wheat parameters was deferred because the ex-
tra programming complexity required to split activities across two
calendar years was not seen as necessary to evaluate the approach.

Fig. 1. Plants produce carbohydrates from carbon dioxide, water, and light energy. They grow
and develop at rates that are nonlinearly dependent on resources and temperature. All but ca.
one percent of water use is for transport or cooling and is transpired.
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Bulatewicz et. al: Multi-criteria calibration of a crop model using a genetic algorithm 3

Table 1: EPIC parameters to be estimated.

Parameter Description Units
IRI Minimum application interval for

automatic irrigation
d

BIR Water stress factor to trigger automatic
irrigation – irrigation occurs on days
where the ratio of biomass produced to
potential production given adequate
water falls below BIR

None

ARMN Minimum volume allowed for
automatic irrigation in a single
application

mm

ARMX Maximum volume allowed for
automatic irrigation in a single
application

mm

WA Biomass to energy ratio – the amount of
plant tissue (dry weight) produced per
unit of solar energy

T
ha−1

MJ−1

TB Optimum temperature for plant growth ◦C
TG Minimum temperature for plant growth ◦C
DLAI Fraction of growing season completed

when the ratio of leaf area to ground
area (LAI) begins to decline

%

RLAD Leaf area decline rate – an index of the
rate at which LAI declines after DLAI

None

RBMD Biomass-energy decline rate – an index
of the rate at which WA declines after
DLAI

None

uct, the Water Information Management and Analysis Sys-
tem (WIMAS, Fig. 2). Although WIMAS data are spatially
comprehensive and detailed, they have some shortcomings.
First, several variables needed to identify production rela-
tionships (crop yields and the levels of other inputs such as
fertilizers and pesticides) are not included. Second, if mul-
tiple crops are grown on a given parcel, the irrigator is not
required to report the subdivision of acreage or water allo-
cation. Third, although points of diversion are increasingly
metered, water use reports from un-metered sites may have
significant error. These limitations mean that estimation must
be robust in the face of uncertain data (see Section 5).

Obtaining good parameter estimates requires multiple
years’ of data to overcome annual weather variation.
WIMAS data are sparse before 1990 so the 11-year pe-
riod 1990-2000 was used. Historic weather data col-
lected from five weather stations in and around the county
were used in the simulations. The simulation of each
well used the weather data from the station nearest the
well. Sheridan County soils were combined into two groups
using data from the Soil Survey Geographic (SSURGO,
http://soildatamart.nrcs.usda.gov) database maintained by
the Natural Resources Conservation Service of the United
States Department of Agriculture. Group I contains silt loam
soils with slopes between 1 and 3 percent. This group con-
tains ca. 76 percent of the land area and 663 of 779 total wells

Fig. 2: Well locations in Sheridan Co. KS. Wells are visually
coded to show the crop grown in 2000. The most common
crop is corn.

in the county. The second group includes all soils with slopes
greater than 5 percent. This group consists of loam, silt loam
and silty clay loam soils and accounts for ca. 23 percent of
the land and 93 wells. The remaining ca. 1 percent of the
land and 23 wells were discarded.

We ensured that each crop was represented by at least one
well in each year. Table 3 shows the distribution of all 4931
well-year combinations and the corresponding breakdown of
total irrigation water usage. Irrigation accounted for 98.8 per-
cent of all water pumped in Sheridan County during the study
period and the well-years in this study totaled 81.3 percent of
all irrigation usage.

Because policy analysis will ultimately entail large
amounts of computing power (Steward et al., 2009a), it is
desirable to understand the relationship between sample size
and estimation outcomes. Thus, a ca. ten percent sub-sample
of corn well-years was randomly selected from five clusters
identified in each soil group via the Getis and Ord (1992) G∗i
statistic. The well clusters were based on (1) maximum re-
ported volumes of water pumped and (2) spatial propinquity
(Fig. 3).

For a coupled hydrology-crop-economic model to be use-
ful, it is clearly important to mimic crop yields as well
as water use (Steward et al., 2009b). County average
annual yield data by crop were obtained from the Na-
tional Agricultural Statistics Service Quick Stats database
(http://www.nass.usda.gov) that contains reports from the
Kansas Agricultural Statistics Service. The different aggre-
gation levels for the yield and water use data reflect a fre-
quent occurrence in interdisciplinary regional studies. Ag-
gregation effects on model accuracy have been studied both
theoretically and empirically (Theil, 1954; Grunefeld and
Griliches, 1960; Zellner, 1969; Aigner and Goldfeld, 1974;
Sasaki, 1978; Pesaran et al., 1989). While any level of ag-
gregation is possible, extreme modeling approaches are (1)

Fig. 2. Well locations in Sheridan Co. KS. Wells are visually coded to show the crop grown in
2000. The most common crop is corn.
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4 Bulatewicz et. al: Multi-criteria calibration of a crop model using a genetic algorithm

Table 2: Parameter ranges used in the estimations.

Parameter Units EPIC Corn Alfalfa Sorghum Soybean
IRI d 1 - 200 3 - 14 3 - 14 3 - 14 3 - 14
BIR None 0.2 - 0.95 0.5 - 0.95 0.5 - 0.95 0.5 - 0.95 0.5 - 0.95
ARMN mm 1 - 100 7 - 14 7 - 14 7 - 14 7 - 14
ARMX mm 10 - 300 25 - 45 25 - 45 25 - 45 25 - 45
WA T ha−1 MJ−1 10 - 50 40 - 60 20 - 50 10 - 50 10 - 40
TB ◦C 10 - 30 20 - 35 20 - 35 20 - 37 25 - 35
TG ◦C 0 - 12 5 - 15 0 - 12 0 - 15 5 - 15
DLAI % 0.4 - 0.99 0.75 - 0.95 0.75 - 0.95 0.75 - 0.95 0.75 - 0.95
RLAD None 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10
RBMD None 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10

(a) Wells in Sheridan Co. KS on a map of Group I (largely
silt loam) soils. Wells are visually coded to show the maxi-
mum number of cubic meters of water pumped in any of 11
years. This data was used for spatial clustering (see Fig. 3b).

(b) Sheridan Co. KS wells clustered on Group I soils. A
clear, banded northwest-to-southeast (greater to lesser) trend
in pumping is evident. Each band was sub-sampled for wells
(used for corn production) to include in parameter estima-
tion.

Fig. 3: Wells in Sheridan Co. KS.

Table 3: Distribution by crop of well-years by soil group and
water use.

Crop
Soil Group Irrigation
I II Water (106 m3)

Alfalfa 223 27 19.2
All Corn 3870 374 781.4
10 pct. Corn 521 56 108.9
Sorghum 285 27 30.6
Soybean 116 9 15.0

to aggregate all the data in the study region and perform the
analysis at macro-level or (2) to downscale variables avail-
able only in aggregate form into many small regions and
conduct a micro-level analysis with a unique sub-model for
each decision maker. However, the most accurate aggrega-
tion level for a real problem must be found empirically as
it depends on unobservables like data measurement errors.
While cognizant of these issues, we have elected not to in-
vestigate them at this time. Instead, we are utilizing an esti-
mation method that (1) does not require all data to be at the
same scale and (2) yields unambiguous indicators of param-
eter uncertainty.

4 Maximum entropy estimation

Maximum entropy (ME) (Golan et al., 1996) estimation en-
tails maximizing an information theoretic measure of uncer-
tainty (entropy, H) subject to constraints imposed by data.
The results are probabilistic estimates of parameter values
that are as certain as the data allow, but no more so. ME equa-
tions remain solvable even in cases where sparse data render
the corresponding Least Squares (LS) and Maximum Likeli-
hood (ML) equations indeterminate. ME estimation has be-
come increasingly popular in many situations, particularly in
models where the data are incomplete because the variables
of interest are measured at high levels of aggregation. In
the field of production economics, several researchers have
invoked ME estimation to recover disaggregated production
relationships (e.g., crop yield as a function of field-level in-

Fig. 3. Wells in Sheridan Co. KS.
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6 Bulatewicz et. al: Multi-criteria calibration of a crop model using a genetic algorithm

from finding any solution, even when one exists. Addition-
ally, (1) variation in the numerical magnitudes among model
outputs will differentially affect the penalty and (2) the inves-
tigators may prefer to predict some variables more accurately
than others.

To ameliorate differences in numerical magnitudes, the
penalty function was defined as the weighted sum of the rel-
ative absolute errors

c(p) =

λH
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yi −
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where (ηw/ηy) is the ratio of investigator preference for er-
rors in predicted water use over errors in yield and λH scales
the penalty relative to the entropy. Because c(p) penalizes
the closure error of what are intended to be equality con-
straints, λH must be as large as possible while still allowing
the entropy to influence the optimizer. Thus λH was cho-
sen so that entropy accounted for 5 percent of the total fit-
ness. Although our procedure imposes only two constraints
(zero yield and water-use error) on 10 free parameters, an
exact solution is not possible because the constraints pull
the free variables in opposite directions: solutions that sat-
isfy the yield constraint result in high water error (and vice-
versa). For this reason, we sought to minimize and balance
the error of both constraints. An arbitrary, but not unrea-
sonable value for (ηw/ηy) is one for which the relative error
in water use, when aggregated from the well to the county
level, equals that of yield. To identify a suitable value, a se-
ries of 20 estimation runs with randomized initial conditions
was performed for each of 14 different values of (ηw/ηy)
using the ten percent sample corn data. Fig. 4 shows that
(ηw/ηy) = 14 is an appropriate weight ratio; it was used in
all subsequent runs.

The entire investigation entailed 3.841 billion executions
of the EPIC model; the pilot study to set (ηw/ηy), alone, re-
quired 616 million simulations. Such numbers are ca. three
orders of magnitude greater than those in studies reported
just a few years ago (e.g., Irmak et al., 2000; Welch et al.,
2002). Computation of this scale demands the use of high-
performance computing. The GA was designed in a master-
slave parallel fashion (Cantu-Paz, 2000) and implemented
as a scalable system that hybridized several software com-
ponents. The interdisciplinary discussion and design was

(a) Ratios ranging form 0.01 to 100.

(b) A close up of the crossover range.

Fig. 4: Mean relative error for the ten percent corn sample as
a function of the preference ratio between county-level water
(dashed line) and yield (solid line) residuals.

facilitated by writing the GA in a high-level mathematical
scripting language (Scilab, http://www.scilab.org/). On the
other hand, parallel execution of the model was coordinated
by a client written in C to achieve high-performance. The
model itself is a legacy Fortran code. The system executes
on both dedicated clusters via MPI (Graham et al., 2006) and
in a loosely-coupled, distributed fashion via Condor (Thain
et al., 2005). The simulations were performed on a 200 CPU
Beowulf cluster at Kansas State University and a 200 node
Condor pool at the University of Oklahoma. Software perfor-
mance measures and scalability were reported in (Bulatewicz
et al., 2007).

6 Computations and discussion

There are several general questions to ask in a parameter es-
timation study of this type. First, what are the resulting esti-
mates and what can be said about their uncertainty? Second,
how reasonable are the results in terms of both the individual
estimates and their interrelationships? Third, ME integrates
all sources of information in determining its results, includ-
ing both the data as well as the prior information available to
the investigators and expressed in the initial ranges set for the
parameters. What has been the relative influence of these two

Fig. 4. Mean relative error for the ten percent corn sample as a function of the preference ratio
between county-level water (dashed line) and yield (solid line) residuals.
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(a) Complete corn data

(b) Ten percent corn sample

(c) Alfalfa

(d) Sorghum

(e) Soybean

Fig. 5: Histograms indicate the number of times that a parameter value was estimated to be in a given range out of 250 bootstrap
replications for each crop.

Fig. 5. Bootstrap histograms for the complete corn data .
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(a) Complete corn data

(b) Ten percent corn sample

(c) Alfalfa

(d) Sorghum

(e) Soybean

Fig. 5: Histograms indicate the number of times that a parameter value was estimated to be in a given range out of 250 bootstrap
replications for each crop.

Fig. 6. Bootstrap histograms for the ten percent corn data.

2410

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/2367/2009/hessd-6-2367-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/2367/2009/hessd-6-2367-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
6, 2367–2413, 2009

Calibration of a crop
model to irrigated

water use

T. Bulatewicz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Bulatewicz et. al: Multi-criteria calibration of a crop model using a genetic algorithm 9

(a) Complete corn data

(b) Ten percent corn sample

(c) Alfalfa

(d) Sorghum

(e) Soybean

Fig. 5: Histograms indicate the number of times that a parameter value was estimated to be in a given range out of 250 bootstrap
replications for each crop.

Fig. 7. Bootstrap histograms for alfalfa.
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(a) Complete corn data

(b) Ten percent corn sample

(c) Alfalfa

(d) Sorghum

(e) Soybean

Fig. 5: Histograms indicate the number of times that a parameter value was estimated to be in a given range out of 250 bootstrap
replications for each crop.

Fig. 8. Bootstrap histograms for sorghum.
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(a) Complete corn data

(b) Ten percent corn sample

(c) Alfalfa

(d) Sorghum

(e) Soybean

Fig. 5: Histograms indicate the number of times that a parameter value was estimated to be in a given range out of 250 bootstrap
replications for each crop.

Fig. 9. Bootstrap histograms for soybean.
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