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Abstract

Sensible and latent heat fluxes are often calculated from bulk transfer equations com-
bined with the energy balance. For spatial estimates of these fluxes, a combination
of remotely sensed and standard meteorological data from weather stations on the
ground is used. The success of this approach depends on the accuracy of the in-5

put data and on the accuracy of two variables in particular: aerodynamic and surface
conductance. This paper presents a Bayesian approach to improve estimates of sen-
sible and latent heat fluxes by using a priori estimates of aerodynamic and surface
conductance alongside remote measurements of surface temperature. The method is
validated for time series of half-hourly measurements in a fully grown maize field, a10

vineyard and a forest. It is shown that the Bayesian approach yields more accurate
estimates of sensible and latent heat flux than traditional methods.

1 Introduction

Sensible, H , and latent heat (i.e. evapotranspiration), λE, fluxes between the land sur-
face and atmosphere are important components of the Earth’s surface energy balance15

(see Eq. 1). Different techniques exist to estimate them, generally based on microm-
eteorological methods, including the eddy-covariance, Bowen ratio technique and bulk
transfer equations (see Eqs. 2 and 3), for example. Alternatively, estimates of evapo-
transpiration can be obtained from the soil water balance (see e.g. Verhoef and Camp-
bell, 2005, for an overview of both types of methods), from which sensible heat flux20

could be derived, if values of net radiation and soil heat flux were available (see Eq. 1).
Field scale measurements are used to study the local water and energy balance

and to gain process understanding, but they are often not representative for large ar-
eas. Remote sensing measurements provide a spatial coverage, but not all variables
needed to estimate sensible and latent heat can be measured by remote sensing.25

It is common practice to combine remote sensing and field data to estimate H and
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λE spatially (e.g. Su, 2002). Latent heat flux is either solved as a residual term in the
energy balance, with H obtained from a bulk transfer equation (see Eq. 2) or directly
calculated using the bulk transfer equation for latent heat flux. The problem with the
latter approach, however, is that estimates of specific humidity at the land surface are
hard to obtain.5

Remote sensing products used as input include brightness temperature and emis-
sivity (Bastiaanssen et al., 1998), reflected shortwave radiation and NDVI, which are
used for the derivation of vegetation structure and aerodynamic resistance (Su, 2002).
Weather station variables include wind speed, air temperature and humidity.

There are various sources of uncertainty associated with these estimates: the repre-10

sentativeness of the weather station data, the atmospheric correction of satellite data,
the derivation of remote sensing products, the relationship between remote sensing
products and surface characteristics (such as aerodynamic resistance), the model it-
self, and the interpolation in time between satellite overpasses. Aerodynamic and sur-
face resistances are particularly difficult to estimate.15

Nowadays hydrologists often use data assimilation techniques to handle uncertain-
ties in parameters and (satellite) observations (Troch et al., 2003). Schuurmans et
al. (2003) used remote sensing estimates of λE to improve the predictions of a hy-
drological model. Posterior estimates of λE were calculated as a weighted mean of a
traditional, ground based method (the Makkink method) and a remote sensing method20

(SEBAL, Bastiaanssen et al., 1998). Crow and Wood (2003), by using an ensemble
Kalman filter (EnKF), were able to retrieve spatial and temporal trends in root water
extraction by vegetation from observations of surface temperature and ancillary data.
EnKFs are also common practice in the retrieval of soil moisture from microwave re-
mote sensing (among others, Reichle et al., 2002).25

Franks et al. (1999) indicated that land surface temperature measurements may
serve to constrain the parameter space in Soil-Vegetation-Atmosphere-Transfer (SVAT)
models, thus leading to better estimates of sensible and latent heat fluxes. This pa-
per presents a Bayesian approach in which a priori information about two key SVAT
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variables (aerodynamic and surface resistance) is used beside measurements of sur-
face temperature in order to improve estimates of sensible and latent heat. We have
purposely chosen for the simplest SVAT model and the simplest data assimilation ap-
proach, such that the implementation in any ground-based and remote sensing-based
SVAT model is straightforward. For longer time series or for pixel by pixel calculations,5

the model can be transformed into a Kalman filter (KF) or EnKF.
In this paper, the method is applied to data measured at field scale during field cam-

paigns. Time series of weather data and infrared radiometer measurements from three
land cover types are used: a maize field, a vineyard and a forest. Although no remote
sensing data are used, we used proximal observations of surface temperature and10

therefore the approach can be applied to a combination of field and satellite data in a
similar way. It will be shown that the Bayesian approach, using both a priori information
and measurements, results in more accurate estimates of sensible and latent heat then
using only either a priori information or measurements.

2 Theory15

2.1 Energy balance

A simple energy balance equation is used, consisting of four components: net radia-
tion received by the surface, Rn, soil heat flux, G, sensible heat flux, H and latent heat
flux, λE (all in W m−2). Energy involved in melting and freezing or in chemical reac-
tions, energy stored in the canopy, and energy horizontally transported by advection20

are ignored. Hence:

Rn − G = H + λE (1)

Parameter λ is the latent heat of evaporation of water (J kg−1) and E the evapotran-
spiration rate (kg m−2 s−1).
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Sensible and latent heat flux are the fluxes of heat and water vapour between the
surface and the atmosphere carried by turbulent air flow. They are calculated as the
product of a conductance and a driving force between the surface (subscript “s”) and
the air at measurement height (subscript “a”):

H = ρcpga (Ts − Ta) (2)5

λE = λ
1

1/ga + 1/gs

(qs(Ts) − qa) (3)

where ρ is the mass density of air (kg m−3), cp the heat capacity of air (J kg−1 K−1),

ga is the aerodynamic conductance (m s−1) for transport of heat and vapour from the
surface boundary layer into the atmosphere, gs is the surface conductance for water
vapour transport from stomatal cavities in leaves or soil pores to the leaf or soil surface10

boundary layer (m s−1), Ts is surface temperature and Ta is air temperature (both in K),
qs is the vapour concentration in stomata or soil pores (kg m−3), and qa is the vapour
concentration in the air (kg m−3).

The model consists of three equations with ten unknowns (Table 1, ρs cp and λ are
considered constants). Usually, seven of them are measured or estimated, and the15

remaining three calculated. In most approaches, H , λE and Ts are unknown, while the
other variables are known. In the Penman-Monteith approach, H and Ts are eliminated
and an approximation for qs(Ts) is used, resulting in one equation with seven unknowns.

Surface conductance of individual leaves can be derived from leaf gas exchange
measurements, but scaling to canopy level is not trivial (Baldocchi et al., 1991). Stom-20

atal regulation is a function of actual photosynthesis rate, soil moisture content, air hu-
midity, air temperature and the species composition of the vegetation. At canopy level,
empirical and semi-empirical relationships between surface conductance and environ-
mental conditions are commonly used (Jarvis, 1976; Cowan, 1977; Ball et al., 1987;
Leuning, 1995). These relationships require vegetation-specific, a priori coefficients25

or local calibration against measured fluxes of water and carbon dioxide. However,
2341
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for many applications these models are too detailed, as parameters for the vegetation
under study are often not available.

The aerodynamic conductance ga depends on the momentum and scalar roughness
length of the surface, z0M (m) and z0H (m), respectively, wind speed u (m s−1), and
stability of the atmosphere, as combined in the logarithmic wind profile (Tennekes,5

1973; Garratt, 1992). The momentum roughness length, z0M, is usually estimated from
leaf area index and vegetation height (e.g. Raupach 1994; Verhoef et al., 1997a), the
scalar roughness length, z0H, is often taken as a constant fraction of z0M, although it
varies widely, largely depending on canopy density (Stewart et al., 1994; Verhoef et al,
1997b). Optical remote sensing is often used to estimate vegetation height and leaf10

area index (Su, 2002). However, estimates of aerodynamic resistance based on optical
remote sensing contain a large degree of uncertainty.

2.2 Classic approaches

The difficulty in estimating ga and gs in Eqs. (1–3) has been overcome in a number of
ways. This has resulted in three techniques to calculate evapotranspiration from the15

energy balance:

1. FAO-approach: evapotranspiration is calculated by multiplying a “reference evap-
otranspiration” by an empirical coefficient for a specific crop, extracted from an
expert knowledge based table. The reference evapotranspiration is calculated for
a crop with known values for ga and gs, usually the typical short, well-watered20

grass of a meteorological station. This method is disseminated by the FAO (Allen
et al., 1998, 2006), and is mainly used to calculate irrigation requirements.

2. Ts-approach: evapotranspiration is calculated by solving Eqs. (1–3) with H , λE
and gs as unknowns. In that case, on top of the standard meteorological variables,
surface temperature measurements and estimates of aerodynamic conductance25

ga are required. This technique is used in remote sensing, for example in the
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model SEBS (Su, 2002). Surface temperature is retrieved from thermal remote
sensing, and aerodynamic resistance from optical remote sensing.

3. A priori approach: evapotranspiration is calculated by solving Eqs. (1–3) with H ,
λE and Ts as unknowns. Aerodynamic conductance is estimated from a mea-
sured wind profile or from a priori values for a specific vegetation type, and5

surface conductance gs is estimated with one of the combined photosynthesis-
conductance or empirical models discussed above. Values for the parameters of
such model are found from calibration of the model against measurements of gs
or taken from the literature.

The use of surface temperature in the Ts-approach introduces another source of10

uncertainty. Sensible heat flux is proportional to Ts−Ta, a relatively small difference
between two measurements. As a result, the error in H will be relatively large compared
to the errors in Ta and Ts, especially when Ts is taken from remote sensing and Ta from
weather station data.

2.3 Bayesian approach15

The aim of the Bayesian approach proposed in this paper is to combine the approaches
(2) and (3). None of the variables gs, ga and Ts is considered as unknown, but a priori
information about gs, ga and measurements of Ts are used to calculate the least square
error posterior estimates of gs, ga and Ts (and thus also of H and λE ). The use of a
priori values avoids unrealistic values for gs, ga, and the use of measurements prevents20

unrealistic values of Ts. It is expected that more realistic values for gs, ga and Ts also
lead to improved estimates of H and λE .

The model (Eqs. 1–3) is re-written such that Ts is output of the model, by eliminating
H and λE from Eqs. (1–3) and writing Ts as the dependent variable. In other words, Ts
is a function of all input variables and parameters. Hence:25

x̃ = f (θ ) +w (4)
2343
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where x̃ represents the measured output (in this case measured Ts, the squiggly sym-
bol is used to denote a measurement), f the model equations, θ a vector of variables
and parameters , and w background noise caused by the uncertainty of the model and
measurements. The vector notation is used if the problem is solved for multiple time
steps, multiple pixels, or for multiple measurements and parameters. This aspect is5

discussed later in this paper.
A priori estimates of surface and aerodynamic conductance, and measurements of

surface temperature are used to calculate posterior values. Parameter values have a
probability density function of p(θ ), and measurements a probability density function of
p(x̃|θ ). The posterior probability density of the parameters (i.e. the parameter values10

given the measurements of Ts), is calculated with the classic Bayes’ theorem:

p(θ |x̃) =
p(x̃|θ ) · p(θ )∫
p(x̃|θ ) · p(θ )dθ

(5)

The minimum least square error estimate of the parameters, given the measure-
ments, is the expected value of the parameters. The expected value can be calculated
as:15

θ = E (θ |x̃) =
∫
θ · p(θ |x̃)dθ (6)

The integration in Eq. (6) is avoided by calculating only the peak of the probability
density function:

_

θ = arg max
θ

p(θ |x̃ ) = arg min
θ

(∣∣∣C−1/2
x

(
f (θ ) − x̃

)∣∣∣2
+
∣∣∣C−1/2

θ (θ − θ0)
∣∣∣2
)

(7)

where Cx and Cθ are the covariance matrices for the measurements and the param-20

eters, respectively. Parameters
_

θ are the posterior parameters used later to calculate
sensible and latent heat flux.
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The last part of Eq. (7) between the brackets is a cost function or the quadratic error.
The quadratic error is the sum of the quadratic error in the parameters (θ) scaled with
the uncertainty of the a priori estimates, and the quadratic error in the measurements
of Ts, scaled with the uncertainty of the measurements of Ts. The optimum parame-
ter values are located at the minimum error. If both p(x̃||θ ) and p(θ ) are Gaussian,5

then the solution is exact (and Eqs. 6 and 7 will give equal results), otherwise it is an
approximation. In this study, Gaussian distributions for both functions are assumed.

The key issues are to estimate a priori values of θ, and to estimate the two covari-
ance matrices. These matrices describe the uncertainty of all input (measurements
and the a priori values), and determine the contribution of different input variables to10

the posterior estimates. These issues are addressed in Sect. 3.1.

3 Methodology

3.1 Model input

The Bayesian approach was applied to time series of three land cover types: maize,
a vineyard and a forest, measured during intensive field campaigns (Sect. 3.2). Mea-15

sured values of five variables are directly used as input for the model: Rn, G, Ta, and
qa. The model is constrained further by measured values of Ts and a priori estimates
of ga and gs. After calculation of the posterior values for the latter three variables, the
sensible and latent heat fluxes are calculated with Eqs. (2 and 3). Measured sensible
and latent heat fluxes are used for validation only.20

It is assumed that the meteorological input is accurately known (without uncertainty):
for Rn, G, Ta, qa measured values are used (Rn = R̃n, etc.; the squiggly symbol is
consistently used to indicate a measurement or a priori estimate). This implies that for
these four variables, a priori and posterior values are equal to each other. In contrast,
to the other variables, ga, gs and Ts, uncertainty is attributed.25
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The following equations for ga, gs and Ts are introduced:

ga = θ1u =
(
θ̃1 + w1

)
u

gs = θ2 = θ̃2 + w2

Ts = T̃s + w3

(8)

where w indicates noise, θ1 is a dimensionless parameter which includes the effects
of surface roughness and stability of the boundary layer, u is wind speed (m s−1), and
parameter θ2 is surface conductance (m s−1). The a priori estimate for parameter θ15

for neutral conditions is calculated using a logarithmic wind profile following Tennekes
(1973) and Goudriaan (1977):

θ̃1 =
κ2

ln
(
z−d
z0M

)
ln
(
z−d
z0H

) (9)

where d=0.67h, z0M=0.13h, z0H=0.1z0M, h is the vegetation height, z the measure-
ment height of wind speed (all in m), and κ (=0.4) is Von Kármán’s constant. Equa-10

tion (9) does not include a correction term for non-neutral atmospheric conditions. For
the a priori estimate of parameter θ2, the FAO standard value for short, well watered
grass of gs=0.0143 is used for all three study sites. Values for T̃s are computed from
Stefan-Boltzman equation, using measured outgoing longwave radiation and an emis-
sivity of 0.98. For the forest site, no reliable measurements of outgoing longwave15

radiation were available. For this site, measured contact temperatures were used.
The issue is now to quantify the uncertainty of the a priori estimates and measure-

ments, and their covariances. These determine the matrices Cx and Ct in Eq. (7).
It is assumed that the probability of θ1, θ2 and Ts have normal distributions with a

standard deviation of one quarter of the difference between their upper and lower limits20

found in the literature. The upper and lower limit of θ1 for crops (in this case maize and
vineyard) and for forest are based on minimum and maximum values for z0M reported
in a review paper of Garratt (1993). For these extreme values of z0M, corresponding
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extreme crop heights (h = z0M/0.13), zero plane displacement height (d=2/3h) and
measurement height (z=h+2) are calculated. The upper and lower limits of θ1 are
calculated from the corresponding values of z0M, z, h and d with Eq. (9). To estimate
the upper and lower limits of θ2 an empirical equation for gs of Allen et al. (1998) is
used:5

gs =
LAIactive

100
(10)

where LAIactive is the leaf area index (m2 leaf m−2 surface) that contributes to tran-
spiration. For the upper and lower limits of θ2 (i.e. gs), the values corresponding to a
LAIactive of respectively 3.5 and 0 are used. The upper and lower limit of Ts is estimated
by applying Stefan-Boltzmann equation for two extreme values of emissivity (0.90 and10

0.99 for the vineyard and 0.95 and 0.99 for the fully grown maize). For the forest site,
the standard deviation of the readings of 9 thermocouples is used as a proxy for the
standard deviation of Ts. Table 2 presents the a priori values and standard deviations
σθ1, σθ2 and σT s derived in this way.

It is further assumed that the covariances (cov(θ1, θ2), cov(θ1, Ts), cov(θ2,Ts)) are15

zero, and that the errors in θ1, θ2 and Ts of consecutive time steps of a time series
are uncorrelated. The latter assumption may not be realistic: roughness estimates and
surface temperature measurements may be biased and errors in θ1 and Ts are there-
fore most likely similar for consecutive time steps. It appears however that reasonable
results can be obtained even without using a Kalman filter for updating of a priori val-20

ues. Assuming that all covariances are zero makes it possible to solve Eq. (7) for every
time step individually. This is computationally more efficient than solving Eq. (7) for the
whole time series at once, which requires manipulation of large matrices containing the
parameters of all time steps.

The posterior parameters for an individual time step are now calculated with Eq. (7),25
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using:

θ =
(
θ1
θ2

)
and θ0 =

(
θ̃1

θ̃2

)
(11)

Cθ =

(
σ2
θ1 0
0 σ2

θ2

)
and Cx = σ2

T s (12)

Negative values for the posterior parameter values are not allowed.
For comparison, sensible and latent heat fluxes are calculated using three methods,5

two of which have been presented in Sect. 2:
1. Ts-approach: using Eqs. (1–3) with H , λE and gs as unknowns, and using the a

priori expression for ga (ga=θ̃1u) and measured Ts. This method, albeit with a more
sophisticated expression for ga, is used in SEBS.

2. A priori approach: using Eqs. (1–3) with H , λE and Ts as unknowns, and using a10

priori values for ga and gs. This method, albeit with more sophisticated expressions for
gs, is commonly used in SVAT models.

3. Bayesian approach: using Eqs. (1–3) with H , λE and Ts as unknowns, and using
posterior values for ga and gs, obtained from 7.

3.2 Experimental setup15

The Bayesian approach is applied to three time series of different land cover and differ-
ent environmental conditions: a maize crop (Sonning, UK), a vineyard (Barrax, Spain)
and a Spruce forest (Speulderbos, The Netherlands). For the maize crop, 9 days, for
the vineyard, 6 days and for the forest, 3.5 days worth of half-hourly data are used.

3.2.1 The maize field20

Meteorological input variables and fluxes were obtained over a fully grown maize field
(row spacing was 0.75 m, the within-row spacing was about 0.12 m) located at the
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Crops Research Unit at Sonning farm (a research facility owned by the University of
Reading, UK). It is located 4 km from Reading in Sonning (UK), at 51.48 N, 0.90 W,
elevation 35 m above sea level (See Houldcroft, 2004); the soil type is loamy sand.
Data from 7 to 16 September 2002 were used, when the leaf area index was 3.4 m2 m−2

and the canopy height 1.9 m.5

Net radiation was measured using a CNR1 four-component net radiometer (Kipp and
Zonen, Delft, the Netherlands) at a mounting height of 2.5 m above the ground. Soil
heat flux was calculated using a Fourier analysis on measured soil temperatures, com-
bined with estimates of thermal diffusivity and heat capacity, the so-called analytical
or exact method (see e.g. Verhoef, 2004). The soil temperatures were acquired with10

type-NT 10 kΩ thermistors (RS, UK) that had been encapsulated with a stainless steel
housing, accuracy of ±0.2◦C, installed at nominal depths of 2 and 5 cm. Soil heat flux
at the surface (z=0), i.e. G, was calculated by using a negative z (i.e. −0.02 m) in the
analytical equation of soil heat flux. Thermal diffusivity was calculated using the Arct-
angent method, using soil temperature signals at both depths, and heat capacity was15

calculated from the soil moisture content at 5 cm depth, measured using a Thetaprobe
(Delta-T Devices).

Wind speed was measured using an AN1 cup anemometer (Delta-T Devices, UK),
air temperature and humidity were measured with a RHT2 psychrometer, all at a height
of 4 m above the vegetation. Surface temperature was estimated by inverting Stefan-20

Boltzmann’s law, using outgoing longwave radiation measured with the CNR1 radiome-
ter and an emissivity of 0.98. Although contact temperature measurements of the sur-
face were available as well, these were not used in order to resemble remote sensing
measurements as much as possible.

Sensible and latent heat fluxes were obtained using a combination of a Solent R325

sonic anemometer (Gill Instruments Ltd, Lymington, Hampshire, UK) and a differential
closed-path infrared gas analyser (LI-7500, LICOR Inc., Lincoln, NE, USA).
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3.2.2 The vineyard

Meteorological input variables and fluxes were obtained over vineyard (row spacing
was 3.35 m, the within-row spacing was about 1.5 m, LAI was 0.52 m2 m−2, fractional
vegetation cover 0.33 and vegetation height about 2 m) located at the Barrax agricul-
tural test site in Spain (39.06 N, 02.10 W), where various crops were grown, some of5

them irrigated. Data were collected between 14 and 21 July 2004 during an inten-
sive field campaign (SPARC). The experiment has been described in detail by Su et
al. (2008).

Net radiation was measured using a CNR1 four-component net radiometer at a
mounting height of 4.8 m above the ground. Soil heat flux was measured with 3 Huk-10

seflux HFP01 heat flux plates (Campbell Scientific Inc., USA) at 0.5 cm depth. Heat
storage above the sensors was neglected. Air temperature and relative humidity were
measured with a HMP45 sensor (Vaisala, Finland) at 4.78 m height, wind speed with
a cup anemometer (Vector Instruments, Ltd., United Kingdom) at 4.88 m height. Sur-
face temperature was estimated by inverting Stefan-Boltzmann’s law, using outgoing15

longwave radiation measured with the CNR1 radiometer and an emissivity of 0.98. All
data were collected at 1 min interval, and 10-min averages were stored, and half hourly
averages were used in this study.

Sensible and latent heat fluxes were obtained using a combination of a Solent R3
sonic anemometer (Gill Instruments Ltd, Lymington, Hampshire, UK) and a differential20

closed-path infrared gas analyser (LI-7500, LICOR Inc., Lincoln, NE, USA) at 3.4 m
height. The representativeness of the flux measurements has been questioned due to
the small fetch and due to extreme conditions caused by irrigation in adjacent fields
in an otherwise dry environment, causing horizontal advection (Timmermans et al.,
2009).25
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3.2.3 The forest

Meteorological input variables and fluxes were obtained over a Douglas fir stand
planted in 1962 in the Veluwe forest ridge in the Netherlands (52.50 N, 05.69 E). The re-
search site is equipped with a 47 m high measurement tower maintained by the Dutch
National Institute for Public Health and the Environment (RIVM). The tree density is5

785 trees per hectare and the tree height 32 m. Leaf area index is approximately
5 m2 m−2. The topography is slightly undulating with height variations of 10 to 20 m
within distances of 1 km. Data were collected between 10 and 21 June 2006 during an
intensive field campaign (EAGLE). Details about the field campaign are described by
Su et al. (2009).10

The instrumentation at the forest site was similar to that at the vineyard. Net radi-
ation was measured at a height of 35 m. Soil heat flux was measured with Hukseflux
heat flux plates at 0.5 cm depth below the litter layer. Temperature, humidity and wind
speed were measured at 35 m height. Because of an issue with the CNR1 radiometer
(the temperature of the instrument was not correctly measured), the outgoing long-15

wave radiation could not be used to estimate surface temperature. Instead, contact
temperatures were measured with Negative Temperature Coefficient (NTC) sensors,
9 of which were attached to needles and branches and 8 to the soil. The average
temperature of the 9 NTC’s connected to the vegetation was used as an estimate of
surface temperature. Because of the dense vegetation, the contribution of soil temper-20

ature was neglected. Contact temperature measurements were only available between
15 and 21 June 2006. Meteorological measurements were carried out and data stored
at 1 min intervals. Half-hourly averages were used in this study.

Sensible and latent heat flux were measured with a CSAT3 sonic anemometer
(Campbell Scientific, USA) and an open path infrared gas analyser (LI-7500, LICOR25

Inc., Lincoln, NE, USA) installed at 47 m height. The data were processed with the soft-
ware package ECpack (http://www.met.wau.nl/projects/jep/index.html) and corrections
were carried out according to Van Dijk et al. (2004).

2351

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/2337/2009/hessd-6-2337-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/2337/2009/hessd-6-2337-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.met.wau.nl/projects/jep/index.html


HESSD
6, 2337–2365, 2009

A Bayesian approach
to estimate sensible
and latent heat over

vegetation

C. van der Tol et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

4 Results

Figure 1 shows plots of a number of variables versus time, measured and calculated
with the three above mentioned methods, for one example day with clear sky conditions
for each of the three field sites. The plotted variables are the difference between surface
and air temperature (Ts−Ta), the aerodynamic and surface conductance ga and gs, and5

the sensible and latent heat flux H and λE .
The a priori approach follows the a priori values for both ga and gs, without making

use of the measurements of Ts−Ta. For the Barrax site, this results in much lower
modelled than measured Ts−Ta. The Ts approach follows the a priori values for ga
and the measurements for Ts−Ta, irrespective the corresponding values for gs. The10

modelled vales for gs are often outside the range of values found in the literature.
The Bayesian approach follows the measured values for Ts−Ta whenever this does not
require an unacceptable deviation from the a priori values for the conductances ga and
gs.

The posterior values of ga and gs reveal actual information about the surface. Pos-15

terior aerodynamic conductance ga does not deviate much from a priori, but surface
conductance gs shows a clear pattern. The highest values of gs are found in the late
morning for the maize and the forest. In the afternoon, gs decreases until a minimum
at 19:00. Semi-empirical models often predict a decreasing gs caused by stomatal clo-
sure during the afternoon. In such models, gs is a function of vapour pressure deficit.20

A similar relationship between gs and vapour pressure deficit is also visible in the pos-
terior values for surface conductance, calculated with the Bayesian approach (Fig. 2).
The difference with semi-empirical models is that this relationship is not imposed nor
calibrated from measured λE . The a priori values gs are constant during the day and
equal for the three sites. The information about the diurnal cycle of gs is obtained from25

the surface temperature measurements. The vineyard has low values for posteriorgs.
This can be attributed to the low vegetation cover (0.33).

During the night, both fluxes (Rn, G, H and λE ) and gradients (qs−qa and Ts−Ta)
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are relatively small. Small errors in absolute sense in fluxes and gradients may then
propagate into the values of ga and gs, leading to unacceptable values if ga and gs
were fitted to the fluxes. During the night, the absolute value of G is the largest term
in the energy balance. Errors in G are relatively important, but these have not been
incorporated in the model.5

During the night, gs returns to its a priori value. A closer look at the meteorological
data during the night showed that |qs−qa| is close to zero (not shown), and conse-
quently λE is close to zero, and Ts−Ta is relatively insensitive to the value of gs. Be-
cause of the insensitivity to gs, the model error (Eq. 7) can not be reduced by adjusting
gs, and posterior gs remains at the a priori value.10

Figure 1 also shows that the a priori approach and the Bayesian approach are unable
to reproduce night time surface temperatures of the vineyard and the forest. During the
night, stable, stratified air conditions are formed, in which the aerodynamic conduc-
tance strongly reduces (Massman and Lee, 2002). We do not find this strong reduction
of ga in the posterior values. The reason is that the chosen standard deviation for θ115

(σθ1) is too low to include night time stable conditions: if σθ1 were increased, then pos-
terior θ1 during the night reduces zero, and measured night-time surface temperatures
are reproduced (not shown). However, increasing σθ1 also causes large variability of
θ1 during the day, and the diurnal cycle of posterior gs will then be incorporated by the
posterior θ1. For this reason, and because it is difficult to quantify the effect of stability20

on σθ1 in an objective way, stability effects were not incorporated into the value of σθ1.
Concerning the fluxes H and λE , the following is observed. The a priori approach

performs well during the night and in the morning, but underestimates H and overes-
timates λEduring the afternoon. This confirms the role of afternoon stomatal closure.
The Ts approach performs well during the afternoon, but poorly during the night and in25

the morning. The values of the fluxes calculated with the Bayesian approach always
vary between that of a priori and the Ts approach. Of the tree approaches, the Bayesian
approach follows the measurements the closest. For all three sites, the Bayesian ap-
proach is closer to the a priori approach in the morning and closer to the Ts approach
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in the afternoon.
Figures 3–5 confirm that the Bayesian approach results in the most accurate pre-

dictions of H and λE . These figures show scatter plots of modelled versus measured
fluxes of H and λE for the three methods for the entire data series, per site. For all
three sites, the Bayesian approach results in the lowest root mean square error for the5

fluxes. The Bayesian approach reduces both the bias and the scatter compared to the
other two approaches.

Both the Ts-approach and the Bayesian approach overestimate λE of the vineyard.
This may be caused by a measurement error rather than a model error. The vineyard
was relatively small and surrounded by bare land, stubble fields and irrigated crops,10

which contaminated the eddy covariance signal (Timmermans et al., 2009). The high
measured λE values may be attributed to an adjacent irrigated maize field. A different
problem with the measurements is apparent in the forest, where measured Rn was
10% higher than the sum of H , λE and G. Because the model forces energy balance
closure (Eq. 1), it is possible that λE is overestimated, while H is not underestimated15

(Fig. 5).

5 Discussion and conclusion

In data assimilation, it is critical to quantify the uncertainty associated to parameters
and measurements. This is not always possible for lack of data. A starting point is to
identify sources of error. In this particular study, the uncertainties of aerodynamic and20

surface conductance are relevant.
Aerodynamic roughness parameter θ1 (surface roughness) can vary in space and

time for two different reasons: variations in surface roughness and variations in atmo-
spheric stability. The first is the dominant cause of variations in space (at a specific
time of a satellite overpass), whereas the second is the dominant cause of variations in25

time (at a specific field site). Similarly, surface conductance, θ2 , can vary in space and
time for two different reasons: variations in plant species, vegetation density and soil
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moisture content on the one hand and variations in the diurnal cycle of stomatal reg-
ulation on the other hand. Again, the first is the dominant cause of spatial variations,
and the second of temporal variations.

In this study, no distinction was made between sources of error. High standard devi-
ations are used for the two conductances in order to cover different errors, although the5

effect of stability on aerodynamic conductance during the night was not incorporated
(see Sect. 4). As an alternative to the approach presented in this paper, posterior con-
ductances were also calculated using an unknown bias for aerodynamic conductance
for the whole time series, with standard deviation σθ1. This approach led to results
similar to those presented in this paper, although the difference between a priori and10

posterior aerodynamic conductance was higher.
The simple Bayesian approach led to improved estimates of sensible and latent heat

flux of maize, vineyard and forest compared to more classic approaches which use
either measured surface temperature or a priori parameter values. Posterior estimates
reveal the diurnal pattern of surface conductance during the day (stomatal regulation),15

without using measured fluxes as input.
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Table 1. Unknowns in the energy balance equations (Eqs. 1–3).

Description Symbols Units

Energy balance terms Rn, G, H , λE W m−2

Conductances ga, gs m s−1

Air and surface temperature Ta, Ts K
Vapour concentration in the air and in soil and leaf pores qa, qs kg m−3
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Table 2. A priori values for θ1 and θ2, and standard deviations for θ1, θ2 and Ts.

σTs
(K)

θ1× 103

(–)
σθ1× 103

(–)
θ2×103

(mm s−1)
σθ2× 103

(mm s−1)

Sonning (maize) 0.74 9.8 3.6 14.3 8.8
Barrax (vineyard) 2.47 5.7 3.6 14.3 8.8
Speulderbos (forest) 1.37 44.6 14.2 14.3 8.8
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Fig. 1. Measured and modelled values of (Ts − Ta), aerodynamic conductance ga, surface
conductance gs, sensible heat flux H , and latent heat flux λE versus time. The data represent
example days for a fully-grown maize field in Sonning (UK) on 13 September 2002, a vineyard
in Barrax (Spain) on 15 July 2004, and a forest in Speulderbos (the Netherlands) on 16 June
2006. The dashed line represents the a priori approach, the thin solid line the Ts approach, the
bold solid line the Bayesian approach, and the symbol “x” represents a field measurement.
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Fig. 2. Scatter plot of posterior surface conductance versus atmospheric vapour pressure
deficit for all half-hourly data of the three sites.
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Fig. 3. For the maize field (Sonning), for all half-hourly data in the measurement period, mod-
elled versus measured sensible heat flux H (upper graphs) and latent heat flux λE (lower
graphs), for the a priori approach (left), the Ts-approach (middle) and the Bayesian approach
(right).
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Fig. 4. Similar to Fig. 2, but for the vineyard (Barrax).
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Fig. 5. Similar to Fig. 2, but for the forest (Speulderbos).
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