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Abstract

In this study, a methodology has been developed to replicate time consuming Monte
Carlo (MC) simulation by using an Atrtificial Neural Network (ANN) for assessment of
model parametric uncertainty. First, MC simulation of a given process model is run.
Then an ANN is trained to approximate the functional relationships between the input
variables of the process model and the synthetic uncertainty descriptors estimated from
the realizations. The trained ANN model encapsulates the underlying characteristics
of the parameter uncertainty and can be used to predict uncertainty descriptors for the
new data vectors. This approach was validated by comparing the uncertainty descrip-
tors in the verification data set with those obtained by MC simulation. The method is
applied to estimate parameter uncertainty of a lumped conceptual hydrological model,
HBYV, for the Brue catchment in UK. The results are quite promising as the prediction
intervals estimated by ANN are reasonably accurate. The proposed techniques could
be useful in real time applications when it is not practicable to run a large number of
simulations for complex hydrological models and when the forecast lead time is very
short.

1 Introduction

Monte Carlo (MC) simulation is the most widely used method for uncertainty analysis.
It involves random sampling from the distribution of parameters inputs and successive
model runs until a desired statistically significant distribution of outputs is obtained.
The main advantage of the MC simulation is its general applicability, however methods
of this type require a large number of samples (or model runs), and their applicability
is sometimes limited to simple models. In case of computationally intensive models,
the time and resources required by these methods could be prohibitively expensive. A
version of the MC simulation method was introduced under the term “generalised likeli-
hood uncertainty estimation” (GLUE) by Beven and Binley (1992). The GLUE concept
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has become a popular method in analysing the parameter uncertainty in hydrological
modelling. (On the appropriateness of attributing the GLUE methodology to Bayesian
methods see Mantovan and Todini (2006), and the subsequent interesting discussion
in the J. Hydrol. in 2007.)

Although the MC simulation is conceptually simple and very flexible, it is well rec-
ognized that MC-based simulation still lack a well-established convergence criteria to
terminate the simulations at a desired level of accuracy. A number of researches were
conducted to reduce the number of MC simulation runs and to identify the convergence
criteria (e.g., McKay et al., 1979; Rossel et al., 2001; Ballio and Guadagnini, 2004).

In addition, MC based method for uncertainty analysis of the outputs of such models
is straightforward, but becomes impractical in real time applications when there is no
time to perform the uncertainty analysis because the large number of model runs is
required. For such situations alternative methods were developed, referred to as the
moment propagation technique, which are able to directly calculate first and second
moments without application of MC simulation (see, e.g., Rosenblueth, 1981; Harr,
1989; Protopapas and Bras, 1990; Melching, 1995; Kunstmann et al., 2002).

We propose to use ANN to approximate the uncertainty descriptors of a model output
(this latter model will be further referred as M). The idea of using statistical and, in
general, machine learning models, to improve model accuracy is not new. Typically,
information about model errors is used to train data-driven error correctors (Abebe and
Price, 2004) or to build more sophisticated data-driven models of model uncertainty
(Shrestha and Solomatine, 2006, 2008). In this study, we extend this idea towards
building a model (referred as V) encapsulating the information about the realizations
of the process (hydrologic) model M output generated by MC simulations. Instead
of predicting a single value of the output of M as done in the most error correction
procedures, we aim at predicting the distribution of the output of M generated by MC
based simulations. Thus, the method allows one to predict the uncertainty bounds of
the model M prediction without re-running the MC simulations when new input data is
observed and fed into M.
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In this study, the approach is tested on estimating the two quantiles of the MC simu-
lation of the model output. Thus, the model parameter uncertainty is measured by only
two quantiles of the probability distribution that constitutes the prediction interval of the
model output corresponding to some confidence level (say, e.g. 90%). The experiments
were carried out with ANN. The HBV hydrological model of the Brue catchment in the
United Kingdom is used as a case study.

2 Main application of ANN in hydrological modelling

ANN is a popular technique used to discover a dependency between inputs and out-
puts of a physical system from the available data. By data we understand the known
samples combinations of inputs and corresponding outputs. As such a dependency
(“model”) is discovered, it can be used to predict the future system’s outputs from the
known input values.

ANN has been extensively used, especially in rainfall-runoff (R-R) modelling (Minns
and Hall, 1996; Dawson and Wilby, 2001; Abrahart and See, 2000; Govindaraju and
Rao, 2000). Apart from ANN, other machine learning techniques have been also used:
for example, fuzzy rules based system (Bardossy et al., 1995; Klir and Yuan, 1996),
model trees (Solomatine and Dulal, 2003), support vector machines (Dibike et al.,
2001). However, the application of such techniques to estimate the uncertainty of phys-
ically based or machine learning based R-R modelling is very limited. Abebe and Price
(2004) used ANN to forecast the surge prediction accuracy along the Dutch coast in
North Sea. Shrestha and Solomatine (2006) used machine learning techniques to es-
timate non-parametric uncertainty of river flow forecasting by ANN and other machine
learning techniques in the Sieve river basin, Italy. Shrestha and Solomatine (2008)
and Solomatine and Shrestha (2009) used machine learning techniques to estimate
uncertainty of the simulated river flows by a conceptual R-R model to various case
studies. The details of ANN can be found in Bishop (1995) and Haykin (1999), and
the overviews of ANN applications within hydrology can be found in Maier and Dandy
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(2000), and Dawson and Wilby (2001).

3 Methodology
3.1 Basic idea

There are a number of assumptions to consider. First, we assume that the uncertainty
of a hydrological model output depends on the forcing input data and the model states
(e.g., rainfall, antecedent rainfall, soil moisture etc.). We also assume that uncertainty
associated with the prediction of a hydrological variable, e.g. runoff, has similar magni-
tude for similar hydrological conditions. By the hydrological conditions we understand
here the combination of the state of input data and the state variables, which are forc-
ing or driving to generate the runoff in the catchment. For example, one can see that
the prediction of extreme events such as peak flows is more difficult if compared to the
low flows. Consequently, uncertainty of the flow prediction in the peak flow is higher as
compared to those for low flow.

Instead of building a model of the error in the process model output, as it is done
in the most of the error updating procedures (e.g., Abebe and Price, 2003), in the
presented approach a predictive model for the parameters of the distribution of the
process model output is built (this distribution is generated by MC simulations). Thus,
our method allows one for predicting the uncertainty bounds of the model prediction
without running the MC simulations in real time application.

3.2 Definition of the process model M

Consider a deterministic model M of a real world system predicting a system output
variable y given the input data vector x, initial condition of the state variables s, and
the vector of the parameters 8. The model M could be physically based, conceptual,
or even data driven. In this paper we assumed model M is a conceptual hydrological
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model. The system response can be represented by equation:
y=M(x,s,0)+e=y+¢ (1)

where ¢ is the the model error between the observed response y and the corre-
sponding model response y . Before running the model M, the components of the
model, i.e. input data x, initial conditions s,, parameters vector 8 and the model struc-
ture itself have to be specified, while the output or model response y and the state
variable s are computed by running the model. These components may be uncertain
in various ways to various degrees; the consequences of these uncertainties will be
propagated into the model states and the outputs. In this paper, however, only uncer-
tainty associated with parameters vector 6 is considered.

3.3 Monte Carlo simulation

The MC simulation is performed by running the hydrological model M multiple times
either changing the input data x or parameters vectors or even the structure of the
model or combination of them. In this paper we assume that the model structure and
the input data is certain (correct), so mathematically this can be expressed as:

Vii=Mx,0), t=12..n =12 s 2)

where 6; is the set of parameters sampled for i run of MC simulation, V: i is the

model output of the t'" time step for it run, n is the number of time steps and s is the
number of simulations.

3.4 Estimation of the prediction interval

The statistical properties (such as moments and quantiles) of the model output for each
time step t are estimated from the realizations y, ;. One of the ways to judge about the
uncertainty of model output is to use the error variance: large variance of the model
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error typically indicates that the model prediction is uncertain. In most cases, however,
variance does not sufficiently describe the uncertainty, and more informative quantities
such as prediction intervals are used.

Prediction interval is comprised of upper and lower limits between which a future un-
known value is expected to lie with the prescribed probability. These limits are typically
the quantiles of the model output distribution. In each simulation, model output is given
a different weight (to be defined later), so a quantile can be found using the following
equation:

n
P, <Q(p) = > wly; < Qp) (3)
i=1

where, y; is the model output at time step ¢, }7“, is the value of model outputs at
time ¢ simulated by the model M(x, 8;) at simulation /, Q(p) is p% quantile, w; is the
weight given to the model output at simulation /. Quantiles obtained in this way are
conditioned on the inputs to the model, model structure, and the weight vector w;.

In order to compute the prediction interval of the model simulation for the given con-
fidence level a (0O<a<1), two quantiles (1-a)/2*100% and (1+a)/2*100% are estimated
from the y; ;. Following Shrestha and Solomatine (2006), these two quantiles will be
called the lower prediction limit PL" and the upper prediction limit PLY:

Q(p) = PL:, where,p = (1-a)/2 (@)
Q(p) = PLY, where,p=(1+a0)/2 (5)

The prediction interval P/= [PLL PLU] is apportioned into two parts given the output
y of the calibrated (optimal) model as:

PI-=y-pPLE, PIV=pPLY -y (6)

where P/" is the distance between the model output and the lower prediction limit, P
is the distance between the model output and the lower prediction limit. £/~ and P/Y
1683

are referred to lower and upper prediction intervals, respectively (although these are
not intervals but distances).

3.5 ANN model V for estimation of prediction intervals (Pls)

To build the model VV that maps the input data and the state variables to the prediction
interval of the model output that is generated by MC simulations, ANN will be used.
Experience suggests that the model residuals (errors) may show non-stationary bias,
variance skewness and autocorrelation over one or more time steps (Beven and Freer,
2001). This characteristic of the model output distribution motivates us to build a sta-
tistical (machine learning) model to approximate not only the mean and the variance
but also the prediction interval of the output.

Model I encapsulating the functional relationship between the input data x and the
prediction interval P/ will take the following form:

] —U
PIY=Vi(Xy)+¢& =PI + ¢, PIV=Vy(X))+¢& =Pl +¢& (7)

where P/ and P1Y are lower and upper prediction intervals computed from MC data;

/37L and 157U are lower and upper prediction intervals estimated by ANN; ¢, , ¢, are the
residual error in estimating the lower and upper prediction intervals, respectively.
Model V, after being trained, encapsulates the underlying dynamics of the uncer-
tainty measures of the MC simulations and maps the input to these measures. The
model V can be of various types, from linear to non-linear regression function such
as an ANN. The choice of the model depends on the complexity of the problem to be
handled and the availability of data. Once the model V is trained on the calibration
data, it can be employed to estimate the uncertainty measures such as Pls for the new
input data vector that was not used in the model building process. Once the PI* and
PV are estimated, the prediction interval of the model output is computed by adding
the model output as follows:
PLt=y-PI', PLY=7+PI (8)
1684



10

15

20

25

10

15

20

3.6 Selection of the input variables for model I/

In order to train model V/, data set X|, should be constructed on the basis of the set
D = {x;,y;}, (where, x; = input data and y; = observed data) of the hydrological model.
Since the nature of models M and V is different, in most cases for choosing the ade-
quate variables for X, (possibly lagged), additional analysis of relationships between
the output of I and the variables constituting D is needed. Such analysis is typically
based on correlation and average mutual information. For example, if model M is a
conceptual hydrological model, it would typically use rainfall (R;) and evapotranspira-
tion (E;) as input variables to simulate the output variable runoff (Q;). However, the
uncertainty model V whose aim is to predict the probability distribution of error of the
simulated runoff will be trained with the possible combination of rainfall and evapotran-
spiration or effective rainfall and, past values (lagged) of them including the lagged
values of runoff.

3.7 Models performance indicators

The uncertainty model V' can be validated in two ways: a) measuring its predictive ca-
pability; b) measuring the statistics of the uncertainty. The former approach measures
the accuracy of uncertainty models in approximating the quantiles of the probability dis-
tribution of the model error generated by MC simulations. The later approach measures
the goodness of the uncertainty models as uncertainty estimators.

Two performance measures such as coefficient of correlation (r) and the root mean
squared error (RMSE) are used to measure the predictive capability of the uncertainty
model. Beside these numerical measures, the graphical plots such as scatter and
time plot of the quantile of the model error obtained from the MC simulation and their
predicted values are used.

Goodness of the uncertainty models as uncertainty measures is evaluated by us-
ing the so-called prediction interval coverage probability (P/CP) and mean prediction
interval (MP/) (Shrestha and Solomatine, 2006). The P/CP measures the probability
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that the observed values lies within the estimated Pls and it is estimated as:

1 n
PICP = —
CP = - >cC (9)
t=1
L U,
with C = {1’PLf Sy sPLy
0, otherwise.

MP| estimates the average width of the Pls and gives an indication of how high is
the uncertainty:

1 - U L
MPI = FZ(PLt - PLY) (10)

Theoretically, the value of P/CP should be close to the prescribed degree of confi-
dence. If there is no uncertainty, then the value of MP/ is zero.

4 Application
4.1 Study area

The Brue catchment located in the South West of England, UK is selected for the
application of the methodology. The catchment has a drainage area of 135 km? with the
average annual rainfall of 867 mm and the average river flow of 1 .92m°/s, for the period
from 1961 to 1990. The discharge is measured at Lovington. The hourly potential
evapotranspiration was computed using the modified Penman method recommended
by FAO (Allen et al., 1998). Splitting of available data set is based on Shrestha and
Solomatine (2008), one year hourly data from 1994/06/24 05:00 to 06/24/1995 04:00
was selected for calibration of HBV hydrological model, running MC simulations to
generate data for uncertainty model VV and training model V. Data from 24/06/1995
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05:00 to 31/05/1996 13:00 was used for the verification (testing) of the hydrological
model, running MC simulations to generate data for validating uncertainty model V
and validating model V. Each of the two data sets represents almost a full year of
observations, and it appeared that the statistical properties of these sets are similar.

4.2 Conceptual hydrological model

A simplified version of HBV model (Fig. 2) was used to simulate river flows. Input data
are observations of precipitation, air temperature, and estimates of potential evapo-
transpiration. The detailed description of the model can be found in Lindstrom et al.
(1997).

4.3 Experimental setup

The nine parameters listed on Table 1 are used in HBV model. The model was first
calibrated using the global optimization routine — adaptive cluster covering algorithm,
ACCO (Solomatine et al., 1999) to find the best set of parameters, and then followed
by manual adjustments of the parameters. The ranges of parameters for automatic
calibration and parameter uncertainty analysis were set based on a range of calibrated
values from other model applications (e.g., Braun and Renner, 1992) and the informa-
tion about the catchment.

The model was calibrated using Nash and Sutcliff coefficient of efficiency (CE) as
a performance measure of HBV model. For the calibration period CE was 0.96. The
model was validated by simulating the flows for the independent validation data set,
and CE was 0.83. Figure 3 shows the observed and simulated hydrograph in both
calibration and verification period. The rainfall is also shown on the figure.

4.4 MC simulation and its convergence analysis

The parameters of HBV model are sampled from the uniform distribution with the
ranges given in Table 1. The model is run for each random parameter set and like-
1687

lihood measure is computed for each model run. CE is used as the basis to calculate
likelihood. We investigated the number of behavioural samples retained out of 74 467
MC samples for different values of rejection threshold. It was observed that only 1/3 of
simulations (25000 samples) are accepted for threshold value of 0, whereas less than
1/10 of simulations are retained for a threshold value of 0.7.

We have also tested the convergence of MC simulations to know the number of
samples required to get the reliable results. Mean and standard deviation of CE were
used to analyse the convergence of MC simulations (Eq. 11 and 12). Other statistics
for convergence test can be found in Ballio and Guadagnini (2004).

k
ME, = %Z(CE,-) (11)
i=1

(CE; - ME,)? (12)

x|
M~

SDEk =

I
-

where CE; is the coefficient of model efficiency of i MC run, ME, and SDE, are
the mean and standard deviation of efficiency of model runs upto Kkt runs, respec-
tively. The Fig. 4 depicts the two statistics — mean and standard deviation of CE —
used to analyse the convergence of MC simulations. It is observed that both statistics
are stable after 500010 000 simulations, so 10 000 MC simulations are reasonable to
consider in this case study.

4.5 Sensitivity of parameters

The interaction between parameter values results in the broad region of acceptable

simulation (corresponding to the different parameter values) and it is the combination

of parameter values that produces the acceptable or non-acceptable simulations within

the chosen model structure. Such result reveals little about the sensitivity of the model
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predictions to the individual parameters, except where some strong change in the like-
lihood measure is observed in a certain range of a particular parameter. More detailed
analysis based on the extension of regional sensitivity analysis (Freer et al., 1996;
Spear and Hornberger, 1980) was performed. Figure 5 shows the cumulative distribu-
tions for 10 equal sets (by number) of the MC simulations. Each parameter population
is ranked from best to worst in terms of the chosen likelihood function and the ranked
population is then divided into ten bins of equal size. The cumulative likelihood distribu-
tion of each group is then plotted. Parameter sensitivity can be evaluated by assessing
the spread of cumulative distribution function of each group is then plotted. Parameters
with the strong deviation of the distribution function are recognized as sensitive param-
eters. Three parameters ALFA, K and MAXBAS were found to be the most sensitive
parameters, while the two parameters K4 and CFLUX shows no sensitive at all. The
rest of the parameters show the moderate sensitivity.

4.6 ANN for emulating MC simulation

Once having the uncertainty results generated by MC simulation, ANN is trained to
learn functional relationship between the uncertainty results and the input data. The
GLUE method has been used for parameter uncertainty estimation of HBV model.
The threshold value of 0.0 (measure by CE) is selected to classify simulation either
behavioural or non-behavioural. 90% uncertainty bounds are calculated using the 5%
and 95% quantiles of the MC simulation realizations.

Corresponding 90% lower and upper Pls are calculated using the model output sim-
ulated by optimal model parameter sets found by Shrestha and Solomatine (2008).
Hence the computed upper and lower Pls are conditional on contemporary value of
the model simulation. Next step was to select the most relevant input variables to build
predictive ANN model.

1689

4.6.1 Selection of input variables

To select the input variables several approaches can be used (see, e.g., Solomatine
and Dulal, 2003; Guyon and Elisseeff, 2003; Bowden et al., 2005). The input vari-
ables for model V are constructed from the rainfall, evapotranspiration and observed
discharge. Experimental results show that evapotranspiration alone does not have sig-
nificant influence on the prediction interval. Thus it was decided not to include the
evapotranspiration as a separate variable, but rather to use effective rainfall (rainfall mi-
nus evapotranspiration for rainfall greater than evapotranspiration and zero otherwise).

Figure 6 shows the correlation coefficient and the average mutual information (AMI)
of R; and its lagged variables with the lower and upper Pls. It is observed that the
correlation coefficient is minimum at the zero hour lag time and increases with the lags
upto 9 h (Fig. 6a) for lower Pl. While the optimal lag time (time at which the correlation
coefficient and/or AMI is maximum) is 7 h in the case of upper Pl (Fig. 6b). At this
optimal lag time, information about the Pls is contained maximally in the variable R;.
Such findings are also supported by the AMI analysis. Additionally, correlation and AMI
between the Pls and observed discharge were analysed. The results show that the
immediate and the recent discharges (with the lag of 0, 1, 2) have very high correlation
with the Pls. So it was also decided to use the observed discharge as the input to the
model V.

Several structures of the input data including lagged variables were considered. The
principle of parsimony was followed to avoid the use of a large number of inputs, so
the aggregates, such as the moving averages or derivatives of the inputs that would
have hydrological meaning were considered. Typically, the rainfall depth at hourly time
step partially exhibits random behaviour, and is not very representative of the rainfall
phenomenon during a short period. Hence, we used the mean rainfall value of the
lagged variables R;_g,R;_g,R;_7,R:_g, and R;_g as the rainfall input, which is denoted as
R;_g4- Furthermore, derivative of the flow indicates whether the flow situation is either
normal or base flow (zero or small derivative), or can be characterized as the rising

1690



10

15

20

10

15

20

25

limb of the flood event (high positive derivative), or the recession limb (high negative
derivative. Therefore, in addition to the flow variable Q;_;, rate of change of flow at time
t — 1 is computed by deducting the flow at time ¢ — 2 from flow at ¢ — 1 and denoted by
Aot_«] .

The ANN model is based on 8745 data records from 24/06/1994 05:00 to 24/06/1995
04:00 (hourly) and its structure is given by:

Pl=V(R;_ga, Qt_1, £Q;_1) (13)

where, Pl is prediction intervals PI- or PIY; R;_g, is moving average of
Ri_5,R_g:Rs_7,R:_g, Ai_g; and AQ;_q is Q;_y — Q;_, (characterizes the derivative of
previous discharge).

4.6.2 Model training

The same data set used for calibration and verification of HBV model were used for
training and verification of model V' respectively. However, for proper training of the
ANN model the calibration data set is segmented into two sets; 15% of data sets for
cross validation (CV) and 85% for training.

CV data set was used to identify the best structure of ANN. In this paper, a mul-
tilayer perceptron network was used; optimization was performed by the Levenberg-
Marquardt algorithm. The hyperbolic tangent function was used for the hidden layer
with linear transfer function at the output layer. The maximum number of epoch was
fixed to 1000. Trial and error method is adopted to detect the optimal number of neu-
rons in the hidden layer, testing a number of neurons from 1 to 10. It was observed
that six neurons give the lowest error on CV set.
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5 Results and discussions

Figure 7 shows the scatter plot of observed and simulated discharge in verification
period. For many data points HBV model is quite accurate but its error (uncertainty)
is quite high during the peak flows. This can be explained by the fact that the version
of the HBV model used in this study is the lumped model and one cannot expect high
accuracy from it.

ANN-based uncertainty model V trained on the data generated by MC simulations,
was tested on the verification data set; its performance is shown in Fig. 8. Figure 9
shows the hydrograph with the 90% uncertainty bounds predicted by ANN together
with the MC simulation uncertainty bounds in the verification period. It can be said that
ANN reproduces the MC simulations uncertainty bounds reasonably well, in spite of
the low correlation of the input variables with the Pls. Although some errors can be
noticed, the predicted uncertainty bounds follow the general trend of MC uncertainty
bounds. Noticeably the model fails to capture the observed flow during one of the
peak events (bottom left figure). Note however, that the results of ANN model and MC
simulations are visually closer to each other than both of them to the observed data.

Detailed analysis reveals that estimated uncertainty bounds contain 77.00% (PICP)
of the observed runoffs, which is very close to the MC simulation result (77.24%). The
average width of prediction intervals (MP/) estimated by ANN is narrower (1.93 ms/s)
as compared to the value obtained with MC simulations (2.09 ms/s). Further analysis
of the results reveals that 14.74% of the observed data are below the lower uncertainty
bounds whereas 8.01% of data are above the upper bounds.

The predictive capability of ANN model in estimating lower and upper Pls are com-
pared in both calibration and verification period and it appears that the correlation co-
efficient and RMSE for PI* is higher than those of PI1Y. This can be explained by the
fact that P1Y corresponds to the higher values of flow (where the HBV model is less
accurate) and has higher variability, which makes its prediction a difficult task.
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6 Conclusions

This paper presents a method to replicate the results of Monte Carlo simulations in
the form of a predictive ANN model. The method is computationally efficient and can
be used in real time application when the large number of model runs required, and is
applicable to various kinds of hydrological models.

The ANN models is first trained on the data generated by MC simulations to encapsu-
late the relationship between the hydrometeorological variables and the characteristics
of the model output probability distribution (prediction interval), and then the trained
models are used to estimate the prediction interval for the new input data. It is worth
mentioning that MC simulations are done off-line only to generate the data to train the
ANN, while the trained ANN models are employed to estimate the uncertainty in real
time application without running the MC simulations any more.

In this study, two separate ANN models are used to estimate the two quantiles (5%
and 95%) forming the 90% prediction interval. However the methodology can be ex-
tended to predict several quantiles of the model outputs, that is, in fact, estimating the
shape of the probability distribution of the model output generated by MC simulations.
The conceptual hydrological model HBV was applied to the Brue catchment in United
Kingdom and used as a case study. The results demonstrate that the prediction of
uncertainty with ANN generate interpretable uncertainty estimates, and this is an in-
dicator that the presented method can be a valuable tool for assessing uncertainty of
various predictive models. The proposed method can be used to replicate the results
of various versions of the MC methods, e.g. Markov Chain Monte Carlo and Latin hy-
percube sampling. Furthermore, this method can be applied in the context of other
sources of uncertainty — input, structure, or combined.

Further studies aim at testing other machine learning techniques (possibly including
instance-based learning), and applying the presented methodology to other hydrologi-
cal (process) models in various case studies.
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Table 1. The uniform prior interval of HBV model parameters are used for calibration of the
model and for analysis of parameter uncertainty by MC simulations method.

Parameter Description Uniform prior ~ Optimum
range value
FC Maximum soil moisture content 100-300 160.33
LP Limit for potential evapotranspiration  0.5-0.99 0.527
ALFA Response box parameter 04 1.54
BETA Exponential parameter in soil routine  0.9-2 1.963
K Recession coefficient for upper tank  0.0005-0.1 0.001
K4 Recession coefficient for lower tank ~ 0.0001-0.005 0.004
PERC Percolation from upper to lower
response box 0.01-0.09 0.089
CFLUX Maximum value of capillary flow 0.01-0.05 0.038
MAXBAS  Transfer function parameter 8-15 12.00
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Fig. 1. The Brue catchment showing (the horizontal and vertical axes refer to the easting and
northing in British national grid reference co-ordinates).
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5F - Snow

RF = Rain

EA - Evapotranspiration

SP - Snow cover

1M = Infiltration

R = Recharge

SM - Soil moisture

CFLUX = Capillary transport
UZ - Storage in upper reservoir
PERC - Percolation

LZ - Storage in lower reservolr
Qo = Fast runoff componant
Q1 = Slow runaff componant
Q- Total runoff

Fig. 2. Schematic representation of HBV-96 model (Lindstrom et al., 1997) with routine for
snow (upper), soil (middle) and response (bottom)
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Fig. 4. The convergence of mean and standard deviation of the coefficient of model efficiency.
Note that x-axis is log scale to see initial variation.
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equal sets s1 through s10 (by number) of MC simulations and each line represents cumulative
likelihood distribution of each set from best (s1) to worst (s10) in term of the chosen likeli-
hood. Parameters with strong deviation of the distribution function are recognized as sensitive
parameters (ALFA, K and MAXBAS).
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Fig. 6. Linear correlation and AMI between rainfall (a) lower prediction intervals; and (b) upper
prediction intervals for different lags time. Black squares show the maximum correlation.
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Fig. 7. Scatter plot of observed and simulated discharge from HBV model.
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Fig. 8. Scatter plots showing the performance of the ANN-based uncertainty model in the
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Fig. 9. Hydrograph of 90% prediction bounds estimated by MC simulation and ANN in veri-
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simulation. The black line denotes the prediction uncertainty estimated by ANN and dash line
indicates simulated discharges from optimal model parameters.
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