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Abstract

Land surface models (LSM) are widely used as scientific and operational tools to sim-
ulate mass and energy fluxes within the soil vegetation atmosphere continuum for nu-
merous applications in meteorology, hydrology or for geobiochemistry studies. A re-
liable parameterization of these models is important to improve the simulation skills.5

Soil moisture is a key variable, linking the water and energy fluxes at the land surface.
An appropriate parameterisation of soil hydraulic properties is crucial to obtain reliable
simulation of soil water content from a LSM scheme. Parameter inversion techniques
have been developed for that purpose to infer model parameters from soil moisture
measurements at the local scale. On the other hand, remote sensing methods provide10

a unique opportunity to estimate surface soil moisture content at different spatial scales
and with different temporal frequencies and accuracies. The present paper investigates
the potential to use surface soil moisture information to infer soil hydraulic characteris-
tics using uncertain observations. Different approaches to retrieve soil characteristics
from surface soil moisture observations is evaluated and the impact on the accuracy of15

the model predictions is quantified. The results indicate that there is in general potential
to improve land surface model parameterisations by assimilating surface soil moisture
observations. However, a high accuracy in surface soil moisture estimates is required
to obtain reliable estimates of soil characteristics.

1 Introduction20

Soil moisture is a key link between the land surface and the atmosphere as it is an
important parameter for many energy-balance related modeling applications such as
numerical weather forecasting, climate prediction, radiative transfer modeling, global
change modeling and other land process models (Owe et al., 2008). Land surface
models have become indispensable tools to quantify and integrate the most important25

physical, chemical and biological processes in the unsaturated zone of soils. However,

96



the use of these models requires model parameters to describe soil and vegetation
properties. At the same time these data are usually fragmented, are of different accu-
racy and might change in time and space. Especially the temporal and spatial variabil-
ity of soil hydraulic parameters (e.g. soil porosity, saturated conductivity) might have
considerable effect on LSM simulations. Despite the progress that has been made in5

direct measurement of hydraulic characteristics of soils, these techniques remain rela-
tively time consuming and therefore costly. However, direct or indirect observations of
soil moisture dynamics might be used to infer soil hydraulic characteristics.

Various model calibration procedures have been developed that adjust model pa-
rameter values to represent as closely as possible observations of a real system (Vrugt10

et al., 2003). In order to automatically calibrate model parameters, algorithms defin-
ing maximum likelihood functions for the measurement of the closeness between the
model results and observations are defined and the model parameters are then opti-
mised. A variety of global or local optimisation methods, such as the Shuffeld Complex
Evolution (SCE) algorithm (e.g. Duan et al., 1992; Yapo et al., 1998) or simulated an-15

nealing (Thyer et al., 1999) have been used. Several studies have made an intercom-
parison of these different approaches (Madsen et al., 2002; Thyer et al., 1999).

While in situ measurements are restricted to small areas, remote sensing techniques
are able to cover larger areas, which might offer the opportunity to infer soil character-
istics from these observation time series (Santanello et al., 2007). Numerous attempts20

have been made to optimise LSM soil parameters using observations of soil water
content and/or soil temperature (e.g. Gupta et al., 1999; Hogue et al., 2005; Liu et al.,
2005).

Inverse modeling of soil hydraulic parameters is an established method to optimise
the parameterization of land surface models (Vrugt et al., 2003, 2005; Mertens et al.,25

2006). Soil parameters might be inferred from observations to reproduce LSM simu-
lations that best coincident with observed soil moisture or soil temperature dynamics.
Nevertheless, the inverse modeling of soil characteristics does not necessarily result
in physically meaningful, thus realistic, model parameters and might therefore require
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constraints during the minimization procedure. Otherwise one might be able to find nu-
merous solutions for a model parameter set which all results in model predictions that
coincident well with observations. This problem has been addressed as the equifinality
problem in parameter estimation (Beven and Binley, 1992; Beven and Freer, 2001).

While the direct measurement of soil hydraulic characteristics is hampered by com-5

plicated and costly measurements, indirect estimation of soil hydraulic properties is
widely established. Soil pedotransfer functions (PTF’s) use soil variables that can be
easily measured (soil texture, organic matter) to estimate soil hydraulic characteris-
tics. There are a couple of reviews on PTF’s in the literature (Woesten et al., 2001;
Woesten, 1997; Rawls et al., 1991). Pedotransfer functions are typically statistical re-10

lationships between soil textural parameters and the soil hydraulic characteristics and
are estimated from the analysis of large soil data bases (Woesten et al., 1999; Batjes,
1996). However, the required soil texture information is available with different accu-
racies at different spatial scales. Global soil data is available e.g. from the FAO map
(FAO, 1991) which provides soil texture data for the entire globe at very coarse spatial15

scales (1:5 000 000), while much more detailed (e.g. scale 1:25 000) information might
be available only for limited areas.

Recent studies have shown that the combination of land surface model simulations
and soil moisture observations might be used to infer information on soil characteristics
(de Lannoy et al., 2006; Vrugt et al., 2005; Lee, 2005; Santanello et al., 2007). These20

are based on continuous observations of soil moisture dynamics and corresponding
land surface model simulations.

While in situ measurements provide accurate estimates of soil water content, con-
tinuous records are limited to few locations on the globe (Robock et al., 2000). Re-
mote sensing methods provide the opportunity to capture soil moisture dynamics at25

regional and global scales with different temporal frequencies and accuracies (Loew
et al., 2006; Loew, 2008; Wagner et al., 2007a; Dubois et al., 1995). Microwave re-
mote sensing techniques are predestinated for the retrieval of soil moisture information
from space due to their high sensitivity to (surface) soil water content and as they are
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independent from atmospheric or illumination conditions which allows for a continuous
monitoring of the land surface. However, soil moisture retrievals from operational satel-
lites are limited due to vegetation and surface roughness effects which might result in
ambiguous retrievals of soil water content. Wagner et al. (2007b) give a comprehen-
sive overview about the applicability of different remote sensing sensors for the retrieval5

of soil moisture for hydrological applications. The accuracy of the retrievals from mi-
crowave sensors is highly dependent on the effect of vegetation on the one hand side
and the sensors specifications (frequency, polarizations, imaging geometry, spatial res-
olution) on the other hand. The rms error of soil moisture retrievals might cover a wide
range from 0.02 to 0.10 [cm3/cm3] (Loew et al., 2006; Wagner et al., 2007a).10

Recent microwave and thermal infrared remote sensing techniques are only sensi-
tive to the soil water content of the upper soil layer. Dependant on the observing system
configuration, the sensitive layer is within the uppermost 1 . . . 10 cm, whereas the pen-
etration depth is also dependent on the soil water content itself. However it has been
shown that the assimilation of observations of surface soil moisture information into15

hydrological models can result in improved predictions of soil water profiles (Enthekabi
et al., 1994; Walker et al., 2001; Reichle and Koster, 2005; Reichle et al., 2001); Loew,
20081. Future remote sensing missions as e.g. the forthcoming SENTINEL-1 satellite
(Attema, 2005) will provide observations of the land at high spatial (<100 m) and high
temporal (<3 days) resolutions which would allow for frequent and continuous observa-20

tions of land surface dynamics. However it is likely that hydrological applications might
only benefit from remote sensing observations when the derived information matches
certain quality standards in terms of accuracy and observation frequency.

The present paper therefore examines the potential to infer soil information through
inverse modeling by combining land surface model simulations with surface soil mois-25

ture observations. The basic objective is to exploit time series of surface soil moisture
information to improve land surface model parameterization schemes. The questions

1Loew, A.: Assimilation of surface soil moisture information for improved land surface mod-
elling - requirements for satellite observations, Adv. Water Res., in review, 2008.
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to be addressed are a) whether remote sensing derived surface soil moisture infor-
mation might be in general useful to infer soil characteristics, b) which accuracies of
the remote sensing data and c) which temporal frequencies are needed to achieve an
improved parameterization of a land surface model.

The analysis is made using an inverse modeling approach which minimizes the de-5

viations between observations of surface soil moisture and model predicted water con-
tent by altering land surface model parameters that describe the hydraulic characteris-
tics of the soil.

The analysis is conducted using field data collected within the scope of the AGRISAR
2006 remote sensing campaign (Hajnsek et al., 2007) in Northern Germany. The cur-10

rent state of modeling water movement in the unsaturated zone is described briefly in
Sect. 2. The inverse modeling approach is introduced in Sect. 3 and data and used
models are presented in Sect. 4. The inverse modeling approach is given in Sect. 5
and results of the sensitivity analysis is presented in Sect. 6.

2 Materials and methods15

Consider a time-variant process model Φ , that propagates the model state xi as

xi=Φ(xi−1, p, ui , wi−1) (1)

where i denotes the time, ui is the vector of meteorological forcings and p is the model
parameterization and wi is a random process noise. Model parameters p have to
be measured in the field or models are often calibrated for specific sites using local20

ground observations. Mapping the model state space to the model output space, using
the observation operator Hi yields to the observation yi as

yi=Hixi + vi (2)

whereas Hixi corresponds to model predicted measurements. These might be direct
(e.g. soil moisture) or indirect (e.g. radiances of a satellite) measurements. In case that25
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yi is a direct observable of the model state vector xi , Hi contains only elements of 0
and 1. The vector vi reflects the uncertainties of the measurement process. It might
comprise uncertainties in the observation process, model forcing data, model physics
and uncertainties in the model parameterization.

Most current approaches to data assimilation are derived from either a direct ob-5

server or dynamic observer technique. While the direct observer approach assimilates
sequentially information at various time steps of the model, the latter attempts to find
the best fit between model simulations and observations over an entire time series of
observations (Walker and Houser, 2005). The dynamic observer technique might be
formulated using either a strong or weak constraint assumption on the uncertainties of10

the model simulations w. In case of the strong constrained assumption, the process
description of the physical model Φ is considered to be perfect, while weak constraint
is where the uncertainties in the model formulation are taken into account as process
noise.

In the present study we only focus on the uncertainties which are due to measure-15

ment errors and model parameterization. Thus a perfect model (strong constraint) is
assumed in the scope of the present study (w=0). The model parameter vector p is
assumed to be unknown and measurement errors v are taken into account, assuming
white noise.

2.1 Water movement in the unsaturated zone20

The one-dimensional water movement in a partially saturated rigid porous medium
might be described by the Richard’s equation as (Richards, 1931)

∂θ(z, t)
∂t

=
∂
∂z

[
K (θ, z)

(
∂h(θ, z)

∂z
− 1

)]
(3)

where h is the soil water pressure head [m], θ is the volumetric water content
[cm3/cm3], t is time [s], z is the spatial coordinate [m] and K is the unsaturated hy-25

draulic conductivity function [m s−1]. The unsaturated soil hydraulic properties θ(h)
101

and K (h) are generally non-linear functions of pressure head h. The Brooks and Corey
formulations relate K (h) and θ(h) to soil hydraulic characteristics as (Rawls and Brak-
ensiek, 1985; Brooks and Corey, 1964)

θ − θr

φ − θr
=
(
hb

h

)λ

(4)

K (θ)=Ks

(
θ − θr

φ − θr

)3+2λ

(5)5

where λ is the pore size distribution index, θr is the residual water content, hb the
bubbling pressure head, φ the soil porosity and K is the fully saturated conductivity
(θ=φ). Equation (4) is also often referred as water retention curve.

2.1.1 Pedotransfer functions

Since direct measurements of soil hydraulic properties are time consuming, expen-10

sive and not feasible at larger scales, alternative approaches to the estimation of soil
hydraulic properties using pedotransfer functions (PTF) have been developed. PTF’s
use easily measurable soil properties such as grain size or organic matter content to
indirectly determine soil hydraulic characteristics. A variety of PTF’s have been pro-
posed based on field measurements. As every PTF was developed on the basis of15

a limited soil database, there is a lot of uncertainty in applying PTF’s to different soil
conditions under which it was developed. It might be therefore reasonable to take into
account these uncertainties in an optimisation procedure to infer hydrological model
parameters.

Woesten et al. (2001) reviewed the current status of PTF’s and their accuracy and20

uncertainty. It was found that the uncertainty of the water retention curve in predicting
actual soil water content using different PTF’s ranged in the order of 2 to 11 vol.% rms
error. Wagner et al. (2001) evaluated eight different PTF’s for the estimation of soil
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hydraulic conductivity and found that the PTF of Woesten (1997) performed best for
predicting the unsaturated hydraulic conductivity.

Given a set of soil texture parameters one might obtain different values for the soil hy-
draulic properties which will directly reflect on the simulations of a hydrological model.
Various PTF’s are therefore used in the present study. Table 1 summarizes the PTF’s5

which are used for the different model parameters within the present study.

3 Inverse modeling of soil characteristics

3.1 Retrieval algorithm

In this section, the basis of the retrieval algorithm to estimate soil texture as well as
soil hydraulic properties from surface soil moisture observations is introduced. The10

retrieval is based on a numerical minimization of a cost function that accounts for the
differences between the soil moisture predictions of a land surface model and surface
soil moisture observations. Two general cases are considered: 1) direct retrieval of
soil hydraulic properties (hb, φ, θr , Ks, λ) and 2) retrieval of soil texture information as
sand and clay fraction s, c, whereas soil hydraulic properties are estimated throughout15

PTF’s.
Different cost functions might be applied in that context using either only informations

about observation uncertainties or explicitly take into account potential uncertainties in
the model parameters. In the latter case, the uncertainties of the model parameters
are derived from different PTF’s.20

3.2 Cost function derivation

Given observations of surface soil moisture at discrete times, it is the objective to find
the best estimate of either sand and clay content or soil hydraulic parameters that allow
the physical model to best reproduce the observed soil moisture dynamics.
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The unknown soil characteristics are represented by a vector p = [λ, Ks, θr , φ, hb]T

Given a vector of soil moisture observations y , the probability density function (pdf) of
p conditioned by the observations y is using Bayes’s theorem

P (p|y) ∝ P (y |p)P (p|p0) (6)

where P (p|p0) is the pdf of p given its prior estimate p0 . We assume that the error of5

p is zero mean Gaussian, so that

p = p0 + εp (7)

where εp is the gaussian distributed parameter error. The probability function of p
subject to a prior estimate p0 is then

P (p|p0) ∝ exp
[
−0.5(p − p0)TG−1(p − p0)

]
(8)10

where G is the diagonal covariance matrix. Additionally, the observations y are con-
sidered to be affected by measurement errors v ∈ N(0,1). Gaussian error statistics is
also assumed here. The probability of measuring a certain y given a model parameter
set p is given by

P (y |p) ∝ exp
[
−0.5(y − Hx(p))TS−1(y − Hx(p))

]
(9)15

where S is the diagonal covariance matrix. Substituting (8) and (9) into (6) yields the
Bayesian likelihood function as

P (p|y) ∝ exp
[
−0.5(y − Hx(p))TS−1(y − Hx(p))

−0.5(p − p0)TG−1(p − p0)
]

(10)

Since maximizing (10) is equivalent to minimize − ln(P (p|y)), the maximum likelihood20

estimator of p is obtained by minimizing the following cost function (Pulliainen et al.,
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1993)

J=0.5(y − Hx(p))TS−1(y − Hx(p))

+0.5(p − p0)TG−1(p − p0) (11)

Many different minimization algorithms (e.g. Levenberg-Marquardt, Nelder-mead-
simplex) might be used to minimize the cost function J (Nelder and Mead, 1965). When5

no prior information on the model parameters p0 is available, P (p|p0) can be dropped
and (11) reduces to it’s first term which represents the traditional minimization of mean
square error

J=0.5(y − Hx(p))TS−1(y − Hx(p)) (12)

3.3 Accuracy assessment10

To quantify the accuracy of the physical model predictions, the time series of model
predictions and measurements are compared. Different benchmarks are employed to
quantify the impact of the model parameterization on the model simulations. The used
benchmarks are the root mean square error (rmse) [vol.%] and model efficiency E [−].
The comparisons are made on the basis of hourly values The rmse is calculated as15

rmse=

√∑
(yi − Hxi )2

n
(13)

where n is the number of observations and y and Hx are the measured and predicted
observations (e.g. soil moisture) respectively. The model efficiency (E ) is estimated as
(Nash and Sutcliffe, 1970)

E=1 −
[∑

(yi − Hxi )
2∑

(yi − µ)2

]
(14)20

where µ=E [y ] is the expected value of y . The model efficiency can range between −∞
and 1, whereas positive values of E indicate that the time series better represents the
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dynamic of the investigated parameter than a mean value. Perfect agreement between
the reference dataset and the simulations is achieved for E=1.

4 Data and models

4.1 Land surface model

The Process Oriented Multiscale EvapoTranspiration model (PROMET) is used within5

the present study to simulate water and energy fluxes. It is a family of land-surface-
process-models which describe the actual evapotranspiration and water balance at
different scales, ranging from point scale, to micro- and mesoscale (Mauser and
Schaedlich, 1998). The model consists of a kernel model which is based on five sub-
modules (radiation balance, soil, vegetation, aerodynamic model, snow) to simulate10

the actual water and energy fluxes and a spatial data modeller, which provides and
organizes the spatial input data on the field-, micro- and macroscale. The simulations
are made on an hourly basis.

Actual evapotranspiration is simulated within PROMET using the Penman-Monteith
equation (Monteith, 1965). Canopy surface resistance is simulated as a function of15

vegetation type using a resistance network approach (Baldocchi et al., 1987), while the
soil resistance is estimated based on the approach of Eagleson (1978). A three layer
soil model (0–10, 10–30, 30–150 cm) is used to represent the soil water fluxes. The
soil water retention model of Brooks and Corey (1964) is used to relate soil moisture
content to soil suction head.20

A ten layer vegetation model is used to convert the incoming radiation into fractions of
shaded and sunlit leaves (Norman, 1979). A detailed description of the model is given
by Mauser and Schaedlich (1998). A physical snow model extends PROMET to allow
for simulations in cold climates (Strasser and Mauser, 2001). Vegetation development
is considered by prescribing the evolution of vegetation height, albedo and leaf area25

index as a function of the day of the year. This allows for a flexible parameterisation of
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vegetation parameters.
PROMET simulations are based on GIS information as e.g. soil and land cover maps.

Meteorological forcing data might be either provided from point like station measure-
ments as well as gridded forcing fields. PROMET has been extensively validated in
different geographic regions (Upper Rhine Valley – 100 km2, Bavarian Alpine Foreland5

– 20 000 km2, Upper Danube catchment – 76 000 km2, Weser catchment – 35 000 km2,
India – 400 km2) using evapotranspiration measurements of micrometeorological sta-
tions at the local scale and by comparison with thermal remote sensing informations
at the regional scale (Mauser and Schaedlich, 1998; Ludwig and W., 2000; Pauwels
et al., 2008); Loew, 20081.10

4.2 Field data

4.2.1 Test site

The present study has been performed in the framework of the AgriSAR 2006 cam-
paign, for which the test site was located in North-East Germany, approximately 150 km
North of Berlin. Hajnsek et al. (2007) give a detailed description of the campaign. Only15

a short description will be given here. The test site is based on a group of farms within
a farming association covering approximately 250 km2. Field sizes are very large in
this area, averaging between 2 and 2.5 km2 . The main crops are winter wheat, winter
barley, winter rape, corn, and sugar beet. The altitudinal range within the test site is
approximately 50 m.20

4.2.2 Meteorological data

The meteorological data to drive PROMET is obtained from an agrarmeteorological
weather station (Goermin, 53.98 N/13.26 E). The station records meteorological data
at 10 min frequency. The station is expected to provide best information on the local
weather conditions.25
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Meteorological inputs are the major model drivers, thus their accuracy directly re-
flects on the uncertainties of the model results. Loew 20081 has shown that inaccurate
estimates of meteorological input might result in large uncertainties of land surface
model simulations. However reasonable results were found, when using local forcing
data for the model simulations (Pauwels et al., 2008). This gives us confidence that5

the strong constraint assumption of minor model error can be used within the present
study. However, this assumption might probably not hold in case that forcing data might
have much higher uncertainties.

4.2.3 Soil moisture measurements

Numerous field measurements and remote sensing data has been collected during the10

investigation period which lasted from April to July 2006,. Continuous measurements
of soil moisture were recorded within a wheat field. Soil water content was measured
using TDR soil moisture probes (IMKO TRIME-ES), which were installed in depths of
5, 9, 15, 25 and 47 cm. The measurements were conducted within the period from 19
April 2006 (JD 109) to 06 July 2006 (JD 187). The wheat plants were at tillering stage15

during the installation of the station and have reached the dough development stage at
the end of the measurement period in accordance with the EUCARPIA code for cereals
(Zadoks et al., 1974). Figure 1 shows the recorded soil moisture profiles. Soil moisture
was homogeneous within the soil at the beginning of the measurement period, with
values around 24% [cm3/cm3]. Except the uppermost soil layer (5 cm) shows slightly20

reduced values (∼20% cm3/cm3). A first considerable precipitation event is observed
between JD 136 and JD 145, where 20 mm precipitation were recorded. This results in
an increase of the soil moisture content of the first 10 cm. A second precipitation event
(27 mm) is observed between JD 148 and JD 156, which has also an impact on the soil
moisture measurements at 25 cm depth. A 12 day period without precipitation follows.25

Another rainfall of 24 mm is observed within the period from JD 168 to JD 173, which
only results in a recharge of the upper soil layer (0–10 cm). The lowermost (47 cm) soil
moisture measurements remain almost unaffected by the precipitation events. Stable

108



soil moisture values are observed from JD 110 to JD 125 (25% cm3/cm3). Afterwards,
the soil moisture of the lower soil layer shows an almost linear decrease until the end
of the measurement period.

4.2.4 Soil information

Soil samples were taken in the investigated field at three different locations. The sam-5

ples were analysed in the laboratory and the grain size of the soil particles was deter-
mined. The total sand content is 57.2±1.3% and the clay content was estimated as
17.7±1.0%, whereas the major grain size is fine sand (200–63µm). The FAO soil map
(FAO, 1991) indicated a sand content of 51% and a clay content of 17% which is pretty
close to the laboratory measurements.10

5 Inverse modeling approach

The inverse modeling of soil characteristics is based on the comparison between sim-
ulated and observed soil moisture time series. Model parameters are altered until best
coincidence between model simulations and measurements is achieved. To infer soil
characteristics from surface soil moisture observations the cost Functions (11) and15

(12) are minimized using an iterative solver (Nelder-Mead-Simplex). Figure 2 shows
the general data flow of the approach. Surface soil moisture observations are taken
from TDR measurements. These are sampled with different time intervals and various
observation errors v are assumed to mimic uncertainties in remote sensing derived
surface soil moisture products. The PROMET model is used to simulate in a first step20

the soil water content for a given investigation period, given an initial model parameter
set p0 (initial guess). The model predictions (Hx) are then compared against the obser-
vations y . The parameter vector p is iterated as long as no convergence is achieved.
The minimization algorithm either minimizes directly the model soil hydraulic param-
eters (solid line) or the soil texture data (dashed line) which is then used to estimate25
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model parameters via the use of PTF’s.
Finally, the resulting model simulations are compared against the soil moisture ob-

servations for the first (0–10 cm) and second (10–30 cm) PROMET soil layer. The TDR
soil moisture measurements from 5 and 25 cm are used for that purpose respectively.

5.1 Model setup5

5.1.1 Observation setup

It is expected that the temporal frequency as well as quality of the soil moisture ob-
servations will affect the capability of estimating a reliable value for p. To explicitly
investigate that impact, different subsets are extracted from the surface soil moisture
measurements. These subsets are sampled with different temporal frequencies to sim-10

ulate the case of different observation frequencies of a sensor system. This sampling
was made at hourly and daily frequencies, increasing from one day to 14 days, resulting
in a total of 15 different time steps k.

Random gaussian error was added to each of these data sets to imitate various qual-
ities of surface soil moisture observations. The standard deviation of the observation15

error was set to 1, 2, 4, 6 vol.% [cm3/cm3], which covers a realistic range of uncertain-
ties as it could be expected from remote sensing satellite data (Wagner et al., 2007a;
Loew, 2008).

5.1.2 Prior soil information

In case that prior information on soil properties is available, these might be used to con-20

strain the minimization algorithm. This prior information can be derived either from field
measurements or secondary sources as soil texture maps. The latter is used within the
present study. The FAO soil map (FAO, 1991), which is generally globally available, was
used to estimate the first guess for the soil texture vector m=[s, c]T . This initial guess
is used to estimate the background probability for the model parameter vector p which25
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requires the estimation of p0 and εp. These are obtained from a monte carlo based
sampling of the parameter space. As it is assumed that the FAO map might be highly
uncertain, we assume a standard deviation σp which guarantees that also soil texture
combinations which are far from the initial guess contribute to the calculation of p0
and σp. This yields to the normal distributed ensemble matrix M2xN=[m1,m2, . . . ,mN ]5

where N is the number of ensemble members and was assigned a value of 1000 in the
present study.

To take into account the uncertainties of the PTF functions, different PTF’s are ap-
plied for each model parameter. For each m, a set of different model parameters
(λ, Ks, hb, θr , φ) is obtained using PTF’s from different sources (Table 7). This results10

in an ensemble of 1000 values for the bubbling pressure head hb, 1000 values for the
pore size distribution index λ, 4000 values for Ks, 3000 values for the porosity φ and
2000 values for the residual water content θr .

This ensemble of the model parameters is then used to calculate the mean and vari-
ance for each model parameter which gives the prior guess on the model parameters15

p0 and the associated covariance matrix G in Eq. (8). The obtained statistics for the p0
parameters are given in Table 3.

5.1.3 Open loop simulations

PROMET simulations are made using the prior information on soil parameters, as de-
rived from either the laboratory measurements (LAB) or the FAO classification (FAO).20

These simulations indicate the capabilities of the LSM to simulate soil water fluxes us-
ing only a priori information without any observation data. To assess the impact of
different PTF’s on the model simulations, various PTF’s are applied to derive saturated
hydraulic conductivity Ks from the laboratory measurements.

The soil moisture simulations, using the laboratory measurements and FAO data for25

the model parameterization, are shown in Fig. 3. The model simulations agree well
with the measured soil water content and minor differences are observed between the
different model realizations (rmse: 3.05 vol.%). However the model tends to underesti-
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mate the soil water content in the spring period which might be attributed to the fact that
there was a snow cover in the study area until the end of March 2006 resulting in rather
wet soil condition. PROMET simulations underestimated snow cover in spring and the
soil moisture in the model therefore shows a negative bias. Nevertheless, the model
shows a good performance also for the FAO data throughout the investigation period5

which is due to the fact that the a priori information on the soil texture, taken from the
FAO map, is in considerable agreement with the field measurements of grain size. In
case that the FAO information would stronger deviate, much higher uncertainties in the
model simulations can be expected. The soil moisture rms error as well as the model
efficiency for these open loop simulations are given in Table 2 for the upper (5 cm) and10

lower (25 cm) soil layer, respectively.

5.2 Model simulations

The prior model parameters p0 are used to initialise PROMET. The simulations are
made from 1 January 2005 to 30 June 2006. The first model year is used for model
spin-up, while the comparisons and assimilation of soil moisture observations is only15

done for the period from 20 April (JD 110) to 5 July 2006 (JD 186).
Only the surface soil moisture (5 cm) observations are used as measurement vari-

able, while the deeper soil moisture observations are only used for accuracy assess-
ment. Surface soil moisture observations were used every ∆t time steps which results
in a multitemporal observation vector20

y=[θ1, θ2, . . . , θN ]T (15)

whereas θk corresponds to the surface soil moisture observations at time k . The
PROMET model state vector xi=[θL1, θL2, θL3]T contains the PROMET soil moisture
predictions within the three different soil layers. As only surface soil moisture measure-
ments are considered, the surface soil moisture predictions form the N-dimensional25

multitemporal vector

xi=[θL1,1, θL1,2, . . . , θL1,N ]T (16)
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As the soil moisture measurements and the PROMET states represent the same phys-
ical parameter (soil moisture [vol.%], 0–10 cm depth), the observation operator H in (2)
reduces to a matrix with only 0 and 1 as elements. To analyse the effects of constraints
on the model parameters on the one hand side and to investigate the importance of
prior soil texture information from secondary data on the other hand, the following dif-5

ferent model scenarios are investigated:

– Scenario A: Direct determination of soil hydraulic parameters: the soil hydraulic
characteristics are assumed to be unknown. The objective function is minimized
by modifying p=[λ, Ks, φ, hb, θr ]

T .

– Scenario B: Inverse modeling of soil texture using PTF’s without constraints on10

model parameters: Sand and clay content are considered as free model parame-
ters (m=[s, c]T ). Soil hydraulic characteristics are obtained from PTF’s, whereas
the uncertainties in the model parameters are not considered in the cost function
(Eq. 12)

– Scenario C: Inverse modeling of soil texture using PTF’s with constraints on model15

parameters: same as scenario B, but uncertainties in the model parameterisation
are considered in the cost function (Eq. 11).

An appropriate initialisation of model parameters is important to minimize the risk that
the minimization algorithm gets stuck in a local minima while searching for the optimal
parameter set. To investigate the robustness of the parameter inversion approach, two20

different cases are investigated for the scenarios B and C. The first assumes that a pri-
ori information on soil texture is available from some source, while the other assumes
that no a priori information is given. For the first the information from the FAO classifica-
tion is used while standard values of s=30% and c=30% are assumed for the second.
These scenarios are referred as (B1,C1) and (B2,C2), respectively. A summary of25

model scenarios, used parameterisation and cost functions is given in Table 3.
For each of the five scenarios the inverse modeling approach was applied for the 5
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different measurements errors and 15 temporal sampling frequencies ∆t which results
in 75 simulation runs per scenario and thus in a total number of 375 simulations.

6 Results

6.1 Inverse modeling of soil texture using PTF’s (constrained case)

The results of the inversion of soil texture (s, c) by integrating surface soil moisture5

information is investigated in this section. Figure 7 shows the inversion results for clay
and sand respectively for different temporal frequencies and observation errors. Ta-
ble 4 summarizes the mean and standard deviation of the retrieval residues using the
laboratory soil texture data as reference value. Given an appropriate initial guess for
soil texture from the FAO map (B1,C1), the retrieved soil texture matches the sand and10

clay content very well. The mean error is 0.54 (0.75) and 0.43 (0.38) for the B1 and
C1 scenario respectively for clay (sand) content. No distinct dependency on the tem-
poral sampling or observation error is observed. However, given a less accurate initial
guess for soil texture (B2,C2), the uncertainties in the soil texture retrievals consider-
ably increase. For low observation errors (1 vol.%), best retrieval results are observed.15

When increasing the observation uncertainty, the uncertainties in the soil texture re-
trievals also increase. Especially for high observation uncertainties large residues are
observed, resulting in a mean error of −14.22 and −13.55 for the B2 and C2 simulation
for sand respectively, while the residues of clay content are 2.01 and 3.06. This indi-
cates that the retrievals give a higher weight to the silt content. From the analysis of the20

field data it was found that fine sand and silt are the major fraction of the investigated
soil. Thus the high deviations for sand do not necessarily imply a worse performance
of the algorithm.

In both cases the consideration of uncertainties in the soil hydraulic parameters using
(12) results in an improved prediction of the soil texture.25
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6.2 Impact of temporal sampling and observation error

It has been shown that the temporal sampling of the observations has a minor impact
on the accuracy of the soil texture retrievals. Figure 5 shows the soil moisture profiles
for four different runs of the C1 scenario, using observations with daily, 4-day, 7-day and
14-days sampling. It can be seen that there are only minor differences between the in-5

dividual model runs which indicates that the soil texture used for the model simulations
matches quite well the expected value. However deficits in the model parameterization
can also be observed. In case of dry soil conditions, the model is not able to sim-
ulate the low soil moisture observations and saturate at a low soil moisture content
of approximately 11 vol.%, while the observed values show a further decrease of the10

soil water content. This might be explained by an underestimation of the soil hydraulic
conductivity (Ks) using the PTF functions. Further discussion will be given in Sect. 6.3.

An increasing uncertainty of the observations results in positive bias of the model
predictions as shown in Fig. 6 for the C1 scenario.

6.3 Error analysis15

The error in the model soil moisture predictions is expressed for the investigation period
in terms of the soil moisture rms error and model efficiency E . Figure 7 shows the
obtained rms errors and model efficiencies for all combinations of observation errors
and sampling frequencies for the C1 scenario. The mean and standard deviation are
3.5 (0.3) and 0.62 (0.07) for the surface soil moisture rms error and model efficiency,20

respectively. As it has been shown that the open loop simulations, using the FAO data
as a reference, already provides good simulations for the investigated test site, the
error benchmarks are normalized by the rms error and model efficiency obtained from
the FAO open loop simulations (Table 2). The normalized error values are also shown
in Fig. 7 (bottom row) whereas unity indicates coincidence with the FAO result, values25

greater than one indicate that the value for the FAO simulations is lower than in the
actual simulation run.
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No systematic differences are observed between the different model errors or tem-
poral sampling rates. Most simulations show a similar accuracy than the open loop
simulation which might be attributed to the fact that the FAO soil texture information
already provides quite accurate estimates of the soil texture within the study area. Us-
ing the FAO information as the initial guess (C1), no improvements are achievable by5

assimilating the observation data into the model.

6.3.1 Constrained versus unconstrained

To evaluate the impact of using the different cost functions (11) and (12), the results
of the B1 and C1 scenarios are compared. Figure 8 shows the rms error and model
efficiency for the two cases respectively. Only minor differences are observed between10

the two approaches. The rms error is 3.5 vol.% in both cases and the mean model
efficiency is 0.61 and 0.62 for the unconstrained and constrained example respectively.

Figure 9 shows the frequency distribution of the ratio of the two results for the rms
error and model efficiency respectively. Values below unity indicate lower rms error or
model efficiency for the B1 scenario compared to the C1 scenario. The mean of the15

frequency distribution is 1.02 and 1.00 for the rms error and model efficiency which
indicates again minor differences between the two modeling approaches. Thus the
consideration of model parameter uncertainties in the cost function does not result in
an improvement of the model simulations skills in the present case..

6.3.2 Impact of a priori knowledge of soil characteristics20

It has been shown that the a priori information on local soil texture, obtained from the
FAO map, is within a reasonable range compared to the laboratory measurements. As
a result, the integration of surface soil moisture information into the process model has
a minor impact on the model parameterization. However, it might be expected that
less accurate a priori information might be available at other places. To assess the25

impact of the prior guess on soil characteristics obtained from the inverse modeling
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approach, the scenarios C1 (B1) can be compared against C2 (B2). Figure 10 shows
the normalized rms error and model efficiency with and without a priori soil texture in-
formation. While similar accuracies are achieved for observation errors below 4 vol.%,
the accuracy of the model simulations becomes worse when increasing the observa-
tion uncertainty. That indicates that the minimization algorithm becomes more instable5

in finding the optimal solution for higher uncertainties of the observations. However, in
case of observations with uncertainties <4 vol.%, the obtained model predictions are
in considerable agreement with those obtained from the open loop simulations which
indicates that, given no first guess on soil texture, surface soil moisture informations
might provide useful information to improve the soil parameterisation in those cases.10

6.4 Inverse modeling of soil hydraulic parameters

In case that soil hydraulic parameters are directly inferred and no constraints are ap-
plied to the retrieval by means of PTF’s (scenario A), different simulation results might
be obtained. Figure 7 shows simulation results using different observation frequencies
and an observation uncertainty of 1% vol. It is observed, that the model simulations15

agree well with the TDR measurements. The soil moisture rms error is 1.7, 2.6, 2.1
and 2.9 for the daily, 4-day, 7-day and 14-day sampling interval respectively. Especially
in case of low soil moisture values, the model simulations do much better match the
observations which might be attributed by a better parameterization of the soil hydraulic
conductivity. In case of daily observations, the model best captures the measured soil20

moisture dynamics.
Figure 7 shows the rms error and model efficiency for scenario A. It is seen, that

the obtained model simulations show a smaller rms error and higher model efficiency,
compared to the simulations of scenario B and C. The mean value for the normalized
rms error and model efficiency are 0.73 and 1.11 respectively, indicating that the inte-25

gration of surface soil moisture information results in a more than 25% improvement
compared to the open loop simulation (rms error).

However, a better model prediction does not necessarily imply that the obtained
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model parameters are within a reasonable physical range. Table 5 therefore compares
the retrieved soil hydraulic parameters against the direct predictions from the open loop
simulations (FAO, laboratory) and corresponding literature values. The values taken
from Rawls and Brakensiek (1985) are denoted in the first column and show a large
variability in the soil parameters within a specific soil type. For the inversion results, the5

mean and standard deviation are given.
The inversion results differ from the parameters one obtains using the FAO or lab-

oratory soil texture information. However, the retrieved soil hydraulic parameters are
within a reasonable range compared to the parameter range reported by Rawls and
Brakensiek (1985). Except the saturated soil hydraulic conductivity slightly exceeds10

the parameter range with a mean Ks value of 6.96 (cm/h). The higher values are re-
quired to better capture the water movement in the soil column.

6.5 Impact on soil moisture profile

An improved simulation of surface soil moisture content will also reflect on the simula-
tions of the soil water content in the deeper soil layers (10 - 30 cm). Thus an improved15

parameterization of the surface soil characteristics might also affect the soil moisture
simulation skills of the deeper soil layers. Figure 7 shows measured and simulated soil
moisture for the 10–30 cm layer for scenario A. Best model predictions are achieved for
a daily assimilation which results in an rms error of 2.13 (cm3/cm3) and a model effi-
ciency of 0.86 which corresponds to a slight improvement compared to the open loop20

simulation (Table 2). Figure 7 shows the normalized rms error and model efficiency for
the deeper soil layer. The mean rms error and model efficiency are 3.0 (cm3/cm3) and
0.71 with standard deviations of 0.60 and 0.11 respectively. Improved simulations (nor-
malized rms <1) are achieved only in case of frequent and accurate measurements.
Approximately weekly observations with high accuracy (v=1 . . . 2 vol.%) are required25

to get an improvement compared to the open loop simulation. The higher the uncer-
tainties in the observation, the higher the temporal sampling has to be. Only minor
improvements are observed in case of observation errors greater than 4 vol.%. Here

118



2-day observation frequencies seem to be required to improve the model predictions.
A frequent coverage seems to be most important to capture the dry end conditions
of the data set to be able to better find a parameter set that best represents the soil
moisture dynamics.

However, it is emphasized again that the reference open loop soil moisture simu-5

lation already matches well the observations. In case that the a priori information on
soil texture might be much worse, the relative impact of integrating surface soil mois-
ture data might be much higher and the model simulations might benefit more from
observations with even higher uncertainties.

7 Conclusions10

The present study has investigated the potential of using constrained and uncon-
strained inverse modeling approaches to infer soil hydraulic characteristics. It was
assumed that uncertainties in the physical model simulations are only due to uncer-
tainties in the model forcing data or model parameterization, but not due the models
process formulation.15

Previous analysis of PROMET simulations (Pauwels et al., 2008); Loew 20081 found
that the model predictions of soil water and energy fluxes are in reasonable agreement
with in situ data, which gives us confidence in that strong constraint assumption for the
scope of this study. However, this assumption might be no longer valid if the model
driving meteorological forcing data has a higher uncertainty. In these cases, the addi-20

tional uncertainties of the forcing data and its impact on the model simulations will have
to be taken into account within the analysis Loew (2008)1.

The conclusions that can be drawn from the analysis of the conducted experiment
are

1. Constrained as well as unconstrained model parameter calibration strategies25

might result in reasonable predictions of the soil water fluxes by PROMET.
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2. Soil grain size might be infered by inverse modeling of surface soil moisture data.

3. However, an appropriate initial guess of the soil texture is critical for a robust
estimate of soil characteristics. Otherwise the inversion algorithm is likely to get
stuck in a local minima in case of observation errors >4 vol.%.

4. The direct inversion of soil hydraulic parameters results in realistic model parame-5

ter retrievals. The direct calibration of model parameters outperforms the indirect
approach using PTF’s.

5. An improved model parameterization using surface soil moisture information
might be used to improve the model predictions also in the deeper soil layer.
Observations frequencies less than a week are required to improve the model10

simulations compared to the open loop simulation in the present case to best
capture dry soil moisture conditions.

The results indicate that there is potential in using (uncertain) surface soil moisture
information to improve root zone soil moisture predictions throughout a better param-
eterization of the physical model. However, the conclusions are limited to the data15

set used in the present investigation. In case that the soil is layered and not as ho-
mogeneous as in case of the present test site, the integration of surface soil moisture
information might fail to improve the model predictions. Only minor dependency on the
temporal sampling was observed using PTF’s. However it was found that the prediction
of deeper soil water content benefits from a higher sampling rate of the observations.20

Using observations with frequencies below one week show improved model skills.
As the FAO soil texture information is available at global scale, a priori information

on soil properties might be available from that data set. However, there might be con-
siderable differences between the FAO information and the local soil texture due to
the rather coarse scale of that map. It is therefore expected that much worse perfor-25

mance of the inversion algorithm can be expected in case of observation errors >4
vol.% on the one hand side, but that the relative performance, compared to an open
loop simulation, might also increase for higher observation uncertainties.
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The meteorological forcing data which was used for the model simulations was based
on local measurements and can therefore be considered as a reliable input for the
model simulations. However Loew (2008)1 has shown that considerable differences in
the model simulations are observed when meteorological data is taken from a station
20 km apart from the test site which might complicate the inversion of soil character-5

istics from the surface soil moisture observations. A simultaneous compensation for
uncertainties in model forcings as well as in the model parameterisation would then
be required. The use of sequential data assimilation techniques as e.g. the Ensem-
ble Kalman Filter (Evensen, 2003) with augmented state vectors might be used in that
context together with frequent observations. Forthcoming satellite missions as the10

SENTINEL-1 mission will allow for that frequent coverage at high spatial resolutions.
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Table 1. Overview of used pedotransfer functions.

Ks Cosby et al. (1984)
Woesten et al. (1999)
Rawls and Brakensiek (1985)
Saxton et al. (1986)

φ Scheinost et al. (1997)
Cosby et al. (1984)
Saxton et al. (1986)

θr Rawls and Brakensiek (1985)
Scheinost et al. (1997)

λ Rawls and Brakensiek (1985)

hb Rawls and Brakensiek (1985)
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Table 2. RMS error, model efficiency and coefficient of determination between measured sur-
face soil moisture and PROMET simulations.

rms [vol.%] E [−]
Model parameterization 5 cm 25 cm 5 cm 25 cm

FAO 3.05 2.39 0.71 0.83
Laboratory 3.05 2.60 0.71 0.80
Cosby (1984) 3.12 2.38 0.70 0.83
Saxton (1986) 2.98 3.37 0.73 0.66
Woesten (1999) 3.12 2.38 0.70 0.83
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Table 3. Summary of parameterisations used for simulation runs.

Scenario
unit A B1 B2 C1 C2

Observation error v cm3/cm3 [1 2 4 6] [1 2 4 6] [1 2 4 6] [1 2 4 6] [1 2 4 6]
Parameter constraint – No No Yes (σp=10.) Yes (σp=25.)
Free parameters λ,hb,φ,Ks s, c s, c s, c s, c
Cost function J (12) (12) (12) (11) (11)
s0, c0 [%] – FAO 30 / 30 FAO 30 / 30

Parameter uncertainties: mean (standard deviation)

λ – – – – 0.34 (0.09) 0.19 (0.1)
Ks – – – – 0.0036 (0.00034) 0.00016 (0.0003)
θr – – – – 9.2 (3.0) 12.2 (7.0)
φ – – – – 0.38 (0.006) 0.41 (0.004)
hb – – – – 50.88 (23.6) 177.3 (123.2)
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Table 4. Mean and standard deviation of soil texture residues.

Scenario Clay (%) Sand (%)

B1 0.54 (2.64) 0.75 (5.80)
B2 2.01 (7.08) −14.22 (8.04)
C1 0.43 (2.39) 0.38 (2.94)
C2 3.06 (7.75) −13.55 (7.61)
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Table 5. Soil hydraulic parameters for FAO and laboratory data compared against retrieval
results and literature data.

Parameter Sandy loam FAO Laboratory Inversion

hb 14.66 14.69 10.96 35.04
(3.45–62.24) ± 5.49

λ 0.378 0.34 0.33 0.372
(0.140–0.616) ± 0.02

θr 4.1 7.8 8.2 5.46
(2.4–10.6) ± 1.3

Ks 2.0-5.0 1.97 1.24 6.96
± 6.80

φ 45.3 42.6 41.7 39.7
(35.1–55.5) ± 4.4
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A. Loew: Soil parameter inversion - potential and limits 13

Fig. 1. Measured soil moisture in different depths and cumulated
precipitation (since JD 110)

Fig. 1. Measured soil moisture in different depths and cumulated precipitation (since JD 110).
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14 A. Loew: Soil parameter inversion - potential and limits

Fig. 2. Inverse modelling of soil characteristics using surface soil
moisture observations and PROMET model simulations with (dot-
ted line) and without (solid line) using PTF’s

Fig. 2. Inverse modelling of soil characteristics using surface soil moisture observations and
PROMET model simulations with (dotted line) and without (solid line) using PTF’s.
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A. Loew: Soil parameter inversion - potential and limits 15

Fig. 3. Measured surface soil moisture (5cm, dotted line) and
PROMET open loop simulations using FAO and laboratory soil tex-
ture information

Fig. 3. Measured surface soil moisture (5 cm, dotted line) and PROMET open loop simulations
using FAO and laboratory soil texture information.
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16 A. Loew: Soil parameter inversion - potential and limits

Fig. 4. Soil texture retrieval results for the different scenariosFig. 4. Soil texture retrieval results for the different scenarios.
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16 A. Loew: Soil parameter inversion - potential and limits

Fig. 4. Soil texture retrieval results for the different scenariosContinued.
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A. Loew: Soil parameter inversion - potential and limits 17

Fig. 5. Simulated and observed surface soil moisture (0 - 10 cm) for
soil parameter sets retrieved from different observation frequencies
(C1 scenario, v=1%)

Fig. 5. Simulated and observed surface soil moisture (0–10 cm) for soil parameter sets retrieved
from different observation frequencies (C1 scenario, v=1%).
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18 A. Loew: Soil parameter inversion - potential and limits

Fig. 6. Simulated and observed surface soil moisture (0 - 10 cm) for
soil parameter sets retrieved with different observation accuracies
(C1 scenario, ∆t=1 day)

Fig. 6. Simulated and observed surface soil moisture (0–10 cm) for soil parameter sets retrieved
with different observation accuracies (C1 scenario, ∆t=1 day).
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A. Loew: Soil parameter inversion - potential and limits 19

Fig. 7. Comparison of normalized (bottom) and un-normalized
(top) values for rms error and model efficiency for C1 scenario

Fig. 7. Comparison of normalized (bottom) and un-normalized (top) values for rms error and
model efficiency for C1 scenario.
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20 A. Loew: Soil parameter inversion - potential and limits

Fig. 8. RMS error and model efficiency for the constrained (C1,
top) and unconstrained (B1, bottom) case

Fig. 8. RMS error and model efficiency for the constrained (C1, top) and unconstrained (B1,
bottom) case.
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A. Loew: Soil parameter inversion - potential and limits 21

Fig. 9. Frequency distribution of ratio between unconstrained (B1)
and constrained (C1) simulation results from surface soil moisture
rms error and model efficiency

Fig. 9. Frequency distribution of ratio between unconstrained (B1) and constrained (C1) simu-
lation results from surface soil moisture rms error and model efficiency.
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22 A. Loew: Soil parameter inversion - potential and limits

Fig. 10. Normalized rms error and model efficiency with (top, C1)
and without (bottom, C2) a priori information on soil texture

Fig. 10. Normalized rms error and model efficiency with (top, C1) and without (bottom, C2) a
priori information on soil texture.
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A. Loew: Soil parameter inversion - potential and limits 23

Fig. 11. Soil moisture simulations from direct retrieval of soil hy-
draulic characteristics (scenario A) for different sampling intervals

Fig. 11. Soil moisture simulations from direct retrieval of soil hydraulic characteristics (scenario
A) for different sampling intervals.
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24 A. Loew: Soil parameter inversion - potential and limits

Fig. 12. Soil moisture rms error and model efficiency for scenario
A: absolute values (top) and normalized by open loop simulation
(bottom)

Fig. 12. Soil moisture rms error and model efficiency for scenario A: absolute values (top) and
normalized by open loop simulation (bottom).
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A. Loew: Soil parameter inversion - potential and limits 25

Fig. 13. Simulated and measured deeper soil layer soil water con-
tent for different sampling frequencies (scenario A)

Fig. 13. Simulated and measured deeper soil layer soil water content for different sampling
frequencies (scenario A).
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26 A. Loew: Soil parameter inversion - potential and limits

Fig. 14. Normalized rms error and model efficiency of the deeper
soil layer for different temporal sampling and observation errors
(scenario A)

Fig. 14. Normalized rms error and model efficiency of the deeper soil layer for different temporal
sampling and observation errors (scenario A).
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