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Abstract

In this study we propose a comprehensive multi-criteria validation test for rainfall-runoff
modeling by artificial neural networks. This study applies 17 global statistics and 3
additional non-parametric tests to evaluate the ANNs. The weakness of global statistics
for validation of ANN is demonstrated by rainfall-runoff modeling of the Plasjan Basin in5

the western region of the Zayandehrud watershed, Iran. Although the global statistics
showed that the multi layer perceptron with 4 hidden layers (MLP4) is the best ANN
for the basin comparing with other MLP networks and empirical regression model, but
the non-parametric tests illustrate that neither the ANNs nor the regression model are
able to reproduce the probability distribution of observed runoff in validation phase.10

However, the MLP4 network is the best network to reproduce the mean and variance
of the observed runoff based on non-parametric tests. The performance of ANNs and
empirical model was also demonstrated for low-medium and high flows. Although the
MLP4 network gives the best performance among ANNs for low-medium and high flows
based on different statistics but the empirical model shows better results. However,15

none of the models is able to simulate the frequency distribution of low-medium and
high flows according to non-parametric tests. This study illustrates that the modelers
should select appropriate and relevant evaluation measures from the set of existing
metrics based on the particular requirements of each individual applications.

1 Introduction20

The rainfall-runoff relationship is an important issue in hydrology and a common chal-
lenge for hydrologists. Due to the tremendous spatial and temporal variability of wa-
tershed characteristics such as snowpack, soil moisture, hydraulic conductivity, water-
shed slope, seasonal rainfall etc., the rainfall-runoff relationship is usually a nonlinear
process. Since the middle of the 19th century, different methods have been applied by25

hydrologists within rainfall-runoff modeling whereupon many models have attempted to
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describe the physical processes involved (e.g. mathematical-physical lumped or dis-
tributed models).

Over the last decade, there has been a tremendous growth in the interest of appli-
cation of a class of techniques that operate in a manner analogous to that of biolog-
ical neurons system, i.e. artificial neural networks (ANNs). While ANNs are capable5

of capturing non-linearity in the rainfall-runoff process compared with other modeling
approaches (Hsu et al., 1995), ANN models have been applied in hydrology and in
the context of rainfall-runoff modeling (Smith and Eli, 1995; Dawson and Wilby, 1998;
Tokar and Markus, 2000; Zhang and Govindaraju, 2003; Kumar et al., 2005). From
these studies, it has been demonstrated that ANN models can be flexible enough to10

simulate the rainfall-runoff processes successfully.
Various types of neural network models are available for rainfall-runoff modeling.

Feedforward artificial neural networks (FFANNs) maintain a high level of research in-
terest due to their ability to map any function to an arbitrary degree of accuracy. This
has been demonstrated theoretically for both the radial basis function (RBF) network15

and the popular multilayer perceptron (MLP) network (Harpham and Dawson, 2005).
The primary goal of ANN modeling is the prediction or forecasting of hydrological vari-
ables, e.g. runoff prediction. In this case, a set of variables is divided into two sets
prior to the model building: the training set and validation set. The validation set is
kept aside to evaluate the accuracy of the model derived from the training test. In the20

validation phase, the model output is compared with actual outputs using statistical
measurements such as root-mean-square error (RMSE) and the coefficient of correla-
tion (CORR).

However, the equality of the probabilistic characteristics of the observed and simu-
lated runoff is usually ignored in validation test. It is important because the simulated25

runoff should reflect the relevant hydrological characteristics of the observed runoff in
terms of both magnitude and frequency. For example, the observations are arranged
in order of the magnitude, beginning with 1 for the biggest, when the flow duration
curves are depicted. Therefore, the simulated runoff should reproduce the probabilistic
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behavior of the observed runoff, especially for both upper and lower extreme values.
In this regard, the main objectives of this study are twofold; in the first step, we

develop an effective ANN model for studying the rainfall-runoff relationship in the study
area and verify the models by the global statistics such as root-mean-square error
(RMSE), coefficient of correlation and coefficient of efficiency. In the second step, the5

non-parametric test for the equality of the mean, variance and probability distribution
of the observed and simulated runoff is used to validate rainfall-runoff models and to
compare them with global statistics.

2 Study area and data

In this study, the most popular FFANN architecture, i.e. MLP, is used for rainfall-runoff10

modeling of the main upstream basin of the Zayandehrud watershed in the western
region of Isfahan Province in the center of Iran. Zayandehrud watershed has two main
basins called Ghaleh Shahrokh and the Plasjan Basin. These two basins connect
directly to the Zayandehrud Dam which provides the water supply for Isfahan province.
The input and output variables for ANN is the daily rainfall and runoff of the Plasjan15

basin (Fig.1). The data set includes Plasjan daily streamflow time series and three
daily rainfall time series of the stations within the basin for the period of 1965–2000.

3 Multi-layer perceptron

In this study, the multilayer perceptron architecture assumes that the unknown function
(rainfall-runoff) is represented by a multilayer feed forward network of sigmoid units.20

An ANN model with n input neurons (x1, . . ., xn), h hidden neurons (w1, . . ., wh) and
m output neurons (z1, . . ., zm) is considered in this study. The function that this model
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calculates is

Zk=f

 h∑
j=1

αkjwj+εk

 k=1, . . .,m (1)

Wj=g

(
n∑

i=1

βj ixi+τj

)
j=1, . . ., h (2)

Where g and f are activation functions, i , j , and k are representing input, hidden and
output layers respectively, τj is the bias for neuron Wj and εk is the bias for neuron Zk ,5

βi j is the weight of the connection from neuron xi to Wj and αjk is the weight of the
connection from neuron Wj to Zk .

The hyperbolic tangent sigmoid function is used in this study as activation function
for the hidden nodes. The function can be written as the following

G(si )=
esi−e−si

esi+e−si
(3)10

Where si is the weighted sum of all incoming information and is also referred to as the
input signal

sj=
n∑

i=1

βj ixi+τj (4)

The major advantage of the MLP is that it is less complex than other artificial neural net-
works such as Radial Basis Function (RBF), and has the same nonlinear input-output15

mapping capability (Coulibaly and Evora, 2007). The training of the MLP involves find-
ing an optimal weight vector for the network. The objective function of the training
process is:

E=
1
2

min
N∑

P=1

M∑
k=1

(tkp−Zkp)2 (5)
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Where N is the number of training data pairs, M is the output node number, tkp is the
desired value of the k th output node for input pattern p, and Zkp is the k th element of
the actual output associated with input p (Antar et al., 2006).

4 Model development

The total daily observations was divided into training, validation and cross-validation5

sets prior to the model building. It is worth noting that the method used to divide the
data has significant impact on the results. In other words, the network may use low or
high flow samples and give a yield of great precision for training set but fails to simulate
outside the range of the training data (Tokar and Johnson, 1999; Shahin et al., 2000).
In this study, the rainfall and runoff data were randomized prior to training the network10

to avoid this problem.
In the first step, we select the input data for MLP networks. According to the auto-

correlation properties of daily rainfall and runoff time series and the cross correlation
between daily rainfall and runoff series, different input variables can be used for ANN.
However, due to the possibility of zero rainfall and runoff in the Zayandehrud basin,15

the initial efforts to construct the ANN showed that data transformation is necessary
to reduce the variance of rainfall and runoff time series. In this study, we apply stan-
dardized rainfall and runoff time series to construct the ANN. After trial and error, the
following normalized variables were selected as input and output data of ANN. The
cross-correlation coefficients (CCC) between streamflow and selected rainfall variables20

and the autocorrelation coefficients (ACC) of streamflow time series at different lags are
also given. All the coefficients are significant at 1% level.
Variable (x1): R1(t−1), Daily rainfall of station (1) at lag time 1-day, CCC=0.133
Variable (x2): R1 (t−2), Daily rainfall of station (1) at lag time 2-days, CCC=0.119
Variable (x3): R2 (t−1), Daily rainfall of station (2) at lag time 1-day, CCC=0.07625

Variable (x4): R3 (t−2), Daily rainfall of station (3) at lag time 2-days, CCC=0.048
Variable (x5): Q (t−1), Daily streamflow at lag time 1-day, ACC=0.935
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Variable (x6): Q (t−2), Daily streamflow at lag time 2-days, ACC=0.901
The output of the model is streamflow discharge of the Plasjan River (Qt) at the outlet of
the basin. We tested different MLP architectures and found that the MLP with 1-hidden
layer (i.e. MLP1) is not appropriate while other MLPs (MLP2, MLP3, MLP4 and MLP5)
are suitable networks for modeling rainfall-runoff relationship of Plasjan basin. The ob-5

servation data set is divided into three training, cross validation and testing data sets.
The random order was used for training material and the Levenberg-Marquardt back-
Propagatopn algorithm, as the most efficient algorithm (Ramirez-Beltran and Montes,
2002) was used to train neural network and training was stopped at 1000 epochs. The
learning rate was set from 0.7 to 0.1 and the learning rule is momentum. Each MLP10

network contained 7 hidden units positioned in each hidden layer. The performance of
these networks is depicted in Fig. 2a–d which shows the network estimated streamflow
against observed testing data set.

5 Empirical model

In order to compare ANN with an empirical model, we also develop a multiple linear15

regression (MLR) model for rainfall-runoff relationship. The discharge of Plasjan River
(Qt) is selected as the dependent variable and the input variables of ANN are selected
as independent variables. The best-fit model is estimated using a stepwise procedure
and selected based on the highest coefficient of determination (R2) and residual test
for normality. Finally, the following regression model is estimated:20

Qt=0.814x6−0.043x2−0.032x1+0.103x4+0.146x3+0.008x5

The performance of regression model is depicted in Fig. 3.
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6 Comparison of the models: comprehensive multi-criteria analysis

6.1 Global statistics

The performance of hydrologic models is usually evaluated by the comparison of de-
sired and model predicted values. This comparison can be done by graphical or numer-
ical methods. The global statistics (Root Mean Squared Error, Correlation Coefficients,5

the Coefficient of Efficiency (CE), Index of Agreement (Legates and McCabe, 1999;
Harmel and Smith, 2007) are usually used for model calibration or comparison of dif-
ferent models. As there is no single definite evaluation test, it is important to apply a
multi-criteria assessment of ANN skill (Dawson et al., 2002; Kumar et al., 2005). These
statistics are summarized in a recent paper by Dawson et al. (2007) and could be calcu-10

lated automatically on the Hydrotest website available at http://www.hydrotest.org.uk.
We apply 17 criteria which are listed in Appendix A. The reader is referred to Dawson
et al. (2007) for the mathematical formulation of these criteria.

These error statistics are given for different MLP networks in Table 1. It is evident
that the MLP4 network is better than all other networks. Comparing with regression15

model and according to some criteria, i.e. MARE, ME, MRE and MSRE, the regression
model performs better than MLP4 network. However, these criteria that are unbounded
do not necessarily show the preference of regression model because the low score of
these criteria do not necessarily indicate a good model in terms of accurate forecasts,
since positive and negative errors will tend to cancel each other out.20

6.2 Statistical validation

Although the above error statistics provide relevant information on the overall perfor-
mance of the models but they do not provide specific information about model per-
formances at high or low flows, which are of critical importance in flood or low flow
contexts. This study proposes other criteria to evaluate the performance of ANNs, es-25

pecially for the rainfall-runoff relationship. These criteria are divided into the following
graphical and numerical tests:
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6.2.1 Graphical tests

In this section we compare the box-plot and probability plot of the observed and com-
puted flows. The probability plot of the observed and simulated streamflow is fitted by
Blom’s method which is based on the fractional rank of the observation. The parame-
ters of the probability function are estimated by maximum likelihood method.5

These tests are useful for visual comparison of the upper or lower tail of the dis-
tribution of the observed and estimated streamflow. The box-plots of observed and
estimated streamflow for different MLP networks and regression model are illustrated
in Fig. 4. From box-plots, it is clear that the MLP4 network and regression model most
closely match the observed streamflow, especially for high flows.10

The probability plots for the observed and MLP4 network reveal that the distribution
of observed and MLP4-estimated streamflow data are more similar for a normal distri-
bution (Fig. 5) than for a gamma distribution (Fig. 6) because the lower tail of a gamma
distribution is very different for observed and estimated streamflow. The gamma distri-
bution for MLP2 and MLP5 networks are also presented in Fig. 7. It is clear that the15

networks are not able to reproduce the probability distribution of the observed stream-
flow and there is a significant difference in both upper and lower tails of the quantile
distribution of streamflow. The probability plots of estimated streamflow by regression
model are also presented in Fig. 8. The normal probability plot (Fig. 8a) is similar to
the normal probability plot of observed streamflow and MLP4 network (Fig. 5a and20

b, respectively). However, the Gamma probability plot for regression and observed
streamflow is different, particularly for lower tail of distribution. These probability plots
illustrate that the regression model and ANNs are not able to simulate the probability
distribution of the observed streamflow (see also Table 2).

However, the MLP4 network seems to be a superior model for rainfall-runoff modeling25

of the Zayandehrud basin. However, it would wise to check the validation of the ANN
network by statistical measurements presented in the following section.
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6.2.2 Statistical tests

In this section, we suggest useful statistical tests to evaluate the performance of the
ANNs and to compare these ANNs with each other. These statistical methods include
non-parametric tests to compare mean, standard deviation and the cumulative distri-
bution function (CDF) of observed and estimated streamflow. Khan et al. (2006) used5

these statistics to compare different precipitation downscaling methods including ANN
and Modarres (2007) used a non-parametric method to evaluate drought time series
forecasting with ARIMA model for the Plasjan River.

Non-parametric test for the difference of two population means

The Wilcoxon rank sum method (Conover, 1980) is a robust non-parametric method for10

constructing a hypothesis test p-value for µ1−µ2 (difference of two population means).
At any significance level greater than the p-value, one rejects the null hypothesis, and
at any significance level less than the p-value one accepts the null hypothesis. For
example, if p-value is 0.04, one rejects the null hypothesis at a significance level of
0.05, and accepts the null hypothesis at a significance level of 0.01. The null hypothesis15

of Wilcoxon test can be defined at:

H0: µ1−µ2=0 (6)

Ha: µ1−µ2 6=0 (7)

Non-parametric test for the equality of two population variances

The equality of two population variances can be tested using Levene’s test. The hy-20

pothesis for the Levene’s test can be defined as (Khan et al., 2006):

H0: σ1=σ2=. . .=σk (8)

Ha: σi 6=σj 6=. . . 6=σk for at least one pair (i , j ) (9)
3458
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In performing Levene’s test, a variable X with sample size N is divided into k subgroups,
where Ni is the sample size of the i th subgroup, and the Levene test statistic is defined
as:

W=

(N−K )
k∑

i=1
Ni (Z̄i−Z̄)2

(k−1)
k∑

i=1

Ni∑
j=1

(Zi j−Z̄i )2

(10)

where Zi j is defined as:5

Zi j=
∣∣Xi j−X̄i

∣∣ (11)

where X̄i is the median of the i th subgroup, Z̄i is the group mean of the Zi j and Zi is
the overall mean of the Zi j . The Levene’s test rejects the hypothesis that the variances
are equal if

W>F(α,k−1,N−k) (12)10

where W>F(α,k−1,N−k) is the upper critical value of the F distribution with k−1 and N−k
degrees of freedom at a significant level of α.

Non-parametric test for equality of CDFs of two populations

Kolmogorov-Smirnov (K-S) non-parametric test (Conover, 1980) is used to compare
cumulative distribution function (cdf) of observed and simulated streamflow series.15

Suppose, F1(x) and F2(x) are cdfs of two sample data of a variable x. The null hy-
pothesis and the alternative hypothesis concerning their cdfs are:

H0: F1(x)=F2(x) for allx (13)

Ha: F1(x) 6=F2(x) for at least one value ofx (14)
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and the test statistics, Z is defined as

Z=supx |F1(x)−F2(x)| (15)

which is the maximum vertical distance between the distributions F1(x) and F2(x). If
the test statistic is greater than the critical value, the null hypothesis is rejected.

To evaluate the performance of MLP networks, we apply the tests in two cases. First,5

the observed and simulated streamflow time series are compared for the overall valida-
tion test. For the second case, the percentiles of observed and simulated streamflow
time series are compared in order to check the validation of ANNs for the prediction
of high, medium and low streamflows. The streamflow time series are divided into the
first 0–25% (P1), the second 25–75% (P2) and the third 75–100% (P3) percentiles.10

Table 2 indicates the results of non-parametric tests at 95% significant level for the
first case. It is evident that none of the networks can simulate statistical characteristics
of the observed streamflow except multi-layer perceptron with 4 hidden layers (MLP4)
because all estimated p-values are less than 0.05 except for the MLP4 network.

Although the p-value of the K-S test is near 0.05 for MLP4 network, the Kolmogorov-15

Smirnov test does not verify the equality of the CDFs of the observed and ANN sim-
ulated streamflow. Table 2 confirms the dissimilarity in the probability plot of the ob-
served and simulated streamflow by different ANN networks and regression model (see
Figs. 6, 7 and 8).

For comparing high, medium and low flow in the second case, the streamflow time20

series are divided into three percentile groups and the above non-parametric tests are
applied for each group. Table 3 represents the global statistics of the networks for each
percentile group. Those values highlighted in bold in this table indicate the “best” model
out of the five when assessed using each particular evaluation metric.

For the first percentile, or the low flows, MLP4 network performs better than other25

networks based on most of the criteria. However, for some criteria such as AME,
PDIFF and PEP, the MLP2 is better than other MLP networks. These criteria illustrate
the error of the highest output between the modeled and the observed dataset which
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is not suitable for low flow error measurement. For the second percentile, the same
results can be seen for MLP4 and MLP3 networks. However, for the third or the upper
percentile which shows the efficiency of the model for estimating high flows, the MLP4
is the best network. Jain and Srinivasulu (2004) also mentioned that the high flows can
be effectively modeled by MLP networks. However, they concluded that for medium5

and low flow simulation by ANNs, the use of genetic algorithm (GA) may be advantage
because the watershed condition is much more complex and dynamic for low flows
than high flows.

On the other hand, the regression model seems to be more effective than MLP
networks for rainfall-runoff modeling according to almost all criteria and different per-10

centiles. The regression model scores well in terms of most of the metrics. However,
the MLP is still better than regression model in terms of PDIFF and PEP. In other words,
the MLP4 networks estimate high flows more accurate than regression model while the
regression model performs better than MLP4 for medium and low flows. The results
of the total data (Table 1) also indicated the better performance of MLP4 network over15

regression model for high flows.
Table 4 presents the results of non-parametric tests for three percentile groups. It is

found that MLP2 is still an insignificant model for rainfall-runoff relationship modeling
for the Plasjan River because all p-values are below 0.05.

The MLP3 network can reproduce the mean of observed streamflow for the sec-20

ond and third percentiles but the network is weak in simulating standard deviation and
the probability distribution of the observed streamflow because the p-values are be-
low 0.05. The MLP4 network indicates the best simulation results for the mean and
standard deviation of the observed streamflow but similar to the MLP5, it also fails to
reproduce the mean and standard deviation of the observed streamflow. On the other25

hand, the regression model is similar to the MLP4 network.
However, the Kolmogorov-Smiornov test demonstrates that neither the ANNs nor

the regression model can reproduce the probability distribution of streamflow in the
validation phase of the modeling. Although the MLP4 network and regression model
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are able to simulate the mean and standard deviation of the observed streamflow but
they could not reproduce the probability distribution of the observed streamflow.

7 Conclusion and summary

Artificial neural networks are powerful tool for modeling nonlinear relationships in hy-
drology such as rainfall-runoff relationship. The validation phase of the neural network5

modeling plays an important role in the efficiency testing of the modeling. The global
statistics are common methods used in this phase. However, the findings reported in
this paper show that the global statistics broadly reflect the accuracy of the model but
are insufficient indicators of the best ANN because they do not capture the mean, stan-
dard deviation and probability distribution of the observed streamflow. This paper also10

illustrates the dangers of relying on one metric alone to evaluate and select different
models.

Although the multi layer perceptron with four hidden layers was selected as the best
neural network based on the global statistics, it failed to reproduce the probability dis-
tribution of observed streamflow. The MLP4 network also gives better results than15

regression model for entire testing data set.
However, it is important to reproduce streamflow statistics such as the mean, stan-

dard deviation and probability distribution for high, medium and low flows. According
to the objectives of the ANN, i.e. flood or low flow simulation or forecasting, it is very
important to check the accuracy of the ANN output separately in future studies. For20

example, the best ANN in this study, MLP4, gives better estimation for high flows than
for low flows. But the MLP4 network is not able to reproduce the probability functions
of different percentiles according to the Kolmogorov-Smirnov test. Although the re-
gression model is better than ANNs based on different criteria, it is also inadequate to
reproduce probability distribution of the observed streamflow.25

In general, the findings of this study conclude that, for validation phase of ANN,
the common global statistics are not sufficient and relying on one measurement is not
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relevant. A multi-criteria assessment based on different global and non-parametric
tests is essential for verifying and selecting an optimum ANN. One should use a range
of methods to evaluate the methods.

Appendix A
5

Abbreviations for global criteria used in this study:

AME: Absolute maximum error
CE: Coefficient of efficiency
IoAd: Index of agreement
MAE: Mean absolute error
MARE: Mean absolute relative error or relative mean error (RME)
MdAPE: Medium absolute percentage error
ME: Mean error
MRE: Mean relative error
MSRE: Mean squared relative error
PDIFF: Peak difference
PEP: Error in peak
PI: Coefficient of persistence
R2: Correlation of determination
RAE: Relative absolute error
R4MS4E: Fourth root mean quadrupled error
RMSE: Root mean squared error
RVE: Relative volume error
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Table 1. Performances indices for MLP models.

Criteria ANNs Regression model

MLP2 MLP3 MLP4 MLP5

AME 2246.52 1296.85 1104.05 2972.94 4684.42
CE (%) 82 96.5 97.3 88.35 0.92
IoAd 0.93 0.991 0.993 0.96 0.97
MAE 190.95 65.77 53.24 127.39 56.93
MARE 6.85 1.88 1.25 4.03 0.66
MdAPE 41.78 13.68 11.27 33.22 12.01
ME −53.49 −6.11 −3.59 −10.21 0.003
MRE −6.72 −1.79 −1.17 −3.87 −0.58
MSRE 406.46 31.87 14.45 141.72 6.509
PDIFF 1262.15 −1066.84 190.30 1636.13 519.43
PEP 19.47 −15.90 2.94 25.24 8.015
PI 0.9119 0.9824 0.9865 0.9417 0.96
R2 0.9365 0.9582 0.9635 0.9222 0.9208
RAE 0.53 0.18 0.14 0.35 0.15
R4MS4E 435.28 282.48 238.26 555.62 732.54
RMSE 247.17 112.21 97.15 201.1 165.77
RVE −0.121 −0.014 −0.008 −0.023 0.009
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Table 2. Test results (p-values) of non-parametric methods for the difference between observed
and ANN simulated streamflow at 95% confidence level.

Nonparametric method ANNs Regression model

MLP2 MLP3 MLP4 MLP5

Wilcoxon 0.003 0.035 0.312 0.008 0.026
Levene 0.002 0.023 0.073 0.005 0.012
K-S 0.001 0.011 0.028 0.004 0.001

3467

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3449/2008/hessd-5-3449-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3449/2008/hessd-5-3449-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3449–3477, 2008

Multi-criteria
validation of ANN

R. Modarres

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. Performances indices for MLP models and different percentile groups.

Criteria MLP2 MLP3 MLP4 MLP5 Regression model

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

AME 580.95 418.24 2246.52 607.66 361.82 1943.9 625.06 976.76 1429.71 620.9 976.76 2972.94 23.19 28.91 1390.61
CE (%) 22 14 81 94 89 93 95 85 94 75 47 83 22 89 98
IoAd 0.1 0.69 0.95 0.31 0.97 0.98 0.39 0.96 0.99 0.17 0.81 0.95 0.78 0.99 0.99
MAE 273.89 118.44 251.33 73.35 37.75 118.29 48.23 32.07 105.73 158.69 32.07 179.95 20.21 8.81 44.5
MARE 25.41 0.72 0.32 6.99 0.17 0.13 4.64 0.13 0.10 14.90 0.13 0.44 1.81 0.05 0.02
MdAPE 1330.22 35.15 22.83 356.66 9.42 7.17 227.11 6.90 6.27 765.54 6.90 11.20 97.22 2.16 2.05
ME −273.89 −89.59 −243.08 −73.35 4.94 −36.03 −48.23 3.70 −20.99 −158.67 3.70 −149.39 −20.21 −4.51 43.11
MRE −25.41 −0.66 −0.32 −6.99 −0.07 −0.09 −4.64 −0.04 −0.05 −14.90 −0.26 0.42 −1.81 −0.04 0.02
MSRE 1600.33 1.25 0.25 125.53 0.068 0.13 58.72 −0.04 0.03 558.01 0.05 11.79 7.81 0.007 0.001
PDIFF −532.95 −86.41 −1262.15 −559.66 −151.82 1296.85 −577.06 −872.76 −190.3 −572.9 −872.76 −1636.13 −19.86 8.12 657.19
PEP −761.24 −14.54 −24.18 −799.4 −25.55 16.67 −824.25 −146.92 −3.02 −818.31 −146.92 −33.77 −28.36 1.36 10.14
PI −426 337.79 −11 251.92 −0.84 −3421.35 −1390.95 0.50 −18 043.25 −1917.65 0.52 −146 902.42 −1917.65 −0.72 −2312.78 −61.3 −0.80
R2 0.40 0.72 0.96 0.42 0.95 0.97 0.42 0.92 0.98 0.32 0.69 0.94 0.93 0.95 0.98
RAE 18.10 0.89 0.61 4.84 0.28 0.20 3.18 0.24 0.18 10.48 0.24 0.34 1.34 0.06 0.08
R4MS4E 277.04 172.25 607.73 135.60 82.92 490.81 137.01 185.33 407.15 177.23 185.33 785.21 20.30 13.2 310.77
RMSE 274.6 61.3 410 78.1 41.2 230 79.6 50.5 209 162.1 61.3 368 20.25 10.6 100.91
RVE −10.89 −0.28 −0.27 −2.91 0.016 −0.03 −1.91 0.01 −0.01 −6.31 −0.05 −0.15 −0.80 −0.01 0.038
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Table 4. Test results (p-values) of non-parametric methods for the difference between observed
and ANN simulated streamflow percentile groups at 95% confidence level.

Nonpara- MLP2 MLP3 MLP4 MLP5 Regression
metric model
method

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Wilcoxon 0.001 0.001 0.001 0.001 0.466 0.534 0.001 0.607 0.714 0.001 0.028 0.004 0.001 0.37 0.43
Levene 0.001 0.001 0.001 0.028 0.01 0.004 0.545 0.301 0.44 0.016 0.001 0.045 0.001 0.063 0.47
K-S 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.021 0.011
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Fig 1. Location of Zayandehrud watershed in Isfahan Province and the location of Plasjan 
Basin 
 

Fig. 1. Location of Zayandehrud watershed in Isfahan Province and the location of Plasjan
Basin.
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Fig 2a- Scatter plot of observed versus simulated streamflow (m3/s) for MLP2 network 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2b. Scatter plot of observed versus simulated streamflow (m3/s) for MLP3 network 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2c. Scatter plot of observed versus simulated streamflow (m3/s) for MLP4 network 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2d. Scatter plot of observed versus simulated streamflow (m3/s) for MLP5 network 
 Fig. 2. Scatter plot of observed versus simulated streamflow (m3/s) for (a) MLP2 network, (b)

MLP3 network, (c) MLP4 network, (d) MLP5 network.
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Fig. 3. Scatter plot of observed versus simulated streamflow (m3/s) with regression 
model 
 

Fig. 3. Scatter plot of observed versus simulated streamflow (m3/s) with regression model.
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Fig. 4. Comparison of Box-plots of observed runoff and simulated runoff by MLP 
networks 
 
 

Fig. 4. Comparison of Box-plots of observed runoff and simulated runoff by MLP networks.
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Fig. 5a. Normal cumulative probability plots for observed streamflow 
 
 

 
 
 
 
 
 
 
 
 

 
 
Fig. 5b. Normal cumulative probability plots for MLP4 simulated streamflow  
 Fig. 5. Normal cumulative probability plots for (a) observed and (b) MLP4 simulated streamflow.
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Fig. 6a. Gamma cumulative probability plots for observed streamflow 
 

 
 
 
 
 
 
 
 

 
 
Fig. 6b. Gamma cumulative probability plots for MLP4 simulated streamflow 
 Fig. 6. Gamma cumulative probability plots for (a) observed and (b) MLP4 simulated stream-

flow.
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Fig. 7a. Gamma cumulative probability plots for MLP2  simulated streamflow 
 

 
 
 
 
 
 
 
 
 

 
 
Fig. 7b. Gamma cumulative probability plots for  MLP5 simulated streamflow 
 Fig. 7. Gamma cumulative probability plots for (a) MLP2 and (b) MLP5 simulated streamflow.
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Fig. 8a. Normal cumulative probability plots for simulated streamflow by regression 
model 
 

 
 
 
 
 
 
 
 
 

 
Fig. 8b. Gamma (b) cumulative probability plots for simulated streamflow by regression 
model 
 Fig. 8. Normal (a) and Gamma (b) cumulative probability plots for simulated streamflow by

regression model.
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