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Abstract

The present study developed an artificial neural network (ANN) model to overcome
the difficulties in training the ANN models with continuous data consisting of rainy and
non-rainy days. Among the six models analyzed the ANN model which used general-
ized feedforward type network and a hyperbolic tangent function and a combination of5

meteorological parameters (relative humidity, air pressure, wet bulb temperature and
cloudiness), and the rainfall at the point of forecasting and rainfall at the surrounding
stations, as an input for training of the model was found most satisfactory in forecasting
rainfall in Bangkok, Thailand. The developed ANN model was applied to derive rainfall
forecast from 1 to 6 h ahead at 75 rain gauge stations in the study area as forecast point10

from the data of 3 consecutive years (1997–1999). Results were highly satisfactory for
rainfall forecast 1 to 3 h ahead. Sensitivity analysis indicated that the most important
input parameter beside rainfall itself is the wet bulb temperature in forecasting rainfall.
Based on these results, it is recommended that the developed ANN model can be used
for real-time rainfall forecasting and flood management in Bangkok, Thailand.15

1 Introduction

Accurate information about rainfall is essential for the use and management of water
resources. In the urban areas, rainfall has a strong influence on traffic control, the oper-
ation of sewer systems, and other human activities. Nevertheless, rainfall is one of the
most complex and difficult elements of the hydrology cycle to understand and to model20

due to the tremendous range of variation over a wide range of scales both in space
and time (French et al., 1992). The complexity of the atmospheric processes that gen-
erate rainfall makes quantitative forecasting of rainfall an extremely difficult task. Thus,
accurate rainfall forecasting is one of the greatest challenges in operational hydrology,
despite many advances in weather forecasting in recent decades (Gwangseob and25

Ana, 2001).
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The development of Artificial Neural Networks (ANN), which perform nonlinear map-
ping between inputs and outputs, has lately provided alternative approaches to fore-
cast rainfall. ANN were first developed in the 1940s (Mc Culloch and Pitts, 1943), and
the development has experienced a renaissance with Hopfield’s effort (Hopfield, 1982)
in iterative auto-associable neural networks. In recent decades, the developed algo-5

rithms have helped overcome a number of limitations in the early networks, making the
practical applications of ANN more applausible. Based on the structure of the neural
networks and the learning algorithm, various neural network models have been studied
and targeted at solving different sets of problems.

Neural networks have been widely applied to model many of nonlinear hydrologic10

processes such as rainfall-runoff (Hsu et al., 1995; Shamseldin, 1997), stream flow
(Zealand et al., 1999; Campolo and Soldati, 1999; Abrahart and See, 2000), ground-
water management (Rogers and Dowla, 1994), water quality simulation (Maier and
Dandy, 1996; Maier and Dandy, 1999), and rainfall forecasting. More detailed discus-
sion regarding the application of ANN in hydrology can be referred to in the special15

technical report of Journal of Hydrologic Engineering (ASCE, 2000). A pioneer work in
applying ANN for rainfall forecasting was undertaken by French et al. (1992), which em-
ployed a neural network to forecast two-dimensional rainfall, 1 hour in advance. Their
ANN model used only present rainfall data, generated by a mathematical rainfall simu-
lation model, as input for training data set. This work is, however, limited in a number20

of aspects. For example, there is a trade-off between the interaction and the training
time, which could not be easily balanced. The numbers of hidden layers and hidden
nodes seem insufficient, in comparison with the numbers of input and output nodes, to
reserve the higher order relationship needed for adequately abstracting the process.
Still, it has been considered as the first contribution to ANN’s application and estab-25

lished a new trend in understanding and evaluating the roles of ANN in investigating
complex geophysical processes.

Abraham et al. (2001) used an artificial neural network with scaled conjugate gradi-
ent algorithm (ANN-SCGA) and evolving fuzzy neural network (EfuNN) for predicting
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the rainfall time series. In the study, monthly rainfall was used as input data for train-
ing model. The authors analyzed 87 years of rainfall data in Kerala, a state in the
southern part of the Indian Peninsula. The empirical results showed that neuro-fuzzy
systems were efficient in terms of having better performance time and lower error rates
compared to the pure neural network approach. In some cases, the deviation of the5

predicted rainfall from the actual rainfall was due to a delay in the actual commence-
ment of monsoon, El-Niño Southern Oscillation (ENSO).

Another study of ANN that relates to El-Niño Southern Oscillation was done by
Manusthiparom et al. (2003). The authors investigated the correlations between El
Niño Southern Oscillation indices, namely, Southern Oscillation Index (SOI), and sea10

surface temperature (SST), with monthly rainfall in Chiang Mai, Thailand, and found
that the correlations were significant. For that reason, SOI, SST and historical rain-
fall were used as input data for standard back-propagation algorithm ANN to forecast
rainfall one year ahead. The study suggested that it might be better to adopt various
related climatic variables such as wind speed, cloudiness, surface temperature and air15

pressure as the additional predictors.
Toth et al. (2000) compared short-time rainfall prediction models for real-time flood

forecasting. Different structures of auto-regressive moving average (ARMA) models,
artificial neural networks and nearest-neighbors approaches were applied for forecast-
ing storm rainfall occurring in the Sieve River basin, Italy, in the period 1992–1996 with20

lead times varying from 1 to 6 h. The ANN adaptive calibration application proved to be
stable for lead times longer than 3 h, but inadequate for reproducing low rainfall.

Another application was described by Koizumi (1999), who employed an ANN model
using radar, satellite and weather-station data together with numerical products gen-
erated by the Japan Meteorological Agency (JMA) Asian Spectral Model for 1-year25

training data. Koizumi found that the ANN skills were better than persistence forecast
(after 3 h), the linear regression forecasts, and numerical model precipitation predic-
tion. As the ANN used only 1 year data for training, the results were limited. The
author believed that the performance of the neural network would be improved when
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more training data became available. It is still unclear to what extent each predictor
contributed to the forecast and to what extent recent observations might improve the
forecast.

In summary, results from past studies have shown that ANN is a good approach to
forecast rainfall. The ANN model is capable to model without prescribing hydrologi-5

cal process, catching the complex nonlinear relation of input and output, and solving
without the use of differential equations (Luk et al., 2000; Hsu et al., 1995; French
et al., 1992). In addition, ANN could learn and generalize from examples to produce
meaningful solution even when the input data contain errors or incomplete (Luk et al.,
2000). In fact, while the numbers of studies on application of ANN in rainfall forecasting10

using discontinuous time series data are conducted, studies on continuous time series
data are few. Most of the studies in the past used discrete data to train ANN model,
training data was screen out from collected (and/or generated) data so it contains only
rainy time (i.e., rainfall events or monthly rainfall data). Because the models are trained
with rainy input data, and are typically ran in batch mode, the output forecast is issued15

only after the occurrence of the rainfall events. It means that these models can predict
rainfall only when rain occurs, they can tell how long the rain will last but not whether
it will rain or not. When using continuous past rainfall data which contained both rain
and no rain days as input to train ANN model, no rain periods with zero value makes
no change in weights update process so ANN could not recognize the pattern and give20

low accuracy result. For those reasons, most of the study of ANN on rainfall forecast
in the past is not suitable to apply in real time forecasting.

The main objective of this paper is to develop real time ANN based rainfall forecasting
model using observed rainfall records in both space and time. In order to overcome
the problem encountered in training ANN model with continuous data, an optimum25

ANN architecture was determined, by testing six distinctive alternative ANN models
designed with different number of hidden nodes, transfer function and input data. Using
the ANN model developed, rainfall from 1 to 6 h was forecasted for 75 rain gauge
stations (as forecast point) in Bangkok, Thailand, using continuous hourly rainfall data

187

for 3 yr (1997 to 1999). Moreover, aside from the rainfall data, additional predictors such
as relative humidity, air pressure, wet bulb temperature, cloudiness, and rainfall from
surrounding rain gauge stations, were also adopted to improve the prediction accuracy.
Sensitivity analysis is also taken in account to grade the important factor of each input
to the model performance.5

2 Study area

Bangkok, the capital and also the largest city in Thailand, is also one of the highly de-
veloped cities of Southeast Asia. Having a land area of 1569 km2, it is located in the
central part of the Thailand on the low, flat plain of the Chao Phraya River, with latitude
13.45◦ N and longitude 100.35◦ E. The city which sits at a distance extending from 2710

to 56 km from the river mouth adjacent to the Gulf of Thailand, has a tropical type of
climate with long hours of sunshine, high temperatures and high humidity. There are
three main seasons; Rainy (April–October), Winter (November–January) and Summer
(February–March). The average low temperature is approximately in low to mid 20◦C
and high temperature in mid 32◦C (Thai Meteorological Department, 2005). Bangkok15

receives a very high average annual rainfall of 1500 mm and is influenced by the sea-
sonal monsoon. The city is affected by flood in a regular basis. When rainfall comes,
most of the daily activities are nearly paralyzed. Some of the immediate consequences
of a heavy rainfall in Bangkok are: water clogging in the streets, heavy traffic jams,
blackouts, and direct or indirect economic losses.20

The flood events in Bangkok occur from two sources: the rainfall and the rise in water
level in Chao Phraya River due to large flow from upstream. In the past, most of the
occurrence of high river flow and heavy rains in the city resulted in severe flooding.
However, with the construction of a dam upstream and a dike along the riverbank in
Bangkok, nearly all parts of the city are now protected from flooding. Land use in25

Bangkok has changed rapidly in the last decade and development or urbanization of
the area has increased the impervious land, increasing flood volume and frequency.
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The construction of drainage infrastructure has not kept pace with land-use change
due to lack of funds. Hence, capacity of the drainage system has become more and
more insufficient. In addition, lack of hydrological information and the failure of gravity to
effectively remove drainage water from the city make urban flooding inevitable during
the wet season. For a developing city like Bangkok, one of the best ways to cope5

with the flooding problem is to provide advance rainfall forecasting and flood warning.
Knowing the condition of rainfall in Bangkok in advance can help in managing and
dealing with problems due to flooding.

The Department of Drainage and Sewage (DDS) of Bangkok Metropolitan Admin-
istration (BMA) had established Bangkok Metropolitan Flood Control Center (FCC) in10

1990 for systematic and efficient management of operation and control of flood pro-
tection facilities. BMA has 53 online tipping bucket type rain gauge stations scattered
throughout Bangkok and sensors installed at the canal gates and pumping stations that
collect water level data. The observed data is transferred in real time to FCC by UHF
radio signals every 15 min. Furthermore, Thai Meteorological Department (TMD) owns15

a network of 51 rain gauge stations covering Bangkok and nearby areas. Both rain
gauge networks consist of rain gauges of tipping bucket type with 0.5 mm accuracy.
These data are now available in the Internet and can be used for online applications.
Locations of these rain gauges are shown in Fig. 1.

At present, there is no reliable rainfall forecast mechanism using rain gauge data.20

Bangkok uses only radar data with the SCOUT program to forecast rainfall (Chum-
chean et al., 2005). Based upon the historical data (rain gauge data) and the current
situation, the flood forecast analysis is manually carried out at FFC. After a decision
about control policy is made based on this analysis, the flood control protection com-
mand is then broadcasted to all remote control stations (gates and pumping station).25

This system is acceptable in terms of real time data transmission but not efficient in
terms of urban flood forecast and flood management. Therefore, there is a need to
investigate and apply an accurate technique for rainfall forecasting, using rain gauge
data. ANN with its advantages such as computation speed, learning capability, fault
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tolerance and adoptability, has been selected to be a tool for short-term rainfall fore-
cast for Bangkok area. The model is mimic design, so it can be applied not only to
Bangkok area but also to other tropical developing urban areas as well.

Historical rainfall data was collected from 104 stations of BMA and TMD rain gauge
networks in order to train ANN model. After analysis and screening of data, only 755

stations inside Bangkok area were used to train ANN model, while the other 29 stations
which are located outside Bangkok were discarded. Meteorological data collected from
TMD contains hourly measurement of seven parameters: cloudiness, relative humidity,
wet bulb temperature, dry bulb temperature, air pressure, wind speed and average
hourly rainfall intensity of all rain gauges.10

Figure 2 shows the average monthly rainfall in Bangkok for a period from 1991 to
2003. It is observed that there are two peaks of rainfall during one year, the first in May,
and the second in October. Climatological data during the period 1991–2004 showed
that the average annual relative humidity was about 81% with the average maximum
relative humidity of 93% and average minimum relative humidity of 52%. The data also15

showed that the average annual temperature was 26.8◦C, with average maximum tem-
perature of 33.4◦C in April and average minimum temperature of 20.4◦C in December.
Rainfall data revealed an annual rainfall of 1869.5 mm with the highest average monthly
rainfall of approximately 381 mm observed in October, and the lowest average monthly
rainfall of about 12 mm occurring in December, usually the driest month of the year.20

3 Artificial Neural Network

An artificial neural network is an interconnected group of artificial neurons that has a
natural property for storing experiential knowledge and making it available for use. The
artificial neuron uses a mathematical or computational model for processing of infor-
mation based on a connectionist approach to computation, akin to a human brain. In25

most cases an ANN is an adaptive system that changes its structure based on exter-
nal or internal information that flows through the network. Learning in ANN is similar
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to biological systems, involving adjustments to the synaptic connections that exist be-
tween the neurons. Learning often occurs by example through training or exposure
to a trusted set of input/output data where the training algorithm iteratively adjusts the
connection weights (synapses), and these connection weights store the knowledge
necessary to solve specific problems.5

The multilayer perceptron (MLP) is one of the most widely implemented neural net-
work topologies. Generally speaking, for static pattern classification, the MLP with two
hidden layers is a universal pattern classifier. MLPs are normally trained with the back-
propagation algorithm. In fact the renewed interest in ANN was in part triggered by
the existence of back-propagation. The back-propagation rule propagates the errors10

through the network and allows adaptation of the hidden units. Two important char-
acteristics of the multilayer perceptron are: its nonlinear processing elements (PEs)
which have a nonlinearity that must be smooth (the logistic function and the hyperbolic
tangent are the most widely used); and their massive interconnectivity (i.e. any element
of a given layer feeds all the elements of the next layer).15

The multilayer perceptron is trained with error-correction learning, which means that
the desired response for the system must be known. Error correction learning works in
the following way: from the system response at PEi at iteration n, di (n), and the desired
response yi (n) for a given input pattern, an instantaneous error ei (n) is defined by

ei (n)=di (n)−yi (n) (1)20

Using the theory of gradient-descent learning, each weight in the network can be
adapted by correcting the present value of the weight with a term that is proportional
to the present input and error at the weight, i.e.

wi j (n + 1)=wi j (n)+ηδi (n)xj (n) (2)

The local error δi (n) can be directly computed from ei (n) at the output PE or can be25

computed as a weighted sum of errors at the internal PEs. The constant η is called
the step size. This procedure is called the back-propagation algorithm. Momentum
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learning is an improvement to the straight gradient descent in the sense that a memory
term (the past increment to the weight) is used to speed up and stabilize convergence.
In momentum learning the equation to update the weights becomes

wi j (n + 1)=wi j (n)+ηδi (n)xj (n)+α(wi j (n)−wj (n − 1)) (3)

where α is the momentum. Normally α should be set between 0.1 and 0.9. The5

standard back-propagation algorithm is as follow:

1. Initialize all weights and bias (normally a small random value) and normalize the
training data.

2. Compute the output of neurons in the hidden layer and in the output layer using

neti =
∑

wi jxi+θi ; xi = transferfunction(neti ) (4)10

1. Compute the error and weight update.

2. Update all weights, bias and repeat steps 2 and 3 for all training data.

3. Repeat steps 2 to 4 until the error has reached to an acceptable level.

Generalized feedforward networks are a generalization of the MLP such that connec-
tions can jump over one or more layers. In theory, a MLP can solve any problem that15

a generalized feedforward network can solve. In practice, however, generalized feed-
forward networks often solve the problem much more efficiently. A classic example of
this is the two-spiral problem. Without describing the problem, it suffices to say that a
standard MLP requires hundreds of times more training epochs than the generalized
feedforward network containing the same number of processing elements. A simple20

generalized feedforward neural network with two hidden layers is shown in Fig. 3.
An optimal ANN architecture may be considered as the one yielding the best perfor-

mance in terms of error minimization, while retaining a simple and compact structure.
This important step involves the determination of the ANN’s architecture and selection
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of a training algorithm. There are two important issues concerning the implementation
of artificial neural networks, that is, specifying the network size (the number of layers
in the network and the number of nodes in each layer) and finding the optimal values
for the connection weights.

In the process of specifying the network size, an insufficient number of hidden nodes5

causes difficulties in learning data whereas an excessive number of hidden nodes
might lead to unnecessary training time with marginal improvement in training out-
come as well as make the estimation for a suitable set of interconnection weights more
difficult (Zealand et al., 1999). There is no specific rule to determine the appropriate
number of hidden nodes; yet the common method used is trial and error based on a10

total error criterion. This method starts with a small number of nodes, gradually in-
creasing the network size until the desired accuracy is achieved. Fletcher and Goss
(1993) proposed a suggestion number of node in the hidden layer ranging from (2n+1)
to (2

√
n+m) where n is the number of input node, and m is the number of output node.

The number of input and output nodes is problem-dependent, and the number of input15

nodes depends on data availability. In addition, the selection of input should be based
on priori knowledge of the problem, prevailing synoptic weather condition over study
area. A firm understanding of the hydrologic system under consideration is necessary
for the effective selection of input data (Ahmad and Simonovic, 2005).

Regarding the second issue, several training processes are available to find the val-20

ues of connection weights. These algorithms differ in how the weights are obtained.
The selection of training algorithm is related to the network type, computer memory,
and the input data. As implied in this study, the standard back propagation algorithm
is used in ANN training based on its most popular success, but still there are others,
such as QuickProp (QP), Orthogonal Least Square (OLS), Levemberg-Marquart (LM),25

Resilient Propagation Algorithm (RPROP). Coulibaly (2000) stated that ninety percent
of ANN models applied in the field of hydrology used the back propagation algorithm.
This algorithm involves minimizing the global error by using the steepest descent or
gradient approach. The network weights and biases are adjusted by moving a small
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step in the direction of the negative gradient of the error function during each iteration.
The advantage of this algorithm lies in its simplicity.

4 ANN models

In this study, ANN model was applied for each of 75 rain gauge stations in Bangkok, to
forecast rainfall from 1 to 6 h ahead as forecast point. Six distinctive alternative models5

were initially tested in one station in order to find the optimum ANN model which can
then be employed for all others stations. Station E18, located in the Sukhumvit area,
where a real-time flood forecasting system is currently developed, was chosen as a
sample station in order to design the ANN model structure. To enable the selection of
the best model, the training data set should include the high, medium and low rainfall10

periods. Therefore, 1997, 1998 and 1999 rainfall data were chosen as the training
data sets, and the 1998 data was chosen as the cross-validation data set. Detailed
description of the six models are presented in Table 1.

The first model (A) used multilayer perceptron network with simple structure, five
nodes in the input layer, two hidden layer with 5 hidden nodes in each of the two layers,15

and one node in the output layer corresponding to the observed hourly rainfall. Inputs
to the model were present hourly rainfall data (t) and four hour lag time of E18 station
from (t−4) to (t−1), while the output was rainfall intensity of the next hour (t+1). The
transfer function in nodes is the well-known sigmoid function. For the second model
(model B), the network type, transfer function and input of training data set were kept20

unchanged but the number of hidden nodes in both hidden layers were increased from
5 to 10.

In the third model (C), network type was changed from simple MLP to Generalized
feedforward network. Data used to train the model was the same as the previous
two models (A and B). The fourth model (D) adopted Generalized feedforward, net-25

work, with the same transfer function sigmoid, but different input data as well as model
structure. The self-learning nature of ANN normally allows it to predict without exten-
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sive prior knowledge of all processes involved. However, a good understanding of the
physics involved, and a hypothesis on how different processes (and their state variable)
interact with each other would help in evaluating the generality of the relationship when
analyzing data. Therefore, the data sets used for training should represent the phys-
ically based dynamic range of the forecast. Triggered by this idea, five meteorology5

parameters were added into the training data set, but the past rainfall data was not
included since the data brings more zero value to the training process (for no rain pe-
riod). This resulted to six input data for model D, which included relative humidity, wet
bulb temperature, air pressure, cloudiness, average hourly rainfall intensity of all rain
gauges, and present rainfall of E18 station. Hence the model structure was modified10

by changing input nodes to 6, increasing the number of node in the first hidden layer to
16, changing the second hidden layer to 12, but still 1 node in the output layer.

The fifth model (E) retains the same model structure as model D, except the transfer
function, where the tanh function was used instead of the sigmoid function. In the last
model (F), the rainfall data of stations around E18 were considered. A correlation anal-15

ysis was applied to 75 rain gauge stations in Bangkok to determine which stations are
strongly related to E18. Results of the analysis revealed higher correlation of stations
E00, E19 and E26 with E18 compared with other stations. Thus the present hourly
rainfall data of these three stations were added to the training data set of model E for
the formulation of model F. The change in input data resulted to an increase in the20

number of node in input layer to 9, increase in the number of hidden nodes to 22 and
11 for the first and second hidden layers, respectively.

5 Results and discussion

5.1 Comparison of ANN model

The one hour forecast accuracy of all six ANN models was evaluated by calculating25

the following statistic performance indicators: Efficiency Index (EI), Root Mean Square
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Error (RMSE) and Correlation Coefficient (R2), described in Table 2. From the training
results of ANN models, forecasted rainfall was plotted against the observed data to
determine the relationship of these two variables (Figs. 5, 7 and 9). It was observed
that the RMSE for all models seemed to be small at less than 2 mm per hour. This
value however, does not seem to be significant since the total number of rainy period5

in both forecasted and observed data are very small compared to the total patterns of
training data. Example of 24 h computation on 21 August 1998 for each model were
also plotted (Figs. 4, 6 and 8) for a better view of the difference between forecasted
value and observed data.

Model A gave very low accuracy forecast with EI of only 27.32% and 29.08% for10

training stage and testing stage, respectively, and correlation coefficient of 0.47 in the
training stage and 0.41 in the testing stage. The less number of nodes (only 5) in each
of the two hidden layers in this model may not be sufficient to memorize and learn the
problem. Moreover, the computation time for a fixed 100 000 iteration was around 36 h.
This model could not reach to the stopping criteria and result fluctuated with longer15

time of training. Model B with more number of hidden nodes gave a slightly better
result, with EI reaching 37.25% and 36.5% in the training stage and the testing stage,
respectively and R2 of 0.53 in the training stage and 0.51 in testing stage. This model
also has a better RMSE value at 1.72 mm/h compared with model A (1.88 mm/hour).
The computation time for training with 100 000 iterations was around 24 h. A sample of20

24 h computation on 21 August 1998 of models A and B plotted against the observed
data is shown in Fig. 4. Both models gave some false forecast and the forecasted
rainfall differed with observed data from few to more than 20 mm/h. It was observed in
the scatter plot in Fig. 5 that the linear trend line of models A and B are under the 1:1
line, indicating that the forecast from these two models are underestimated.25

Model C gained better results compared with model B with the EI reaching the value
of 44.15% in the training stage and 43.28% in the testing stage. The new network type
(generalized feedforward network) seemed to result in a faster training computation
time and improved forecast accuracy. The result implied that in this study, general-
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ized feedforward network worked better than simple multilayer perceptron network. For
Model D, the change of input of training data improved the results with higher EI val-
ues of 50.17% and 49.5% in the training stage and testing stage, respectively. For
both models C and D, RMSE value is less than 2 mm/h, indicating minimal change
compared with RMSE of models A and B, but viewed in the Fig. 6, the gap between5

forecasted rainfall of model C and D and observed data is much more smaller than that
of models A and B (Fig. 4). As shown in Fig. 7 where the trend line in the scatter graph
is still laid down under the 1:1 line, with the small angle presenting a low correlation
coefficient value (0.56 for model C and 0.64 for model D), indicating these two models
still gave overestimation of rainfall forecast. On the contrary, the addition of meteo-10

rology parameters such as relative humidity, air pressure above mean sea level, total
cloudiness, wetbulb temperature, and average rainfall of all stations, into the training
data set for model D improved the accuracy of forecast.

For model E, the use of hyperbolic tanh function instead of the sigmoid function
brought a very interesting result. The EI of the model levels up to 66.71% and 68.5%15

in the training stage and in the testing stage, respectively, with R2 of 0.69 in training
stage and 0.71 in testing stage. As seen in Figure 8, forecasting for the same day of
21 August, 1998 using model E, resulted to better accuracy. The tanh function with
the range of each neuron in the layer between −1 and 1 showed a better performance
compared with the sigmoid function where the range of each neuron in the layers is20

between 0 and 1.
Model F gave the highest performance in terms of efficiency and forecasting. The

efficiency attained at 1 h is between 97.35% and 96.52% in the training stage and
testing stage, respectively. A scatter plot of model F (see Fig. 9) shows that the trend
line almost coincided with the 1:1 line, corresponding to a correlation coefficient of 0.96.25

Therefore, this model was used to forecast rainfall at lead-time of one to six hours at
all rain gauge stations in Bangkok.
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5.2 Sensitivity analysis

While training a network, the effect that each of the network inputs is having on the
network output should be studied. This provides feedback as to which input channels
are the most significant, based on which we may decide to prune the input space by
removing the insignificant parameters. This will reduce the size of the network, which5

in turn reduces the complexity and the training time. Sensitivity analysis is a method
for extracting the cause and effect relationship between the inputs and outputs of the
network. This work is done by removing each input channel in turn and then comparing
the statistical indicator such as EI, RMSE and R2.. The greater the effect observed in
the output, the greater the sensitivity with respect to the input. In order to ensure10

the accurate output from the model, the input sensitive analysis was carried out and
compared with the results from model F. As mentioned in the preceding section, the
inputs into the final model (F) are total cloudiness, air pressure (HPa), relative humidity
(%), wetbulb temperature ( ˚ C), average rainfall from TMD (mm/h), rainfall from three
surrounding stations (strongly connected with station E18) (mm/h), and rainfall from15

E18 station (mm/h), 6 alternative models were run for the sensitivity analysis. These 6
alternative models maintained the same network architecture, using the tanh function
and forecasting rainfall 1 h ahead.

As can be seen from Table 3, the most significant input is wetbulb temperature.
The model running without wetbulb temperature as input obtained an EI reduced from20

97.35% of that of the model F, to 80.62% in the training stage. The second most
important parameter is humidity since in the model without humidity, EI was down to
83.22% in the training stage. Other important parameters are pressure and rainfall from
surrounding station. The average rainfall of all stations collected from the main TMD
station RS26 stays as the fifth important parameter, with an EI decreasing to 86.37% for25

the model running without this parameter. Lastly, the model running without cloudiness
gave slightly changing result compared with the model F, with an EI reduced to 87%.

198



5.3 Rainfall forecasting

Based on the results of designing stage with six models tested on station E18, model
F which gave the highest performance in term of efficiency and forecasting was em-
ployed to forecast rainfall from 1 to 6 h ahead for all 75 stations. Three years rain-
fall and meteorology data were available, so model performance was evaluated using5

cross-validation to maximize data available for training. By this method, performance
statistics can be generated for the entire 3 y period. To evaluate the performance of
models, the same three indices EI, RMSE and R2 were used. Table 4 expresses the
summarized ANN results of maximum, minimum, mean EI, R2, and RMSE for rainfall
forecasting from 1 to 6 h ahead of all stations. There is a consistency in the perfor-10

mance of models, where ANN model is quite stable and gave almost the same result
for all stations. It also shows that the model performance decreases with the increasing
lead time forecast. Average EI of 1 and 2 h forecast is 0.86 and 0.69, respectively. How
ever, these values continue to decrease to 0.54 for 3 h forecast, 0.45 for 4 h forecast,
0.41 for 5 h forecast and finally drops to 0.36 in the 6 h forecast. Correlation coefficient15

and RMSE show the same trend where mean R2 decreases from 0.88 for 1 h forecast
to 0.6 at 6 h forecast, and RMSE value increases from 0.87 mm/hr to 1.93 mm/h from
1 h to 6 h forecast, respectively. From Table 4, it can be seen that ANN models provide
remarkable accuracy predictions for 1 and 2 h. For 1 h forecast, some stations can get
EI up to outstanding value of 0.98, while the lowest EI value of all stations is 0.74. Cor-20

relation coefficient also presents a notable maximum value of 0.99 and minimum value
0.74. For 2 h forecast, results is also quite good where maximum EI is 0.87, minimum
EI is 0.63; and R2 is in the range from 0.92 to 0.63. Forecasting results of 3 hours is
not so good but still there are some stations which could come up with EI of up to 0.68
and R2 gained value of 0.84. Forecasting for 4 to 6 h ahead gave poor results, event25

maximum R2 value varies in the range from 0.78 to 0.71, but the range of EI is only
from 0.62 to 0.48.

The RMSE value, as mentioned in Sect. 5.1, did not give much information. For
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example, with station E18, total rainfall pattern for the year 1998 is 312, and total
training pattern for this period is 5928. Thus, in term of mm/h, the RMSE value is always
very small, but it is not mean that forecast result is well fit with observed data, So, to
check whether the peak forecast is fit or not, it also need visual checking. Example of
comparison between observed rainfall (left figure) and predicted rainfall (right figure)5

for 1 to 6 h ahead forecasting at 8 August 1998, is shown in Fig. 10. In this figure,
co-ordinates of all stations, the observed rainfall data and the predicted rainfall data for
all 75 stations are fed into the Surfer program for plotting the rain map. Therefore, the
comparison of the observed and forecasted rainfall for the whole Bangkok area can
be seen clearly. The Kriging method was used for scattered data interpolation. As10

seen in Fig. 10, at 8 h, there were light rain at some stations and 1 h forecast could
forecast quite accurately. At 9 h, rain became heavier on the east side of Bangkok,
forecasting of 2 h also presented a nice shape of rain map, but there were some stations
giving false forecast, and darker legend color also indicates underestimated prediction.
Rainfall forecast at 3 h ahead also gave underestimated result in most stations. The15

rain moved into the center of the area (observed at 10 h), but in the 3 h forecast, rain
not only appeared in the center but also in left lower corner of the map. From 11:00 h to
13:00 h, rain has reduced and stopped, but in the forecast result, there were still rainfall
at some stations. Figure‘10 revealed a similar conclusion as Table 4, that is, rainfall
forecast for 3 to 6 h is not so good, but is still considered to be a reasonable non-linear20

approximation. By presenting forecast result in rain map, this could provide a better
view of the whole picture of rainfall forecast for all stations in the area.

6 Conclusions

In this study, an Artificial Neural Network model has been developed to run real time
rainfall forecast for Bangkok, Thailand, with lead time from 1 to 6 h. Rain gauge data25

from 75 rainfall stations and meteorological data from Thai Meteorological Department
were collected during the period 1997–1999 to train ANN models. Six alternative mod-
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els were tested to identify the appropriate model design to overcome the difficulty of
training ANN with continuous rainfall data. Comparison of 1 h rainfall forecast of these
six models showed that combination of meteorology data with rainfall data as training
data has significantly improved the forecast accuracy. Result of designing stage also
concluded that Generalized Feedforward network and hyperbolic tanh function proved5

to work well in this study. With appropriate network architecture, ANN model is able
to learn from continuous data which contained both rain and no rain period, thus the
model can be adopted to run online forecasting.

While ANN is considered as data driven approaches, and the selecting of input data
in this study was limited on the availability of the data, it is still important to determine10

the dominant model inputs, as this increases the generalization ability of the network
for a given data. Furthermore, it can help reducing the size of the network and conse-
quently reduces the training times. Choosing suitable parameters for the ANN models
is more or less a trial and error approach. In this study, sensitive analyses were used
in conjunction with judgment to rank the important factor of each input to the model15

performance.
The ANN model in this study is very robust, characterized by fast computation, ca-

pable of handling the noisy and approximate data that are typical in weather data. The
predicted values of all 75 stations matched well with the observed rainfall in case of
forecasts with short lead times, 1 or 2 h. Not only that, the rainfall forecasting for 3 h20

ahead using ANN also provided reasonable results. The efficiency indices were grad-
ually reduced as the forecast lead time increased from 4 to 6 h. Although the model
performance of 6 h forecasting was low and the forecasting was not as accurate as
expected, this model still has some practical applications in flood management for the
study area. Overall, the study indicates that the use of time series analysis techniques25

(ANN model) for rainfall forecasting may allow an extension of the lead-time above 6 h,
whereby a reliable flood forecast which provides a quick prediction based on the past
values may be issued. Based on these results, it can be concluded that ANN is an
appropriate predictor for real-time rainfall forecasting in rainfall stations in the Bangkok
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area.
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Table 1. Alternative models considered in the study.

Model Network type PE’s function Architecture Input

A Simple MLP Sigmoid 5-5-5-1 Four past lag time rainfall + present rainfall
B Simple MLP Sigmoid 5-10-10-1 Four past lag time rainfall + present rainfall
C Generalized feedforward Sigmoid 5-10-10-1 Four past lag time rainfall + present rainfall
D Generalized feedforward Sigmoid 6-16-12-1 Present rainfall + meteorological data
E Generalized feedforward Hyperbolic Tangent 6-16-12-1 Present rainfall + meteorological data
F Generalized feedforward Hyperbolic Tangent 9-22-11-1 Present rainfall + meteorological data

+ surrounding station data
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Table 2. Performance statistics of ANN models.

Index

A B C D E F

Model Training (1997–1999 data)

EI (%) 27.32 37.25 44.15 50.17 66.71 97.35
RMSE (mm/h) 1.88 1.72 1.87 1.65 1.46 0.89
R2 0.47 0.53 0.56 0.64 0.69 0.96

Testing (1998 data)

EI (%) 29.08 36.57 43.28 49.65 68.57 96.52
RMSE (mm/h) 1.84 1.75 1.78 1.58 1.41 0.88
R2 0.41 0.51 0.52 0.63 0.71 0.97

205

Table 3. Performance statistics for sensitivity analysis.

Model F Without Without Without Without Without Without
Index Cloudiness Relative Humidity Air pressure surrounding station TMD rain Wetbulb temperature

Training (1997–1999 data)

EI (%) 97.35 87.49 83.22 86.47 86.37 89.41 80.62
RMSE (mm/h) 0.89 0.82 0.79 0.81 0.78 0.91 0.78
R2 0.96 0.95 0.91 0.93 0.93 0.95 0.89

Testing (1998 data)

EI (%) 96.52 94.4 92.57 93.54 93.65 95.49 82.57
RMSE (mm/h) 0.88 0.79 0.78 0.82 0.83 0.88 0.75
R2 0.97 0.97 0.97 0.96 0.96 0.98 0.92
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Table 4. Summary of ANN results for rainfall forecasting at 75 rainfall stations.

Lead Efficiency Correlation RMSE
Index Coefficient

Time Max Min Mean Max Min Mean Max Min Mean

1 h 0.98 0.74 0.86 0.99 0.74 0.88 1.48 0.42 0.87
2 h 0.87 0.63 0.69 0.92 0.63 0.77 2.16 0.73 1.36
3 h 0.68 0.42 0.54 0.84 0.55 0.67 2.55 1.06 1.72
4 h 0.62 0.35 0.45 0.78 0.48 0.64 2.82 1.11 1.85
5 h 0.58 0.30 0.41 0.73 0.46 0.62 2.72 1.16 1.88
6 h 0.48 0.29 0.36 0.71 0.36 0.60 2.75 1.24 1.93

207

Fig. 1. Location of BMA and TMD rain gauge station over Bangkok.

208



Fig. 2. Average monthly rainfall in Bangkok.
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Fig. 3. A simple generalized feedforward neural network with tanh function.
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Fig. 4. Comparison of model A and B with observed rainfall (21 August 1998).
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Fig. 5. Scatter plot of model A and B (training stage).

212



Fig. 6. Comparison of model C and D with observed rainfall (21 August 1998).
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Fig. 7. Scatter plot of model C and D (training stage).
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Fig. 8. Comparison of model E and F with observed rainfall (21 August 1998).
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Fig. 9. Scatter plot of model E and F (training stage).
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Fig. 10. Comparison between observed rainfall (left side figures) and predicted rainfall (right
side figures) for 1 to 6 ahead forecasting at 8 August 1998 (from 8:00 to 13:00).
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Fig. 10. Continued.
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