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A. Bárdossy and
S. K. Singh

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Hydrol. Earth Syst. Sci. Discuss., 5, 1641–1675, 2008
www.hydrol-earth-syst-sci-discuss.net/5/1641/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

Papers published in Hydrology and Earth System Sciences Discussions are under
open-access review for the journal Hydrology and Earth System Sciences

Robust estimation of hydrological model
parameters
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Abstract

The estimation of hydrological model parameters is a challenging task. With increas-
ing capacity of computational power several complex optimization algorithms have
emerged, but none of the algorithms gives an unique and very best parameter vec-
tor. The parameters of hydrological models depend upon the input data. The quality5

of input data cannot be assured as there may be measurement errors for both input
and state variables. In this study a methodology has been developed to find a set of
robust parameter vectors for a hydrological model. To see the effect of observational
error on parameters, stochastically generated synthetic measurement errors were ap-
plied to observed discharge and temperature data. With this modified data, the model10

was calibrated and the effect of measurement errors on parameters was analysed. It
was found that the measurement errors have a significant effect on the best performing
parameter vector. The erroneous data led to very different optimal parameter vectors.
To overcome this problem and to find a set of robust parameter vectors, a geometrical
approach based on the half space depth was used. The depth of the set of N randomly15

generated parameters was calculated with respect to the set with the best model per-
formance (Nash-Sutclife efficiency was used for this study) for each parameter vector.
Based on the depth of parameter vectors, one can find a set of robust parameter vec-
tors. The results show that the parameters chosen according to the above criteria have
low sensitivity and perform well when transfered to a different time period. The method20

is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV
model was used for this study.

1 Introduction

Hydrological models are used for different purposes such as water management or
flood forecasting. The estimation of hydrological model parameters is a difficult task.25

Reasons for this are the highly non-linear nature of hydrological processes and the fact
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A. Bárdossy and
S. K. Singh

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

that different parameter vectors driving models describing the physical processes might
have the same effect on the discharge. This means that changes of some parameters
might be compensated by others. Unfortunately traditional manual calibration of mod-
els with reasonable parameter values often leads to weak results. Hence, nowadays
automatic procedures based on numerical methods are used.5

Many different optimization routines have been developed to find optimum parameter
vectors. A variety of objective functions measuring model performance including multi-
objective approaches, have been tried to define optimality in this context. Non-linearity
of the hydrological models and of the objective functions lead to very complex optimiza-
tion problems. Beven and Freer (2001) argue that there are no optimum parameters,10

in fact there is a large set of parameter vectors; which all perform reasonably and one
cannot easily distinguish between them. They call this an equifinality problem which
leads to high uncertainties in the model predictions. Frequently shown dotty plots give
the impression that the set of good parameter vectors can be found anywhere in the
space. But no clear convergence to a best single values can be observed. However, in15

a previous paper (Bárdossy, 2007), the geometrical properties of a parameter vectors
with good performance (from now on the set of good parameters) were investigated for
a two-dimensional case. It was shown that the set of good parameters is well struc-
tured. Unfortunately in higher dimensional spaces one can not see these sets, thus it
is not clear whether they are scattered or have some clear structure. The high scatter20

observed in the good individual parameters is very disturbing since, it does not enable
a classical identification of a single vector within corresponding confidence bounds.

The GLUE procedure (Beven and Binley, 1992) has widely been applied for uncer-
tainty assessment and discussed in the scientific literature, Although alternative proce-
dures using parametric approaches to obtain best solutions have also been suggested.25

These approaches are optimal under certain assumptions, however, they are often se-
lected purely for mathematical convenience and not necessarily based on experience
with data.

In Kavetski et al. (2006a) and Kavetski et al. (2006b) it was noted that the perfor-
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mance of hydrological models is a bumpy function of the model parameters. They
suggest different numerical procedures to smoothen parameter surfaces and to obtain
optimal parameter vectors.

The purpose of this paper is to investigate the reasons leading to very different opti-
mum parameter vectors and to investigate the properties of the set of good parameters5

in high dimensional spaces. Our goal is not to find the parameter vectors which perform
best for the calibration period but to find parameter vectors which:

1. lead to good model performance over the selected time period

2. lead to a hydrologically reasonable representation of the corresponding processes

3. are not sensitive: small changes of the parameters should not lead to very differ-10

ent results

4. are transferable: they perform well for other time periods and might also perform
well on other catchments (i.e they can be regionalized)

Concepts of computer geometry and multivariate statistics are used to investigate
the set of good parameters. Specifically, convex sets and the depth function defined in15

Tukey (1975) are used.
The concept of data depth has recently received much attention by Donoho and

Gasko (1992), Rousseeuw and Struyf (1998), Rousseeuw and Ruts (1998), Liu et al.
(1999), Zuo and Serfling (2000), Miller et al. (2003) and Lin and Chen (2006). It has
been used for the investigation of large data sets. The application of depth function20

has been seen in several field. Serfling (2002) used depth function for nonparametric
multivariate analysis. Cheng et al. (2000) had used data depth function for monitoring
multivariate aviation safety data for control chart. They were also applied in quality
control Liu (1995), Hamurkaroǵlu et al. (2004). The hydrological application found so
far is in Chebana and Ouarda (2008), where data depth was used to define weights for25

the regional estimation of hydrological extremes.
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This paper is organized as follows: After the introduction, the case study area is
introduced. In Sect. 3, the effect of observation errors on the identification of hydro-
logical model parameters is discussed. In Sect. 4, the notion of statistical depths is
introduced. Geometrical properties of the set of good parameters is investigated with
the help of the depth function and robust parameter vectors are identified. In the final5

section, results are discussed and conclusions are drawn.

2 Case study area and the hydrological model

The concept of this paper will be illustrated with examples from the Neckar catchment.
The hydrological model chosen is a modified version of the HBV model. A short de-
scription of the catchment and the model is provided in this section.10

2.1 Study area

This study was carried out on the upper Neckar basin in South-West Germany in the
state of Baden-Württemberg using data from the period 1961–1990. The region is flat,
undulating in the east and north. The Black Forest and Swabian Albs are in the west
and south. The 4000 km2 large Upper Neckar basin was subdivided into 13 subcatch-15

ments (Fig. 1). Three of which were used for this study.
The study area elevations range from 238 m m.a.s.l. to 1010 m m.a.s.l. The dataset

used in this study includes measurements of daily precipitation from 151 gauges and
daily air temperature at 74 climatic stations. The meteorological input required for the
hydrological model was interpolated from the observations with External Drift Kriging20

(Ahmed and de Marsily, 1987) using topographical elevation as external drift. The
mean annual precipitation is 908 mm/year. Land use is mainly agricultural in the low-
lands and forested in the medium elevation ranges. Hydrological characteristics of the
three selected subcatchments are given in Table 1. For further details please refer to
Samaniego (2003) and Bárdossy et al. (2005).25
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2.2 Hydrological model

The HBV model concept was developed by the Swedish Meteorological and Hydrolog-
ical Institute (SMHI) in the early 1970’s has been modified at the Institute of Hydraulic
Engineering, University Stuttgart and used for this study. It includes conceptual rou-
tines for calculating snow accumulation and melts, soil moisture and runoff generation,5

runoff concentration within the subcatchment, and flood routing of the discharge in the
river network. The snow routine uses the degree-day approach as set out in Eq. (1) and
Eq. (2). Soil moisture is calculated by balancing precipitation and evapotranspiration
using field capacity and permanent wilting point as parameters, Eq. (3) to (5).

MELT=DD · (T − Tcrit) (1)10

DD=DD0 + k · P (2)

Peff=
(
SM/F C

)β · P + MELT (3)

Where: Peff is the effective precipitation, SM is the actual soil-moisture, F C is the
maximum soil storage capacity, β is a model parameter (shape coefficient), P is the
depth of daily precipitation.15

P Ea= (1 + C · (T − Tm)) · P Em (4)

Where: P Ea is the adjusted potential evapotranspiration, C is a model parameter, T is
the mean daily air temperature, Tm is the long term mean monthly air temperature and
P Em is the long term mean monthly potential evapotranspiration.

Ea=
(
SM/PW P

)
· P Ea (5)20

Where: Ea is the actual evapotranspiration and SM/PW P is the soil-moisture limit for
evapotranspiration decrease. Runoff generation is simulated by a nonlinear function
of the actual soil moisture and precipitation. The runoff concentration is modeled by
two parallel nonlinear reservoirs representing the direct discharge and the groundwater
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response. Flood routing between the river network nodes uses the Muskingum method.
Additional information about the HBV model in general can be found in Hundecha
and Bárdossy (2004), and Bergström (1995). Direct runoff and percolation from each
subcatchment are calculated using Eq. (6) to (10).

Q0=k0 · (S1 − L) (6)5

Q1=k1 · S1 (7)

Qperc=kperc · S1 (8)

Q2=k2 · S2 (9)

Where: Q0 is near surface flow, Q1 is interflow, Qperc is percolation, Q2 is baseflow, k0 is
the near surface flow storage constant, k1 is the interflow storage constant, kperc is the10

percolation storage constant, k2 is the baseflow storage constant, S1 is upper reservoir
water level, S2 is lower reservoir water level, L is threshold water level for near surface
flow. The total runoff is computed as the sum of the outflows from the upper and lower
reservoirs. The total flow is then smoothed using a transformation function, consisting
of a triangular weighing function with one free parameter, MAXBAS.15

Q=g(t,MAXBAS) · (Q0 +Q1 +Q2) (10)

Where: Q is current overall discharge and MAXBAS is the duration of the triangular
weighting function (Unit Hydrograph).

3 The effect of observation errors

In rainfall runoff modeling, input errors play a crucial role but the problem of input errors20

is generally neglected by hydrologists (Paturel et al., 1995). Hydrological models use
observation data for the identification of a model’s parameters. Unfortunately many
of the hydrological observations contain partly systematic and partly random errors.
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Precipitation is measured at a few selected locations and typically interpolated for the
catchment area. Thus, precipitation values used in the model can be wrong due to
measurement (for example caused by evaporation or wind) and to interpolation errors.
The impact due to error in precipitation has been investigated by Ibbitt (1972), Troutman
(1985), Paturel et al. (1995), Andréassian et al. (2001) and Oudin et al. (2006), who5

found that error in precipitation has significant influence on model performance.
Observed discharge is used as the main calibration quantity, thus their errors may

have significant influence on model performance. In most cases water levels are ob-
served and rating curves are used to transform them to discharges. This is an important
source of partly systematic error and, when combined with other errors, compromise10

the identification of the model parameters.
The parameter vectors obtained by model parameter optimization algorithms are

optimal with respect to an erratic objective function. Measurement errors and errors
due to model structure are mixed Todini (2007) and cannot be separated directly. The
following examples illustrate the effect of observation uncertainty on parameter estima-15

tion.
Firstly, consider the observed meteorological variables and discharge. We assume

that due to measurement errors the accuracy of the measured discharge QM (t) is q%.
Thus, the real but unknown discharge QE (t) can be written as:

QE (t)=QM (t)(1 + εQ(t)) (11)20

with εQ(t) being a random error. This random error is due to uncertainties of the rating
curve, non-uniqueness of the stage discharge relationship, changes of the cross sec-
tion etc. Here we assume that the error follows a normal distribution N(0, q

100 ). This
means we assume a constant relative random error and further, that the errors are
independent (error dependence would increase the effect of observation uncertainty).25

To quantify the effect of the error on model performance a set of M=100 realizations
of QE (t) was generated with q=5. Note that the rating curve related errors are usually
higher then this, especially in the case of extreme flows. Consequently the parameters
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of the hydrological model were estimated by maximizing the Nash-Sutcliffe coefficient
as if each parameter vector QE was the observed series. The model parameters ob-
tained show a considerable scatter. For an example in two dimensions, Fig. 2 shows
the scatter plot for the selected model parameters k0 and k1, where M=20.

The uncertainty of the estimated model parameters with respect to input error struc-5

ture can also be investigated. With respect to temperature observations one can as-
sume that the real but unknown temperature TE (t) can be written as:

TE (t)=TI (t) + εT (t) (12)

In this case an additive error of the catchment mean temperature was assumed. As
in the previous case, M realizations were generated and model parameters were opti-10

mized for each of the series separately.
Tables 2 and 3 shows the effect of observation error on the Nash-Sutcliffe coefficient

for both discharge and temperature measurement errors, respectively. The uncertainty
of model parameters with respect to precipitation uncertainty can be considerable, de-
pending on the density of the observation network. This problem was investigated by15

Das et al. (20081).
These examples show that model parameters and model performance are highly

influenced by measurement errors. Two parameter vectors, with model performances
differing in the range of the measurement error caused fluctuations of the Nash-Sutcliffe
value, cannot be distinguished from each other. Either of them might lead to a better20

description of the hydrological system. The parameters obtained by sophisticated op-
timization procedures might thus be suboptimal in reality. Thus, it is reasonable to
investigate the set of parameters which gives similar performance as the numerical op-
timum. These parameters will be called good parameters in the subsequent sections.

1Das, T., Bárdossy, A., Moretti, G., and Birkinshaw, S. J.: Uncertainty investigation in model
simulation and in identifying the model parameters of a conceptual model due to uncertain
precipitation., J. Hydrol., in review, 2008.
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4 Geometrical structure of the parameter set

One of the major problems is that there is a large number of parameter vectors which
perform nearly equally well. It is difficult, then to decide which of these should be taken
for prediction. Scatter plots showing model performances as a function of individual
parameters indicate that a wide range of parameter values can lead to good model5

performance. At present it seems impossible to know a priori if a fitted given parameter
vector leads to good or bad performance when applied to a model. In Bárdossy (2007),
the geometrical structure of the best performing parameters of a unit hydrograph were
investigated. It was shown that the set has a very clear geometrical structure. In this
paper models with >2 parameters are considered. In this case one cannot see the set10

of best parameters, but instead methods of computational geometry can be used.
In order to investigate the properties of the set of good parameter vectors, the con-

cept of data depth was used. Depth functions were first introduced by Tukey (1975)
to identify the center (a kind of generalized median) of a multivariate dataset. Several
generalizations of this concept have been defined in Rousseeuw and Struyf (1998), Liu15

et al. (1999) and Zuo and Serfling (2000).
Definition: The halfspace depth of a point p with respect to the finite set X in the d

dimensional space <d is defined as the minimum number of points of the set X lying
on one side of a hyperplane through the point p. The minimum is calculated over all
possible hyperplanes.20

Formally the halfspace depth of the point p with respect to set X is:

DX (p)=min
nh

(
min

(
|{x ∈ X 〈nh, x − p〉 > 0}|

)
,
(
|{x ∈ X 〈nh, x − p〉 < 0}|

))
(13)

Here 〈x, y〉 is the scalar product of the d dimensional vectors, and nh is an arbitrary
unit vector in the d dimensional space representing the normal vector of a selected
hyperplane.25

If the point p is outside the convex hull of X then its depth is 0. Points on and near
the boundary have low depth while points deeply inside have high depth.
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One advantage of this depth function is that it is invariant to affine transformations of
the space. This means that the different ranges of the parameters have no influence
on their depth.

The calculation of the halfspace depth is computationally very expensive if the num-
ber of points in X is large or the dimension is high. Efficient algorithms are available5

for d=2 from Miller et al. (2003). In this study the approximate calculation suggested
in Rousseeuw and Struyf (1998) was used.

To illustrate the concept of data depth let us consider a two dimensional data set.
The parameter vectors with good performance are shown on Fig. 3. We have chosen
k0 and k1 in this example. The first parameter corresponds to the x axis and the second10

to the y axis. Points with low depth ≤5 are marked with circles. Note that points near
the boundary of the set have a low depth while the interior points in the middle of the
set have the highest depth.

4.1 Data depth of the good parameter set

In order to explore the set of reasonably performing parameter vectors using the above15

introduced concept, nine parameters of the HBV model were considered. N random
parameter vectors where generated in a rectangle bounded by reasonable limits in the
d=9 dimensional space. For each of these parameters the hydrological model was
applied and the performance was calculated. This set is denoted as XN . A subset
X ∗
N ⊂ XN of the best performing parameters (upper 10 %) was identified. The depth of20

each point in XN with respect to X ∗
N was calculated. Figure 4 shows the histogram of

the performance of the hydrological model for the points θ ∈ XN with depth D(θ)>L.
One can see that all points with high depth (being in the geometrical interior of the
set XN ) lead to good model performance. The reason for this is that one assumes
that the low depth points can be regarded as an iso-hypersurface corresponding to the25

selected level. If one assumes continuity of the objective function then higher values of
the function are expected in the interior of the set.

In order to check this statement an independent second set YN of N random parame-
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ter vectors were generated. The depth of the points of YN with respect to X ∗
N was calcu-

lated. For all parameters θ ∈ YN , the hydrological model was run and the performances
calculated. The results are evaluated for parameters such that D(θ)≥L, exemplified in
Table 4 with the statistics of the performances. One can see that the randomly gener-
ated parameter vectors which posses high depth have good model performance. The5

standard deviation decreases with increasing depth, showing that in the deep interior
of the set all parameter vectors perform similarly. These results show that for this case
one can geometrically identify parameter vectors which are good. Note that even if the
best performance is related to the deepest subset, this is not necessarily always the
case, since the global optimum might itself correspond to a low depth.10

4.2 Transferability

In order to investigate the transferability of the parameters with respect to their depth,
two experiments were carried out.

As a first test the total observation period of 30 years was divided into three 10 year
periods. For each generated parameter vector the model performance for each time15

period was calculated. The set of good parameter vectors was identified for each time
period and the depth of each parameter with respect to this set was calculated. In this
way, three depth values were assigned to each parameter vector.

The 50 and 150 parameter sets with the highest depth were identified for each time
period. The intersection of these sets consisted of 36 and 84 points indicating that20

depth is stable over all time periods. Note that a parameter vector was considered to
be in the intersection if it had positive depth with respect to both sets. As a set of 10000
points were considered; an independence between the sets would have led with high
probability to no common points. This means that parameters with large depth are
robust with respect to the selected time period.25

As a second test the parameters with high depth for one time period were used for
an other time period and their performance was calculated. In Table 5 the results of
the transferred model quality with respect to depth corresponding to the time period
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1961–1970 are shown. Note that the subset of the boundary points was selected by
choosing only points for which the performance exceeds a given threshold. This was
done to ensure the same mean model performance for the boundary and the interior
point sets (with depth > 5 for the selected time period. Thus, the worse performance of
the boundary points for the other time periods is not due to a worse initial performance5

but only due to their position. Note that for the interior points, the performance in
the other time periods is significantly better than those of the boundary points. The
standard deviation is smaller for the interior points which indicates that the transfer of
these parameters is reasonable for these points.

4.3 Sensitivity10

The sensitivity of the model performance with respect to systematic changes of the
parameters was investigated. For this purpose two different experiments were carried
out. First a set of boundary points Bϑ (with depth equal to 1), in which all have good
model performance, was selected. The same number of the deeper points Dϑ having
similar performance was also selected. Using these sets three additional sets were15

generated:

C1={
θ1 + θ2

2
;θ1 ∈ Bϑ and θ2 ∈ Dϑ}

C2={θ1 +
θ1 − θ2

2
;θ1 ∈ Bϑ and θ2 ∈ Dϑ}

C3={θ2 +
θ1 − θ2

2
;θ1 ∈ Bϑ and θ2 ∈ Dϑ}

C1 contains points inside the set between Bϑ and Dϑ, C2 are points outside the bound-20

ary Bϑ and C3 are points where deep points were altered in the same way as the
boundary points. Figure 5 explains the construction in two dimensions. Table 6 shows
the statistics of the Nash-Sutcliffe coefficients for the three sets. One can see that the
inside points all have good performance and the standard deviation is small. Points
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A. Bárdossy and
S. K. Singh

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

at C2 have the worst performance while C3 is better. The skewness is nearly zero
for the inside set C3, while in other cases the strong negative skew indicates that in
some cases the performance loss due to the shift outside the set is extremely high.
The same alteration of the parameters leads to less performance loss for deep points
than for shallow points. Further, there is no loss if the parameter vector remains in the5

convex set of deep parameters. This again highlights the advantage of deep parameter
vectors.

5 Robust parameter estimation (ROPE)

In Sect. 4 it was shown that parameters in the interior (expressed through data depth)
of the set of good points are themselves good and transferable and not very sensitive.10

A possible explanation for this is that these parameters can be regarded as a kind of
compromised solution – where none of the processes represented by the parameters
is overemphasized.

For modelling purposes one might be interested in finding the set of good parameters
and also the identification of the deep parameter vectors for robust modelling. For this15

purpose the following procedure is suggested:

1. the limits for the d selected parameters are identified

2. N random parameter sets forming the set XN are generated in the d dimensional
rectangle bounded by the limits defined in 1.

3. the hydrological model is run for each parameter vector in XN and the correspond-20

ing model performances are calculated

4. the subset X ∗
N of the best performing parameters is identified. This might be for

example the best 10% of XN .
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5. M random parameter sets forming the set YM are generated, such that for each
parameter vector θ ∈ YM D(θ)≥L (with L≥1) where the depth is calculated with
respect to the set X ∗

N .

6. the set XN=YM and steps 3–6 are repeated until the performance corresponding
to XN and YM do not differ more than what one would expect from the observation5

errors.

Note that the ROPE algorithm can be easily modified to a general multivariate opti-
mization procedures.

The algorithm was used for three selected subcatchments (Rottweil, Tübingen, Süssen).
Four steps were enough to find a good set of parameters for all the catchments. The10

performance of the model using different calibration and validation periods is summa-
rized in Fig. 6 for catchment Süssen. As one can see the subsequent steps of the
algorithm deliver better sets. The mean NS for the steps increased form 0.767 (step 2)
through 0.773 (step 3) to 0.775 (step 4). The improvement in the last step is very small
and less than what one would expect to be caused by measurement errors. Therefore15

the algorithm stopped at this step.
Figure 7 shows the dotty plots of the selected model parameters for catchment

Süssen. The performance corresponding to the parameters of step 4 are better than
those corresponding to step 2 but the parameter range remains the same. Figure 8
shows the two dimensional scatter plot for the two model parameters for steps 2 and 420

obtained for catchment Tübingen. One has the impression that these parameters can
take a wide range of values, and that there is no difference between the the two sets.
However one has to bear in mind that these are two dimensional projections of 9 di-
mensional sets. The sets themselves are very different, the ratio of their 9 dimensional
volume is approximately 0.01 (calculated as Monte Carlo integral).25

Figure 9 shows the sensitivity of the calculated discharge with respect to two sets
of parameter vectors with different depth. 1000 Parameter vectors from the boundary
(depth=1) and from the interior (depth>1) were taken and the corresponding hydro-
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graphs were calculated. The 95% and the 5% lines show that the interior parameter
vectors lead to smaller differences in calculated discharge. The differences between
the 95 % and the 5 % values are plotted separately on Fig. 10 showing that taking
interior parameter vectors leads to an approximately 20 % reduction.

In the case study presented here all parameters in the final set YM performed well.5

In the case of other models or other performance measures this may not necessarily
the case. However the set YM always contains a large portion of good parameters and
possible transformations (for example taking the logarithm of some parameters) might
fix this problem.

6 Discussion and conclusions10

– In this paper the effect of observation uncertainty on the parameter estimation was
investigated. It could be shown that observation errors can lead to very different
optimal model parameters if the uniqueness of the parameters is assumed and
the parameters corresponding to the optimum of the performance function are
identified.15

– Observational uncertainty of the input and the discharge leads to variability of
the model performance. This variability has to be considered in model parameter
estimation. All model parameters which do not differ more in their performance
than what can be caused by measurement errors could themselves be the best
parameters.20

– Data depth is a useful tool to identify particular and robust parameter sets. Pa-
rameters with low data depth are near the boundary and are sensitive to small
changes and do transfer to other time periods less well as well as high depth
ones.

– From the examples discussed in this paper, one could see that equally performing25
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parameters are not necessarily equally transferable or equally sensitive. Data
depth can help to find domains with robust and transferable parameters.

– A stepwise algorithm to find a convex set containing good model parameters was
developed.

– In this paper, model performance was measured by the traditional Nash-Sutcliffe5

coefficient. Other measures can be treated similarly – but might lead to different
parameter sets.

Further research is needed to use the concepts developed in this paper for other pur-
poses and models. Robust estimation of the model parameters might be very useful for
regionalization and could contribute to a better prediction in ungaged basins. The sug-10

gested methodology can be extended for uncertainty analysis by relating the likelihood
of the parameters to their depth, however further research is required to complete this
task.
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Table 1. Summary of the size of the different subcatchment in the study area.

Subcatchment Subcatchment Elevation Slop Mean Discharge Annual
size (km2) (m) (degree) (m3/s) Precipitation (mm)

1 Rottweil 454.65 555–1010 0–34.2 5.1 968.16
(Neckar)

2 Tübingen 140.21 340–880 0-38.8 1.7 849.84
(Steinlach)

3 Süssen 345.74 360–860 0–49.3 5.9 1003.45
(Fils)
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Table 2. Model performance for the observed series using optimal parameters obtained using
100 randomly perturbed discharge.

Catchments Mean NS Median NS Max NS Min NS Standard
deviation

Rottweil 0.699 0.698 0.733 0.675 0.0123
Tübingen 0.716 0.716 0.733 0.703 0.0054
Süssen 0.751 0.751 0.775 0.733 0.0083
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Table 3. Model performance for the observed series using optimal parameters obtained using
100 randomly perturbed temperature data.

Catchments Mean NS Median NS Max NS Min NS Standard
deviation

Rottweil 0.690 0.691 0.723 0.650 0.014
Tübingen 0.722 0.723 0.740 0.706 0.0062
Süssen 0.750 0.750 0.777 0.719 0.0121
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Table 4. Model performance for the N=10000 random parameter sets with respect to the data
depth calculated on the basis of the good set of the first experiment.

Depth Number of Mean NS Standard
points deviation

– 10000 0.3132 0.6766
≥1 1743 0.6720 0.0198
≥10 893 0.6839 0.0135
≥50 182 0.6931 0.0090
>100 33 0.6971 0.0069
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Table 5. Model performance for parameter vectors according to their depth corresponding to
the time period 1961–1970.

Time period Boundary points Points with depth >5

Mean Std Min Max Mean Std Min Max

1961–1970 0.682 0.010 0.667 0.711 0.682 0.015 0.647 0.705
1971–1980 0.630 0.043 0.488 0.714 0.673 0.019 0.634 0.726
1981–1990 0.751 0.029 0.641 0.798 0.776 0.017 0.715 0.804
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Table 6. Model performance for the inner and the shifted boundary and deep points.

Variable Mean NS Standard Skewness Max NS Min NS
deviation

C1 0.692 0.005 0.30 0.710 0.677
C2 0.576 0.101 –6.95 0.658 –0.491
C3 0.686 0.024 –5.58 0.713 0.363
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Fig. 1. Study area: upper Neckar catchment in south-west Germany.
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Fig. 2. Scatter plot of model parameters obtained by optimization using random discharge
errors.
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Fig. 3. Points with low depth ≤5 (circles) of a two dimensional set of model parameters
(crosses).
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Fig. 4. The performance of the model using different depth.
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Fig. 5. Boundary point construction in two dimension for Sensitivity analysis of parameters.
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Fig. 6. The performance of the model using different calibration and validation periods.
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Fig. 7. Parameter value vs. model performance for the sets obtained in step 2 (crosses) and
step 4 (circles) for catchment Süssen.

1672

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1641/2008/hessd-5-1641-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1641/2008/hessd-5-1641-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 1641–1675, 2008

Robust parameter
estimation
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Fig. 8. Parameter value for the sets obtained in step 2 (crosses) and step 4 (circles) for catch-
ment Tübingen.
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Fig. 9. Hydrograph with confidence interval for boundary points and inner points.
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Fig. 10. Confidence band with of high depth vs confidence band with low depth.
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