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Abstract

Conceptual hydrologic models are useful tools as they provide an interpretable repre-
sentation of the hydrologic behaviour of a catchment. Their representation of catch-
ment’s hydrological processes and physical characteristics, however, implies simplifi-
cation of the complexity and heterogeneity of reality. As a result, those models often5

show a lack of flexibility in reproducing the vast spectrum of catchment responses.
Hence, the accuracy in reproducing certain aspects of the system behaviour is often
paid in terms of a lack of accuracy in the representation of other aspects.

By acknowledging the structural limitations of those models, a modular approach to
hydrological simulation is proposed. Instead of using a single model to reproduce the10

full range of catchment responses, multiple models are used, each of them assigned
to a specific task.

The approach is here demonstrated in the case where the different models are as-
sociated with different parameter realizations within a fixed model structure. We show
that using a composite “global” model, obtained by a combination of individual “local”15

models, the accuracy of the simulation is improved. We argue that this approach can
be useful because it partially overcomes the structural limitations that a conceptual
model might exhibit. The approach is shown in application to the discharge simulation
of the experimental Alzette River basin in Luxembourg, with a conceptual model that
follows the structure of the HBV model.20

1 Introduction

Conceptual hydrological models consist of an ensemble of fluxes and storages rep-
resenting relevant processes and key zones of catchment response. In the field of
hydrological research, those models are useful tools for two main reasons. First, they
are based on a reasonable representation of the major hydrological processes, which25

enables an interpretation of the real behaviour of the catchment. Second, their data
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requirement and computational demand is limited, which makes them easy to apply
and to operate.

Conceptual models, however, represent certain abstraction of reality, which results
in a simplification of the complexity and heterogeneity of the real world. As a result,
those simple models often display a lack of flexibility in capturing the dynamic and time5

varying nature of hydrological responses.
One solution to this problem can be to develop the model further, in such a way that

more processes are included. This approach, which has the advantage of enabling a
better understanding of the system through a process of testing the effects of additional
modelling assumptions, is time consuming and might limit the benefits of a conceptual10

model as an effect of increased complexity.
A second possibility consists of using several models instead of one to better char-

acterize the various conditions that influence the catchment hydrological behaviour.
This approach, which is here investigated, is based on the idea that an integration of
the results obtained by different models provides a more comprehensive and accurate15

representation of catchment response than what can be obtained using a single model.
Multi-model approaches have been widely used in hydrological modelling in different

frameworks and for different purposes. One approach lies in the context of equifinality.
In this context, an ensemble of models is generated, either by multiple realizations from
a single model structure, or by single realizations from multiple model structures. Model20

simulations are eventually weighted or averaged or used to derive statistics of model
outputs. In this approach, the models of the ensemble are assumed to be characterized
by the property that they all fit the observed data equally well. This premise is at the
heart of the GLUE framework (Beven and Freer, 2001), but also touches other areas of
application, such as model and multi-model ensembles (Georgakakos, 2004; McIntyre,25

2005).
The second approach involves the generation of several models in the way as previ-

ously mentioned, but tries to exploit possible differences in the generated models. The
various models, however, are not considered “equifinal”, and it is admitted that each
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model could be more accurate than the others in describing a specific aspect of the
system response. The models are then combined by appropriate weighing procedures
that attempt to retrieve the individual strengths of each model in simulating the system
response. In this context, Shamseldin et al. (1997) and Xiong et al. (2001) propose
different combination methods to integrate the optimal results of different conceptual5

models. They show that in general the discharge estimates obtained by combining
different models are more accurate than those obtained from any single model used in
the combination.

In the third approach, the models are directly built or calibrated on different event
types or data sequences and subsequently combined together. In this approach, the10

distinctive role of different models in reproducing the system response is explicitly rec-
ognized from the beginning of the model development. See and Openshaw (2000)
show the application of different neural networks that were built on different event types.
Wang et al. (2006) used a combination of ANNs for forecasting flow: different networks
were trained on the data subsets determined by applying either a threshold discharge15

value, or clustering in the space of inputs (lagged discharges only but no rainfall data,
however). Jain and Srinivasulu (2006) apply a mixture of neural networks and con-
ceptual techniques to model the different segments of a decomposed flow hydrograph.
Solomatine and Xue (2004) show an application of data-driven models M5 model trees
and neural networks in a flood-forecasting problem, consisting of a combination of mod-20

els locally valid for particular hydrologic conditions represented by specific regions of
the input-output space. Corzo and Solomatine (2007) use several methods of baseflow
separation, build different models for base and excess flow and combine these models
ensuring optimal overall model performance.

The first two approaches can be classified as “ensemble strategies”, in a sense25

that different models are developed to perform similar modelling operations. The last
approach corresponds to a “modular strategy”, as different models are developed to
perform different tasks.

The approach introduced here can be attributed to the last approach. We in fact
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adopt a modular strategy to characterize different aspects of a stream hydrograph.
The present work, however, focuses on conceptual model structures and it is set in a
multi-objective framework.

The approach consists in calibrating a conceptual model with respect to different ob-
jectives, representing model performance towards different aspects of the simulation,5

and in combining the best performing models associated to each objective in such a
way that the strength of each individual model used in the combination is exploited.
Such an approach attempts to improve the global accuracy of the simulation overcom-
ing possible limitations in the model structures, Moreover, it provides some insights in
the model deficiencies, therefore contributing to an understanding of the real behaviour10

of the system.
The approach is demonstrated using a conceptual model that follows the structure

of the well-known HBV model (Lindström et al., 1997). The model is analysed with
respect to its ability of reproducing the rainfall-discharge behaviour of a catchment in
Luxembourg, with particular reference to accurate reproduction of the high and low15

flows behaviour.
Multi-objective calibration with respect to two defined objectives representing model

performances for the selected hydrograph characteristics shows that there are several
solutions (the so-called “Pareto-optimal” set of solutions) that simultaneously optimize
the selected criteria. These solutions represent a trade-off between the selected objec-20

tives and show that individual optimal models are better in matching different aspects
of the observed hydrograph.

The two best performing models associated with the selected hydrograph character-
istics (in this case high flows or low flows) are subsequently weighted together using
a fuzzy combining scheme. The paper concludes with a discussion on the physical25

significance of the proposed approach.
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2 Problem formulation

The process of developing a “global” model by means of aggregating multiple “local”
models, each of which is specialized in simulating a certain aspect of the system re-
sponse, can require a series of operations, summarized hereafter.

– Events selection. The events that should be correctly simulated have to be care-5

fully chosen. Within a modular approach, which presumes switching between
different models, those events should be different and non-overlapping. Conse-
quently, such events should refer to different ranges or different time periods of a
certain measured variable. The number of events, which also affects the number
of individual models that are subsequently developed, should not be too high, in10

order to avoid a too fragmented description of the system response, which could
also reduce the global efficiency for periods outside the calibration period.

– Model selection. The selected events could be represented by models of the
same nature or of different nature (e.g. conceptual, physically based, data driven).
As an example, Jain and Srinivasulu (2006) use conceptual and data driven mod-15

els to simulate different segments of a flow hydrograph. They found that the con-
sidered case study models of conceptual type performed better than data driven
ones in reproducing hydrograph recession.

– Objective function definition. Objective functions express the quality of the sim-
ulation in numerical form by aggregating model residuals in time. In the present20

case, they should represent the ability of the various models to reproduce the se-
lected events, hence they should refer to different characteristics of a measured
variable. Different kind of information from a single time series can be extracted ei-
ther weighing the whole series of residuals in such a way that the error associated
with the simulation of a certain characteristic is weighted more than other errors,25

achieved by power transformations (Gupta et al., 1998; Hogue et al., 2000), or by
partitioning the time series into different classes each of which is associated to a
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different behaviour of the system. Abrahart and See (2000) use a data decompo-
sition based on season, Jain and Srinivasulu (2006) and Boyle et al. (2000) use
hydrograph separation to partition the data into different categories, Corzo and
Solomatine (2007) employ baseflow separation algorithms.

– Model calibration. As most models contain parameters that cannot be directly5

measured, model parameters have to be inferred by calibration. Hence, the mod-
els associated with the different events have to be calibrated (or trained) to opti-
mize the selected objective functions.

– Model combination. The calibrated models are finally reintegrated into one single
model. This combination can be straight-forward (Jain and Srinivasulu, 2006)10

implying a switch between different models at different time steps, but can also
involve some kind of weighing (See and Openshaw, 2000; Xiong et al., 2001;
Solomatine, 2006). Model weighing can improve simulation results, and avoid
unrealistic discontinuities in the simulated system behaviour.

2.1 Model description15

The model used in this application is a lumped conceptual model that follows the struc-
ture of the HBV-96 model (Lindström et al., 1997). In this study the model is run with
an hourly time step. The model consists of routines for soil moisture accounting, runoff
response, and a routing procedure. The structure is composed of three storage compo-
nents: a soil moisture reservoir, an upper reservoir, and a lower reservoir. The output20

from the lower and upper reservoir is combined and routed through a triangular transfer
function.

The soil moisture routine represents the runoff generation and involves three param-
eters, β, F C and LP . The proportion of precipitation that produces direct runoff is
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related to the soil moisture by the following relation:

R
P

=
(
SM
F C

)β
(1)

Where P is the total rainfall, R is the direct runoff, SM is the storage of the soil
moisture reservoir, F C is the maximum soil moisture storage, and β is a parameter
accounting for non linearity. The remaining part is added to the soil moisture storage.5

Actual evaporation (Ea) is calculated from potential evaporation (Ep) according to the
following formula:

Ea = Ep · min
(

1,
SM

F C · LP

)
(2)

Where LP is the fraction of F C above which the evaporation reaches its potential level.
The direct runoff R enters the upper reservoir, and the lower reservoir is filled by a10

constant percolation rate (P ERC) as long as storage in the upper reservoir is available.
Capillary flux from the upper reservoir to the soil moisture reservoir is calculated

according to the following equation:

C = CF LUX ·
(

1 − SM
F C

)
(3)

Outflow from the upper reservoir is expressed as15

Q1 = K1 · UZ1+α (4)

Outflow from the lower reservoir is expressed as

Q2 = K2 · LZ (5)

Where UZ and LZ are the storage states of the upper and lower reservoirs respectively,
K1 and K2 are storage coefficient, and α is a parameter accounting for non linearity.20

The outlets from the two reservoirs are finally added and routed through a transfer
function with base defined by the parameter MAXBAS. The model has a total of nine
calibration parameters, which are summarized in Table 1.
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2.2 Events selection and objective functions

Objective functions used in calibration typically aggregate model residuals in time and
are used to evaluate the accuracy of the model in simulating the actual behaviour of the
catchment. Different functions may enhance the error in simulating different aspects
of the simulation while neglecting or downplaying the error in simulating other aspects.5

The minimization of one objective function through calibration of model parameters
therefore might stress the simulation of certain features of the simulation at the expense
of others. The aggregation of model residuals in time, moreover, inevitably results in a
loss of information contained in the observed data.

For those reasons, the model calibration task can be set up as a multi-objective10

minimization problem, where alternative objective functions would represent different
criteria to evaluate model performance with respect to specific aspects of the simula-
tion.

For the present application we use two objective functions, one enhancing the model
error with respect to low flow simulation, and the other enhancing model error with15

respect to high flows.
The two functions are defined as follows:

NHF =

√√√√1
n

(
n∑

i=1

(
Qs,i −Qo,i

)2 · wHF,i

)
(6)

NLF =

√√√√1
n

(
n∑

i=1

(
Qs,i −Qo,i

)2 · wLF,i

)
(7)

Where20

wHF,i =
( Qo,i

Qo,max

)2

(8)
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wLF,i =
(Qo,max −Qo,i

Qo,max

)2

(9)

where
n: total number of time steps
Qs,i : simulated flow for the time step i
Qo,i : observed flow for the time step i
Qo,max: maximum observed flow

The two weighing functions wHF and wLF allow placing a stronger weight on the low
or on the high portions of the hydrograph (Fig. 1). As a result, NLF places a stronger5

weight on low flows and a weaker weight on high flows than NHF .
By computing both objective functions over the whole range of discharges, both func-

tions constrain the model to fit the entire hydrograph.

2.3 Model calibration

We follow a standard framework of multi-objective analysis which, for hydrological mod-10

els has been introduced by Gupta et al. (1998). This framework adopts the notions of
Domination and Pareto-optimality, which are hereafter recalled.

We will use the term solution to mean a parameter set x i . Each solution x i is as-
sociated to a number of objective functions’ values Nj (xi ) (j=1...m, m = number of
objectives), expressing the performance of the model. Lower values of Nj (x i ) indicate15

better performance.

– A solution x1 is said to dominate another solution x2 when x1 is better than x2
in at least one objective (meaning Nj (xi )<Nj (x2) for at least one value of j ), and
not worse than x2 in any of the others (meaning Nj (xi )≤Nj (x2) for all values of
j ).20

– The Pareto-optimal set of solutions is composed of those solutions that are not
dominated by any solution of the feasible search space.
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The outcome of a multi-objective problem in such a framework consists in the Pareto-
optimal set of solutions. This set in general consists of more than one solution.

The existence of more than one solution indicates that the objective functions are
conflicting to each other, meaning that an optimal performance in one objective is
“paid” in terms of sub-optimal performances in the others. This has been demon-5

strated adopting different models and various types of objective functions (e.g. Yapo et
al., 1998; Boyle et al., 2000 Vrugt et al., 2003).

When applied to hydrological models, the existence of multiple optimal solutions can
be related to a systematic component of the modelling error (Gupta, 1998), which is
normally attributed to model structural inadequacies (Gupta et al., 1998, Vrugt et al.,10

2003).
While it is plausible to think that other sources of error might contribute to this compo-

nent, such as data distortion caused by incorrect rating curves or boundary conditions,
it is also reasonable, when no other information is available, to put more confidence in
the data than in the model, and therefore try to build models that represent the obser-15

vations as correctly as possible. In this sense, the existence of multiple Pareto-optimal
solutions can be regarded as a failure of the model structure. It in fact indicates that
the model is not able to simultaneously represent the full variability of catchment re-
sponses.

All Pareto-optimal solutions are “equally important”, in a sense that it is difficult to20

prefer one solution over the other without any further information about the problem.
The different solutions, however, are not “equifinal”, in the sense given to this term by

Beven (1993). Every solution has its strengths and limitations in describing the different
aspects of the observed signal, as expressed by the selected objective functions. This
observation can be exploited by trying to combine different optimal solutions in such a25

way that the individual strengths of each solution are exploited.
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2.4 Combining scheme

Calibration of model parameters with respect to the two selected objective functions
results in a set of Pareto-optimal solutions, which is delimited by the two best models
that minimize each of the individual objectives NLF and NHF . Those models are defined
as HBVLF and HBVHF .5

The two models are then combined with an appropriate weighting procedure to gen-
erate a global model HBVG that aims at reproducing the whole range of discharges
exploiting the best parts of each individual “local” model.

The combining scheme that is used to weight the contributions of each individual
model makes use of a fuzzy attribution of weights. The output of the HBVLF model10

is assumed to be accurate in simulating low flow events, but might be not accurate in
simulating high flow events. Vice versa, the output of the HBVHF model is assumed
to be more accurate during high flows than during low flows. In order to express this
difference in the degree of believability of the outputs of the two models, each model
output is associated with a certain membership function (we follow here an approach15

termed by Solomatine (2006) a “fuzzy committee”).
The degree of membership associated with the low flow model is 1 when the simu-

lated flow is below the threshold γ, it decreases linearly when the flow is between the
thresholds γ and δ, and it is 0 when the flow is above the threshold δ (Fig. 2). The
degree of membership of the high flow model follows a symmetric behaviour. Member-20

ship functions for the two local models are described in equations 10 and 11; γ and δ
are named threshold for high flows and for low flows respectively and are expressed
as a fraction of the maximum observed discharge Qo,max.

mLF (Q) =


1, i f Q

/
Qo,max < γ

1 − Q
/
Qo,max−γ
δ−γ , if γ ≤ Q

/
Qo,max < δ

0, i f Q
/
Qo,max ≥ δ

(10)
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mHF (Q) =


0, i f Q

/
Qo,max < γ

Q
/
Qo,max−γ
δ−γ , if γ ≤ Q

/
Qo,max < δ

1, i f Q
/
Qo,max ≥ δ

(11)

The outputs of the two models are finally combined according to Eq. (12). This weigh-
ing approach allows a smooth combination of the two models, and avoids discontinu-
ities in the reproduction of the system response.

QG(t) =
mLF (QLF ) ·QLF (t) +mHF (QHF ) ·QHF (t)

mLF +mHF
(12)5

Note that the weighting schemes shown on Figs. 1 and 2, at first sight similar, serve
different purpose: the first one is used to stress low/high flows in the objective function
used to calibrate two separate models, and the second one is responsible for ensuring
smooth compatibility between the models.

3 Case study10

3.1 Study area and data description

The study area is within the experimental Alzette river basin, which is located for the
large part in the Grand-Duchy of Luxembourg. For model calibration, three years of
hourly data from Hesperange, a gauging station placed along the course of the Alzette
River upstream of Luxembourg-city, were used.15

Catchment size is 288 km2, and land cover is estimated as being composed of culti-
vated land (27%) grassland (26%), forest land (29%) and urbanized land (18%). Lithol-
ogy is mainly represented by Marls and Marly-Sandstones on the left bank tributaries
and Limestones on the right bank tributaries of the Alzette River.

The rainfall-runoff behaviour of these units is quite different. Marl areas are charac-20

terized by impermeable bedrock, therefore rainfall water, after losses for evaporation
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or transpiration, reaches the stream mostly as saturated subsurface flow that develops
at the interface between the weathered zone and the underlying bedrock areas. When
the weathered zone becomes saturated, or during heavy rainfall events, surface runoff
occurs.

In limestone areas a large part of rainfall water infiltrates and after subtraction of5

losses percolates to the groundwater aquifer, which is capable of storing and releasing
large quantities of water.

The response to rainfall of Marl areas is faster and characterized by larger volumes
of water than that of limestone areas. Moreover, the large part of the baseflow during
prolonged dry periods is mostly sustained by the limestone aquifer.10

The use of an hourly time step is justified considering that the average concentration
time of the basin is of the order of a few hours.

The basin is instrumented by several rain gauges including tipping-buckets and au-
tomatic samplers measuring at a time step which does not exceed 20 min. Hourly
rainfall series are calculated by averaging the series at the individual stations with15

the Thiessen polygon method. Daily potential evaporation is estimated through the
Penman-Monteith equation (Monteith, 1965). The meteorological variables needed to
compute the evaporative loss are measured at the Luxembourg airport meteorological
station. Hourly estimates are then calculated distributing the daily amounts through a
sine function.20

3.2 Multi-objective calibration

The HBV model is calibrated according to the two objectives previously defined as
NLF and NLF . The problem is posed in a multi-objective framework and solved by
determining the Pareto-optimal set of solutions. In order to efficiently sample the pa-
rameter space, the Multi-Objective Shuffled Evolution Metropolis University of Arizona25

(MOSCEM-UA) algorithm is used (Vrugt et al., 2003).
The MOSCEM-UA algorithm begins with a random sequence of s points sampled

throughout the feasible parameter space. For each point the set of objective functions
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is evaluated. The sequence is partitioned into q complexes, and in each complex a
parallel sequence is launched. New candidate points from each complex are gener-
ated from a multivariate normal distribution with mean at the current draw of the se-
quence and covariance matrix calculated based on the history of each sequence. The
sequences evolve based on a Metropolis-type acceptance criterion. The algorithm5

proceeds until a specified maximum number of iterations m is reached.
The MOSCEM-UA has three algorithmic parameters that have to be specified by

the user: s, q, and m. No theoretic guidelines exist in determining those parameters;
however, a good criterion is to use a number of complexes that is at least equal to the
number of parameters.10

Parameter bounds were determined by analysing the results of an initial run of the
algorithm on a wide parameter space.

The selected parameter bounds are reported in Table 2. The algorithm was run with
the following parameters: s=2000, q=10, m=50.000.

The outcome of the optimization algorithm is presented in Fig. 3 and Fig. 4. Figure 315

shows the objective function values corresponding to the evaluated parameter sets
together with the set of Pareto-optimal solutions and the optima corresponding to each
individual objective. This plot clearly illustrates a trade-off in the selected objectives,
and reveals the inability of the model to match the selected aspects of the hydrograph
simultaneously.20

The variation of the Pareto-optimal parameter sets is shown in Fig. 4. The parameter
values are normalised with respect to the upper and lower bounds given in Table 2,
so that the feasible range of all parameters is between 0 and 1. Each line on the
plot represents one parameter set. The figure gives a visual indication on the relation
between the initial feasible parameter range, and the parameter range that corresponds25

to the optimal solutions.
Conclusions about large or small variability of parameter values would not be mean-

ingful, as the extent of the optimal range displayed in the figure clearly depends on the
initial lower and upper limits that are selected.
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Wile moving from one solution to another on the Pareto-optimal front (Fig. 3), the cor-
responding parameter values may show a trend from one extreme to another (Fig. 4).
The existence of such a trend reveals potential deficiencies in the model structure.
This behaviour is significant for the parameters β, which accounts for non linearity of
the rainfall-direct runoff relation, and K2, representing the storage coefficient of the5

lower reservoir.
As an example, the parameter K2 shows higher values when calibrated towards the

high flows, and lower values when calibrated towards the low flows. If we assume that
the correct value for this parameter is what corresponds to the low flow calibration (as
this parameter determines the behaviour of the lower reservoir which mostly affects10

low flow simulation), we can conclude that the calibration of the model with respect to
high-flows will result in overestimating this parameter. As a result, the lower reservoir
in the optimal high flow model will empty faster than it should in order to compensate
for errors in the simulation of other processes. This behaviour is also evident on the
hydrographs presented in Figs. 5a and b. Figure 5b shows that the best performing15

model with respect to NHF is characterized by steeper recessions than observed, while
Fig. 5a, representing the best model with respect to NLF , shows a better agreement
with the observations during recession periods.

3.3 Local models combination

The combining scheme aims at integrating the strengths of each individual local model20

in reproducing some characteristics of the simulation. As noted before, the combining
approach as here interpreted, requires the selection of two discharge thresholds: γ and
δ (Fig. 2). Those two thresholds can be selected based on knowledge of the system
behaviour, or can be selected automatically to minimize the error of the global model.

Manual selection of thresholds could be based on the ground of a physical under-25

standing of the behaviour of the catchment. In this case, the thresholds could represent
switches in catchment behaviour that correspond, for example, to changes in rating
curves or in contributing areas related to the water level in the stream. This evidence
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is not the case of this study, therefore the thresholds have been initially selected by
a visual inspection of model performances across the range of observed discharges.
A procedure to perform automatic tuning of the thresholds is described in the next
paragraph.

Analysis of the observed rainfall and flow lead us to a conclusion that it would be5

reasonable to choose the following thresholds for flow: Q=0.12 mm/h for high flows
and Q=0.07 mm/h for low flows. As the maximum discharge in the calibration period
is 0.64, this results in γ=0.11 and δ=0.17. Performances of the global model with
respect to the hydrograph simulations are represented in Fig. 5. Figure 5a shows the
performances of the low flow local model, Fig. 5b shows the performance of the high10

flow local model, and Fig. 5c shows the performance of the global model developed
from the combination of the two local models. It is possible to observe visually that
the global model incorporates the best features of both local models, considerably
improving the overall accuracy.

Model performances in term of the selected criteria are presented in Fig. 6. The15

solution corresponding to the global model lies beyond the Pareto-optimal set, showing
that the global model improves the accuracy of the simulations.

3.4 Automatic tuning of the thresholds

When no evidence exists in determining the thresholds corresponding to changes in
the system behaviour, those thresholds can be calculated by trying to maximise the20

performance of the model. With this purpose, a sequence of thresholds was generated
on a grid in the (γ, δ) space, and the Pareto-optimal set of solutions corresponding
to different values of the thresholds has been calculated. Results are represented in
Fig. 7. It is possible to observe that even the employed simple type of search improves
the global model accuracy.25

The thresholds values corresponding to the Pareto solutions are represented in
Fig. 8. With respect to the manually selected values, the Pareto values are smaller
for the thresholds for low flows, and larger for the high flow threshold, which enlarge
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the area where both models are evaluated and weighted.
It is also noteworthy that the performance of some Pareto-optimal models is higher

than that of both single best solutions corresponding to each individual criterion. This is
due to the fact that the selected objectives calculate the error with respect to the whole
range of flows, even with different weights. An improvement in low flow description,5

for example, given the same performances in high flows, reduces the total error as
calculated by NHF .

4 Discussion and conclusion

The synthetic view of reality that is incorporated in conceptual hydrological models
does not allow a simultaneous optimal representation of different aspects of the system10

behaviour.
To overcome this problem, a modular approach to hydrologic simulation has been

presented. This approach allows for different models to operate simultaneously, each
of them developed to reproduce a specific aspect or phase of the system behaviour.
The various models are then combined through an appropriate weighing procedure, to15

produce a global representation of the catchment behaviour. The combining scheme
exploits the strengths of each individual model in a synergistic manner.

The presented method allows for different parameter sets of a fixed model structure,
but, in principle, could be applied allowing for different model structures too (e.g. con-
ceptual, physically based, data driven). Specifically, we build separate models for high20

flow and low flow simulation, which are subsequently combined through a soft com-
bination approach. Results show that the combined “global” model reaches a higher
overall accuracy than what can be obtained using any individual parameter set.

A drawback of the proposed approach is that the switching between different models
causes a loss of continuity between model internal states. This might limit its appli-25

cation in cases where water balance of different model compartments is an issue. A
possible way forward is to incorporate the switching of model parameters directly within
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the model structure.
While the practical utility of such an approach relies on an improvement of the simula-

tion accuracy, the physical implications involved require interpretation and justification.
The switching between different models, in fact, implies an alternation between differ-
ent views or descriptions of reality. If the natural system is not modified by natural5

phenomena or artificial activities, it might seem physically inconsistent to represent it
by means of separate descriptions.

The hydrological processes involved in the rainfall-runoff transformation, however,
are extremely complex and characterized by a high degree of spatial and temporal
variability. As a result, the catchment behaviour can be characterized by visibly different10

hydrological responses. The different “personalities” that a catchment might display are
determined by a series of phenomena and processes that can be in general identified,
but that is difficult to separate and quantify.

The different interacting causes of variability in hydrological behaviour include:

– Seasonal dependencies. As an effect of vegetation or biologic activities, aspects15

like land cover or macropore distribution in the top-soil vary, affecting processes
such as interception, infiltration, pathways of water in on the soil surface and in
the weathered zone

– Environmental forcing conditions. Forcing conditions influence the amount and
distribution of water in the soil, determining the condition of the catchment hydro-20

logical “state”. With changes in hydrological states, such as from low to high flow
or from dry to wet conditions, the compartments of the catchment that contribute
to discharge (e.g. saturated and unsaturated zone, near stream saturated areas)
vary dynamically, leading to different domains of formation and integration of the
hydrological processes.25

– Threshold behaviour. The occurrence of several hydrological processes is char-
acterized by clear threshold behaviour. Groundwater levels, rainfall intensities, soil
moisture conditions control the occurrence of processes such as surface runoff or
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rapid subsurface flow, and can trigger the contribution of different areas of the
catchment.

– Variability of hydrological relations. The relation between hydrological processes
is extremely variable, depending on time, location and antecedent conditions. As
a result of the interaction between many different physical phenomena, the overall5

catchment response to rainfall is a highly non linear and dynamic process, which
is difficult to capture with simple conceptualizations.

A multi-model approach can implicitly take into account the variability in hydrologic
behaviour that is not explicitly considered in the realization of a single model.

By allowing different models to operate for the simulation of different aspects of the10

system response it is implicitly recognized that a single model cannot explain by itself
the full variability of catchment responses. In the specific case, where the different
models are represented by individual parameter sets, it can be assumed that model
parameters, depending on the particular stage of the simulation, describe different
behaviours of the catchment by expressing different processes.15

In conceptual modelling it is typically assumed that model parameters, if not phys-
ically based or clearly related to catchment attributes, are representative of inherent
properties of the catchment, and therefore not supposed to vary (Wagener et al., 2003).
The fact that model parameter may have different values depending on aspects such
as the length of the calibration period or the performance measure used for calibration20

is an indication of potential inadequacies of the model structure, which, ideally, should
be refined and corrected.

Understanding where the model fails, and where the catchment shows a certain
“personality” that is different than what is estimated a-priori, can guide towards a bet-
ter understanding of the system behaviour. When building a model, in fact, we use25

a possible representation of the most relevant processes and their interrelation. The
analysis of the performance of the model represents a possibility to test the hypothe-
ses made. In this sense, identifying a switching between different states can clarify
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triggers or thresholds in the catchment behaviour, helping to guide model refinement
and providing new understanding that could be a base for field research.

It can be concluded that the presented approach can be seen as an effective way to
improve model accuracy by representing different aspects of the system behaviour by
differently parameterized models. The multi-objective framework makes it possible to5

perform the detailed analysis of the models’ performance and to construct an optimal
model structure. The use of a “fuzzy committee” allows for soft combination of local
models and prevents discontinuities between the model predictions. The approach is
quite universal and can be used to combine different types of models, from concep-
tual to data-driven ones. A first challenge is to complement the presented method by10

the algorithms aimed at discovering various regimes in the time series representing
the modelled system; this would allow for optimal combination of domain (hydrologic)
knowledge incorporated in models with the automatic machine learning or time series
analysis routines. A second challenge is to implement different states of catchment
behaviour directly within the model structure, in order to obtain a comprehensive de-15

scription of the overall catchment behaviour within a single representation of reality.
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Table 1. Model parameters and corresponding units.

Parameter name Description Units

F C Maximum soil moisture storage mm
LP Limit for potential evaporation –
β Non linear runoff parameter –
P ERC Percolation rate mm/h
CF LUX Maximum capillary rate mm/h
α Non linear response parameter –
K1 Upper storage coefficient mm/h
K2 Lower storage coefficient mm/h
MAXBAS Transfer function length h
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Table 2. Parameter ranges.

Parameter name Units Lower Bound Upper Bound

F C mm 200 450
LP – 0.01 1
β – 0.01 2
P ERC mm/h 0.01 1
CF LUX mm/h 0 0.1
α – 0 0.5
K1 mm/h 0.001 0.1
K2 mm/h 0.001 0.1
MAXBAS h 7 15
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Fig. 6. Comparison of the performances of the single and the global models.
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