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Abstract

The reduction of information contained in model time series through the use of aggre-
gating statistical measures is very high compared to the amount of information that
one would like to draw from it for model identification and calibration purposes. Applied
within a model identification context, aggregating statistical performance measures are5

inadequate to capture details on time series characteristics. It has been readily shown
that this loss of information on the residuals imposes important limitations on model
identification and -diagnostics and thus constitutes an element of the overall model
uncertainty. In this contribution we present an approach using a Self-Organizing Map
(SOM) to circumvent the identifiability problem induced by the low discriminatory power10

of aggregating performance measures. Instead, a Self-Organizing Map is used to dif-
ferentiate the spectrum of model realizations, obtained from Monte-Carlo simulations
with a distributed conceptual watershed model, based on the recognition of different
patterns in time series. Further, the SOM is used instead of a classical optimization al-
gorithm to identify the model realizations among the Monte-Carlo simulations that most15

closely approximate the pattern of the measured discharge time series. The results are
analyzed and compared with the manually calibrated model as well as with the results
of the Shuffled Complex Evolution algorithm (SCE-UA).

1 Introduction

Information from existing or additional observed sources is crucial to decrease model20

uncertainty. Model evaluation and model identification usually resort to aggregating
statistical measures to compare observed and simulated time series (Legates and Mc-
Cabe Jr., 1999). In this context however these measures involve considerable prob-
lems (Yapo et al., 1998; Lane, 2007). To certain extent, the choice of performance
measures can be made such that the evaluation makes certain emphasis on different25

parts of the hydrograph (Gupta et al., 1998). Yet aggregating measures of performance
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have in common that the information contained in the errors is aggregated into a single
numerical value, regardless of the characteristic and the actual pattern of the error. In
consequence, essentially different model results can be obtained with close to identical
performance measure values although the parameter sets used to generate them are
widely scattered throughout the parameter space. Therefore the information conveyed5

by aggregating goodness-of-fit measures is likely to be insufficient to unambiguously
differentiate between a number of alternative model realizations (and thus cannot give
evidence of their equivalence, i.e. equifinality) (Gupta et al., 2003; Beven and Bin-
ley, 1992). This lack of discriminatory power imposes important limitations on model
identification and constitutes an important source of model uncertainty (Wagener et10

al., 2003). In contrast, one strong point of the manual calibration procedure resides
on the ability to use various complementary information sources, e.g. river discharge,
groundwater level or soil moisture observations (Franks et al., 1998; Lamb et al., 1998;
Seibert, 2000; Ambroise et al., 1995). In the first instance, however, its success is
due to the simultaneous evaluation of numerous different characteristics related to a15

time series (Gupta et al., 2003) which allows for a much better extraction of informa-
tion from the available data. Multiple-criteria approaches that seek to emulate this
strategy to some extent have therefore considerably improved model identifiability. Im-
portant examples of successful applications of this strategy can be found e.g. in Gupta
et al. (1998), Boyle et al. (2000), Vrugt et al. (2003) and Wagener et al. (2004). Yet20

model identification methods that depend on common statistical approaches might still
not be able to extract enough information relevant to this task (Gupta et al., 2003).
An exciting new point of view for model evaluation and identification that tackles these
shortcomings emerges from the transformation of the existing data into the frequency
domain and the wavelet domain (e.g. Clemen, 1999; Lane, 2007.).25

In order to improve model identifiability (as proposed by Gupta et al., 1998; Yapo et
al., 1998 and Boyle et al., 2000) and the extraction of information from existing data
we introduce an approach that, in a sense, emulates the visual assessment of model
hydrographs. To circumvent the ambiguity induced by standard objective functions
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a Self-Organizing Map (SOM) (Kohonen, 2001) is used to represent the spectrum of
model realizations obtained from Monte-Carlo simulations with a distributed conceptual
watershed model based on the recognition of different patterns of model residual time
series.

Self-Organizing maps have found successful practical applications in speech recog-5

nition, image analysis, categorization of electric brain signals (Kohonen, 2001) as well
as process monitoring (Alhoniemi et al., 1999; Simula et al., 1999) and local time series
modelling (Vesanto, 1997; Principe et al., 1998; Cho, 2004). Similarly diverse are the
currently emerging applications of SOM in the field of hydrology: Examples for the anal-
ysis of hydrochemical data can be found in Peeters et al. (2007) and Lischeid (2006).10

Schütze et al. (2005) apply a variant of the SOM to approximate the Richards equation
and its inverse solution. Hsu et al. (2002) successfully performed system identification
and daily streamflow predictions with the Self-Organizing Linear Output Mapping Net-
work (SOLO). They used a SOM to control local regression functions according to the
stage of the rainfall-runoff process. Kalteh and Berndtsson (2007) use SOM for the15

interpolation of monthly precipitation.
In Sect. 2.1 of this contribution we summarize the principles and advantages of SOM

and describe how this method is used to yield a topologically ordered mapping of model
output time series according to the similarity in the temporal patterns of their residuals
obtained through Monte-Carlo simulations. The properties of this “semantic map” of20

model realizations will be examined by relating the map elements i) to the standard
performance measures of the associated model runs and ii) to the parameter values
that have been used to generate the model results. It is shown that a SOM is capable
of giving visual insights into the parameter sensitivity and the operating of the model
structure. Moreover, in the second part of this article these properties are used to intro-25

duce an application of the Self-Organizing Map for parameter identification purposes.
The SOM is used instead of a classical optimization algorithm to identify the model
realizations from among the Monte-Carlo simulations that most closely approximate
the pattern of the measured time series, i.e. the “zero-residual” realization. The result
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will be analyzed and compared with the manually calibrated model as well as with the
result of the single-objective Shuffled Complex Evolution algorithm (SCE-UA, Duan et
al., 1993).

2 Methods

2.1 The Self-Organizing Map5

The Self-Organizing Map is a clustering, visualization and abstraction algorithm that
is based on the artificial neural network paradigm and unsupervised learning. Unlike
other types of ANN it has no output function. Instead it maps vectorial input data items
with similar patterns onto contiguous locations of a discrete low-dimensional grid of
neurons in a topology-preserving manner. Therefore its output can be compared to a10

semantic map. Each of its neurons becomes sensitized to a different domain of the
patterns contained in the vectorial training data items, i.e. the map units act as decoder
for different types of patterns contained in the input data (Kohonen, 2001).

Each input data item x∈X is considered as a vector

x = [x1, x2, . . . , xn]T ∈ <n (1)15

with n being the dimension of the input data space. A fixed number of k neurons
indexed i is arranged on a regular grid G with each neuron being associated to a
weight vector

mi = [µi1, µi2, . . . , µin]T ∈ <n (2)

also called reference vector, which has the same dimensionality as the input vectors20

x∈X . These weights connect each input vector x in parallel to all neurons of G. More-
over the neurons are connected to each other. In our case this interconnection is
defined on a hexagonal grid topology. The training of the SOM now comprises the
following steps:
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1. The components of the mi are initialized with a sequence of values from points
on the plane spanned by the two greatest eigenvectors of the data distribution. This
procedure assures a faster and more reliable convergence of the algorithm (Kohonen,
2001).

2. Randomly pick an input vector sample x∈X and compute the Euclidean distance5

‖x −mi‖ =

√√√√ n∑
j=1

(
xj −mi j

)2
(3)

between x and each of the reference vectors mi (as a measure of similarity, generally
any other metric can be applied as well) and find the neuron c(x) with a reference
vector mc such that

‖x −mc‖ = min
i

{‖x −mi‖} (4)10

c is then called the best-matching unit (BMU) and defines the image of the sample x
on the map G.

3. The nodes that are within a certain distance of the “winning neuron” c are updated
according to the equation

mi (t + 1) = mi (t) + α (t)hci (t) [x (t) −mi (t)] (5)15

where t is the number of the iteration step and mi (t) is the current weight vector which
is updated proportionally to the difference [x(t)−mi (t)]. hci (t) determines the degree
of neighbourhood between the winning neuron c and a neuron i for an input x∈X ,
i.e. the rate of adaptation in the neighbourhood around c. This function is required
to be symmetric about c and decreasing to zero with growing lateral distance from c20

(Haykin, 1999). Commonly the Gaussian function

hci (t) = exp

(
−
‖rc − ri‖

2

2σ2 (t)

)
(6)
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is used, whereas ‖rc − ri‖
2denotes the lateral distance between the winning neuron

and the neuron i .
σ(t) defines the width of the topological neighbourhood, which is also monotonically

decreasing with t. It is required that hci (t)→0 for t→ ∞. In Eq. (5) α(t) is called the
learning rate factor (0<α(t)<1) which proportionally to the iteration step t monotonically5

decreases the rate of change of the weight vectors. According to Kohonen (2001) an
exact choice of the function is not relevant. With Eq. (5) the training acquires adaptive
and cooperative properties through which the weights mi are updated to move closer
towards the winning neuron, similar to an elastic net (Kohonen, 2001).

4. Repeat steps 2 and 3 with the next data vector x until a fixed number of iterations10

is reached.
Upon repeated cycling through the training data the mapping from the continuous in-

put space X onto the spatially discrete output space G acquires the following properties
(Haykin, 1999):

– The reference vectors mi “follow” the distribution of the input data vectors such15

that the map G provides a discrete approximation to the input space X . This is
as well the reason why dimensionality reduction and data compression properties
can be attributed to the SOM. The fix number of weight vectors mi can be inter-
preted as pointers for their corresponding neuron into the input space X , hence
the elements of mi can be interpreted as coordinates of the image of this neuron20

in the input space.

– From Eq. (5) immediately follows the topological ordering property of the mapping
computed by the SOM such that the location of a neuron on the grid G represents
a particular domain of pattern in the input data. Moreover, this ordering property
at the same time provides fault and noise tolerant abilities of the mapping (see25

also Allinson and Yin, 1999). The local interactions between the neurons provide
for the smoothness of the map.

– Patterns in the input space X that occur more frequently are mapped onto a larger
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area in the output space G.

– A SOM has the ability to select a best set of features for approximating an under-
lying nonlinear distribution corrupted by additive noise. Hence SOM provides a
discrete approximation of principle curves, i.e. a generalization of principal com-
ponent analysis.5

In the second part of this contribution we make use of the fact that the SOM can also
be applied to project an input data vector y onto the discrete output space that has not
been part of the training data manifold. This means that according to Eq. (4) a neuron
c(y) with reference vector mc(y) is activated for which∥∥y −mc(y)

∥∥ = min
i

{‖y −mi‖} (7)10

The “image” c(y) of the projected data item y then represents the domain of input data
patterns from X that is most similar to y. Moreover, as the number of neurons N is much
smaller than the number of vectors used for the training, this neuron will be sensitized
and associated to a number of input data patterns from X which will represent the
domain of input data patterns that is closest to y.15

2.2 The experimental setup

In our example 4000 residual time series (i.e. the element-wise difference between the
simulated and the observed time series vectors) constituted the input data vectors of
the training data set. The model time series were obtained from 4000 Monte Carlo
simulations with the distributed conceptual watershed model NASIM running at hourly20

time steps over a period of two years, i.e. each input data vector consisted of 17 472
elements. Before the training, normalization of the data after Eq. (8) was carried out
to avoid that high data values (vector elements) dominate the training because of their
higher impact on the Euclidean distance measure Eq. (3) (Vesanto et al., 2000). Each
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element of the input data vectors is normalized to a variance of one and zero mean
value using the linear transformation

x′ = (x − x̄) / σx (8)

A coarse training period of 500 iterations with a large radius for the neighbourhood
function was performed followed by a fine tuning period comprising 100 000 training5

cycles with short neighbourhood radius. In order to compare the results of the afore-
mentioned Monte-Carlo simulation and the properties of the SOM, seven measures
of performance, listed in Table 2, were calculated for each model run. Consecutively,
a reference data set, which has not been part of the training data, consisting of the
time series of observed data was projected onto the SOM according to Sect. 2.1. The10

resulting time series from this experiment will finally be evaluated visually as well as by
means of different diagnostic plots. To ascertain whether the type of data used for the
training exerts any influence on the SOM result the experiments were repeated with a
SOM trained on discharge time series instead of residual time series.

2.3 The NASIM model and the data15

NASIM is a distributed conceptual rainfall-runoff model (Hydrotec, 2005). It uses non-
linear storage elements to simulate the soil water balance on spatially homogeneous
units with respect to soil and land use, which themselves are subdivided into soil lay-
ers. NASIM is being commercially distributed since the mid-eighties and since then
has found widespread application, e.g. in communal water resources management,20

throughout Germany. The details of the model are beyond the scope of this contri-
bution. Instead, we adopt the decision-maker’s point of view and treat the model as
a black-box. Seven parameters were selected for Monte-Carlo random sampling (Ta-
ble 1). The parameters were chosen to be identical to those that participated in the
course of a manual expert calibration for the test watershed. Their bounds reflect the25

feasible parameter space based on the experience of this calibration. The input data for
the model was taken from the 129 km2 low-mountain range test watershed “Schwarze
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Pockau” Saxony (Germany), situated near the border to Czechoslovakia and tributary
of the Freiberger Mulde, a sub-basin of the Elbe River. The period from 1 November
1994 to 28 October 1996 with hourly discharge and precipitation measurements was
chosen to drive the Monte-Carlo simulation.

3 Results5

In the first part of this section the properties of the SOM trained on residual time series
and the relation of its elements to the traditional performance measures are examined.
The second part is dedicated to testing the projection of measured data onto the SOM.

3.1 Testing the properties of the SOM

After the training each neuron of the 22×15 SOM is expected to be activated by a10

narrow domain of residual patterns from the input data manifold. The neurons and
their respective location on the map are identifiable by index numbers. As the number
of neurons is still much smaller than the number of model realizations used for the
training, each neuron represents a set of Monte-Carlo model realizations that are char-
acterized through similar temporal patterns with respect to their residuals or discharge15

values respectively. Because of the topographic ordering principle neighbouring map
units, in turn, are expected to be “tuned” to similar residual patterns as well. Because
the model realizations used for the training can be referenced by their corresponding
index number on the map, the ordering principles of the “semantic map” represented
by the SOM can be examined. To this end, the means of different performance mea-20

sures as well as the mean values of the model parameters on each map element are
calculated. This allows to assess the properties of the map’s ordering principle with re-
spect to well known attributes such as a) the distribution of performance measures and
b) the distribution of different model parameter values over the map lattice. Referring
to a) seven performance measures have been calculated for each model realization25
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(Table 2). For each of them individual SOM lattices were colour-coded according to
the mean of the performance measure of the model runs associated with each map
unit. Figure 1 shows the distribution of the performance measures from Table 2 on
the SOM lattice. The same procedure was repeated for the Monte-Carlo parameters
such that the distribution of mean parameter values can be shown for each parameter5

individually (Fig. 2). In each lattice of Fig. 1 and Fig. 2 the positions of the neurons
remain identical such that each map element refers to identical model realizations in
both figures.

As a striking feature of Fig. 1 it can be seen that, without providing explicit informa-
tion about the performance measures with the training data, the different performance10

values are not distributed randomly across the map but significantly relate to different
regions of the lattices. To interpret Fig. 1 it is important to notice that warm colours
always correspond to high mean values and vice-versa, irrespective of whether this
quality is associated with high or low goodness of fit. As to Fig. 2, a visibly ordered
relation of the map regions to different parameter values can only be stated for two15

parameters (RetInf and maxInf), whereas the values of RetOf, StFFRet and vL do not
appear to relate to any ordering principle. A similar random pattern can be observed
for the two remaining parameters throughout wide areas of the map. However some
intercalated areas in these lattices notably display again a relationship towards the pa-
rameter values, as can be seen from the locally ordered colour distribution. To facilitate20

the interpretation of these findings we compared Fig. 2 with scatterplots of performance
measures. Figure 3 indicates that only the parameters RetInf and maxInf are sensitive
with reference to the RMSE. Scatterplots for the remaining objective functions in Ta-
ble 2 yielded the same results. Results identical to Fig. 1 and Fig. 2 were obtained by
training a SOM on discharge time series instead of residual values.25

3.2 Projecting the observed time series onto the SOM

To locate the best-matching unit (BMU) of the measured discharge (i.e. zero-residual)
time series on the map, according to Sect. 2.1, an input vector consisting of elements
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with value 0 is constructed. Subsequently, in order to be projected properly along with
the training data, the transformation Eq. (7) is carried out using the normalization pa-
rameters obtained from the input data set. In Fig. 4 the location of the resulting vector
is displayed on top of the performance measure distributions shown in Fig. 1. It can
be seen that the position of this BMU clearly does not coincide with any of the ex-5

pected objective function optima or with the region where the combined optimum of
the seven performance measures has to be expected approximately (outlined by the
black rectangle in Fig. 4). Additionally, Table 3 summarizes the parameter values of
the 11 model realizations that are associated to the BMU for representing the model
time series that are most “similar” to a “perfect match” (i.e. the zero-residual case). By10

comparing these parameters of the corresponding model runs to the ranges in Table 1
it becomes obvious that, with the exception of RetInf and maxInf, all parameter val-
ues span the full range of the Monte-Carlo sampling bounds. All model realizations
attached to this BMU have in common that only the mentioned parameter values ap-
pear to be narrowly constrained between 4.336 and 4.787 for RetInf and 0.107 and15

0.134 for maxInf respectively. The resulting model outputs for these 11 realizations
is shown in Fig. 5c along with the total envelope range of all 4000 simulation outputs
in the background and the observed discharge. In order to better point out the differ-
ences between the hydrographs only the characteristic time period from 14 January
1995 to 21 October 1995 is reproduced. It can be seen that, compared to the whole20

set of Monte-Carlo outputs, these realizations obviously comprise a compact subset of
“similar” time series. Additionally, the model results obtained from an expert manual
calibration and the single-objective automatic calibration using the SCE-UA algorithm
(Duan et al., 1993) with the RMSE as objective function (Table 2) are shown in Fig. 5.
Although the SOM procedure, unlike the manual calibration, emphasizes all features25

of the hydrograph equally, the time series associated to the BMU of the measured dis-
charge appear to outperform the result of the expert calibration (Fig. 5a). Compared
to the SCE-UA result (Fig. 5b) the model realizations obtained from the SOM display a
more accurate dynamic in the peaks and a better reproduction of the recession limbs.
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In Table 4 this visual impression can partly be corroborated by comparing the model
results referring again to the formerly calculated performance measures from Table 2.
The training on discharge data time series yielded identical results with respect to the
position of the BMU on the SOM as well as the model realizations that were associated
to it. It is interesting to note that, for both species of input data, the distributions of5

performance measures and parameter values throughout the map already ended up
close to identical to those in Fig. 1 and Fig. 2 after only 1000 training cycles, whereas
the identification of the BMU with the model realizations that are most similar to the
observed values requires a number of training cycles that is at least one order of mag-
nitude higher.10

4 Discussion and conclusions

The performance measures that are linked to the map in Fig. 1 already indicate that
very individual properties of the training data time series can be attributed to each el-
ement of the Self-Organizing Map. Furthermore, from the patterns of the performance
measures on Fig. 1 it can be seen that certain correlation structures inherent to these15

statistical measures appear to be reflected by the map. Henceforth, we deduce that
the information that can be extracted by these aggregating statistical measures is as-
similated and preserved by the SOM. The findings with respect to Fig. 2, corroborated
by Fig. 3 and Table 3, demonstrate that the SOM application is capable of revealing
information about parameter sensitivities. Hence, we infer that the zones of only lo-20

cally ordered parameter mean values in Fig. 2 (RetBasis and hL) indicate that the
corresponding parameters are subject to interaction with other parameters. We con-
sider this a further indication of the high discriminatory power of the SOM application
with respect to the characteristics of different simulated discharge time series. This is
because we were not able to obtain similar findings with traditional methods that are25

based on the evaluation of performance measures, e.g. parameter response surfaces
for different objective functions.
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These useful aspects of the method are complemented by the findings of the sec-
ond experiment: It demonstrates that the information which is processed by the SOM
allows differentiating the spectrum of model realizations, given with the Monte-Carlo
data, such that a rather narrowly confined set of model time series which are similar to
the observed time series can be identified. It is important to notice that the results were5

achieved without resorting to aggregating statistical measures and therefore, the “simi-
larity” represented in the SOM is not directly quantifiable in traditional terms. Instead, it
rather accounts for the complexity that is inherent to time series data and which cannot
be reduced to a rank number. Although the method is deterministic and the results
are entirely reproducible, the resulting time series (Fig. 5c) can be further judged only10

subjectively. The fact that the experiments yielded identical results when the training
was carried out using discharge data underpins the stability of the SOM method. Its
resolution, of course, is dependent upon the number of model time series that par-
ticipated in the training. The results (Fig. 5) which were achieved with a rather small
number of model data items indicate that the SOM has the potential to be considered15

as an alternative to classical optimization algorithms. At this stage this issue still has to
be subjected to more in-depth examination. The discriminatory power of the SOM that
has been demonstrated in this article also highlights that uncertainty induced by the
properties of the performance measure should be included in the discussion of model
uncertainties and equifinality, because any statement on model behaviour depends on20

our possibilities to differentiate between model time series.
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Table 1. Free NASIM model parameters of the Monte-Carlo simulation with their respective
parameter ranges.

Name Description Range

RetBasis Storage coefficient for baseflow component [h] 0.5–3.5
RetInf Storage coefficient for interflow component [h] 2.0–6.0
RetOf Storage coefficient for surface runoff from unsealed surfaces [h] 2.0–6.0
StFFRet Storage coefficient for surface runoff from urban areas [h] 2.0–6.0
hL Horizontal hydraulic conductivity factor 2.0–8.0
maxInf Maximum infiltration factor 0.025–1.025
vL Vertical hydraulic conductivity factor 0.005–0.105
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Table 2. Statistical goodness-of-fit measures calculated for the model output (Qobs: observed
discharge, Qsim: simulated discharge).

Name Description Formula

BIAS Mean error 1
N

N∑
k=1

(Qobs −Qsimk)

RMSE Root of mean squared error

√
1
N

N∑
k=1

(Qobs −Qsimk)2

CEFFlog Logarithmized Nash-Sutcliffe co-
efficient of efficiency

N∑
k=1

(ln(Qobs)−ln(Qsimk ))2

N∑
k=1

(ln(Qobs)−ln(Q̄obs))2

IAg Willmott’s index of agreement
(Willmott, 1981, 1982)
0 ≤ IAg ≤ 1

1 −
N∑

k=1
(Qobs−Qsimk )2

N∑
k=1

(
|Qsimk−Q̄obs|+|Qobs−Q̄obs|

)2

MAPE Mean average percentual error 100
N

N∑
k=1

1
Qobs |Qsimk −Qobs|

VarMSE Variance part of the mean
squared error

√
1
N

N∑
k=1

(Qobs−Q̄obs)2−

√
1
N

N∑
k=1

(Qsim−Q̄sim)2

1
N

N∑
k=1

(Qobs−Qsim)2

Rlin Coefficient of determination

N∑
k=1

[(Qsim−Q̄sim)(Qobs−Q̄obs)]√
N∑

k=1
(Qsim−Q̄sim)2 N∑

k=1
(Qobs−Q̄obs)2
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Table 3. Summary of the parameter values of the 11 model realizations associated to the Best-
Matching map Unit when the time series vector of observed discharges is projected onto the
SOM.

RetBasis RetInf RetOf StFFRet hL maxInf vL

min 0.699 4.336 2.379 2.202 2.191 0.107 0.008
max 3.143 4.787 5.731 5.581 6.540 0.134 0.105
mean 1.756 4.555 4.278 3.548 4.674 0.122 0.065
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Table 4. Comparison of model performances for results obtained from manual calibration,
optimization with SCE-UA and the SOM application. In case of the SOM mean values of 11
results are given.

BIAS RMSE CEFFlog IAg MAPE VARmse Rlin

manual calibration 0.32 1.58 0.50 0.86 42.36 0.01 0.75
SCE-UA optimization 0.08 1.69 0.47 0.84 38.26 0.00 0.72
SOM
(means)

0.13 1.34 0.30 0.88 40.71 0.19 0.81
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Fig. 1. Distribution of the mean values of each performance measure from Table 2 over the
SOM lattice.

3974



Fig. 2. Distribution of the mean values of each model parameter from Table 1 over the SOM
lattice.
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Fig. 3. Scatterplots of RMSE values for each of the examined NASIM parameters.
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Fig. 4. The location of the best-matching unit (indicated by the black dot) for an input vector
that represents the measured discharge time series. The rectangle outlines the region on the
map where approximately a combined optimum of the seven performance measures has to be
expected.
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Fig. 5. The model realizations as resulting from (a) manual calibration, (b) optimization with
the SCE-UA algorithm and (c) the BMU of the SOM for the measured discharge time series.
The time-series are compared to the measured discharge and the envelope of the Monte-Carlo
simulation, i.e. the area which is spanned by all model time series for the bounds given in
Table 1.
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