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Abstract

Global Climate Models (GCMs) precipitation scenarios are often characterized by bi-
ases and coarse resolution that limit their direct application for basin level hydrological
modeling. Bias-correction and spatial disaggregation methods are employed to im-
prove the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River5

Basin in Thailand. Bias-correction method, based on gamma-gamma transformation,
is applied to improve the frequency and amount of raw GCM precipitation at the grid
nodes. Spatial disaggregation model parameters (β, σ2), based on multiplicative ran-
dom cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function
at q=1 for each month. Bias-correction method exhibits ability of reducing biases from10

the frequency and amount when compared with the computed frequency and amount
at grid nodes based on spatially interpolated observed rainfall data. Spatial disag-
gregation model satisfactorily reproduces the observed trend and variation of average
rainfall amount except during heavy rainfall events with certain degree of spatial and
temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the15

observed runoff for upper Ping River Basin based on the modified GCM precipitation
scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-
correction and disaggregation provides an improved reproduction of basin level runoff
observations.

1 Introduction20

The Southeast Asia is vulnerable to climate change and its variability, including rise in
sea level, shifts of climatic zones and occurrence of extreme events such as droughts
and floods. The range variation of various climatic model projected mean temperature,
precipitation and runoff in 2100 for this part of the world are found to be 1.0 to 4.5◦C,
–20 to +20% and –10 to +30% respectively (IPCC, 2001). These broad spectrums of25

projected range imply that the results of the climatic models cannot be directly used in
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analyzing the water resource situation at basin level using high-resolution hydrologic
models. The mismatch between coarse resolution projections of global climate models
(GCMs) and fine resolution data requirements of hydrologic models is the major obsta-
cle in assessing the impacts of climate change on water resources at the basin level.
However, climate model outputs can be utilized more efficiently in climate change im-5

pact studies with due consideration on its coarse resolution and biasness. Many GCMs
are available with high temporal resolution data output at daily or at even lesser time in-
tervals that satisfy the basic need of temporal scale in hydrological modeling. However,
gap still exists in developing proper techniques to minimize these biases and to down-
scale the spatial resolution of the GCMs. Identification, application and verification of10

proper methods are therefore necessary to minimize the effect of these drawbacks in
basin scale studies.

Despite being important tools to project the expected future scenarios of climatic pa-
rameters, GCMs simultaneously contain biases when compared to observed data due
to their parameterization systems and large grid size (∼300×300 km2). These types of15

errors are considered insignificant when applying for the estimation of climate change
impact at regional scale. But, such biased climate model scenarios are inadequate for
their use in hydrologic models to analyze impact of climate change at basin level. Bias
correction methods largely eliminate these problems with added emphasis on statisti-
cal characteristics of historical data. Rescaling is the easiest bias-correction method20

to rectify the systematic error in the mean rainfall amount. A “quantile-based” bias-
correction approach is useful to statistically transform rainfall simulated by GCM to bias-
corrected data and to make it applicable for use in impact assessment models (Wood et
al., 2002; Hamlet et al., 2003). Ines and Jansen (2006) applied empirical-gamma trans-
formation, gamma-gamma transformation and multiplicative shift techniques to correct25

the frequency and amount distribution of daily GCM rainfall for a particular station and
then applied it for maize yield simulation model. All these methods improved the results
of maize yield simulation. These studies indicate the significance of bias-correction of
GCMs precipitation when applied to impact assessment studies.
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Low spatial resolution of GCMs is another critical issue to be considered before ap-
plying it to the hydrological impact assessment model. There are numerous techniques
available for downscaling the climate models data to a high spatial resolution with their
respective advantages and disadvantages. No downscaling method is available with
perfection, therefore the techniques used to interpret GCM simulations should be cho-5

sen based on the objectives of the research (Hamlet et al., 2003). The disaggregation
model, based on multiplicative random cascade theory, is one of the techniques to spa-
tially downscale the projected GCM rainfall. A continuous form of multiplicative random
cascades has its major advantage in developing cascades over a continuous inter-
val of scales instead of only a discrete set (Marsan et al., 1996); however, a discrete10

form of multiplicative random cascade has ability to separate rainy and non-rainy ar-
eas (Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Over and Gupta, 1994).
The main advantage of this approach to precipitation analysis is that it describes the
complex rainfall process over a wide range of scales with few parameters. The rainfall
modeling based on discrete multiplicative random cascades has been tested for spatial15

and temporal disaggregation under different climatic conditions with similar conclusion
that it was possible to capture rainfall variability of sub grid scale using this approach
(Olsson, 1998; Gunter et al., 2001; Molnar and Burlando, 2005). A few studies have
been conducted by incorporating spatial heterogeneity in random cascade process and
the overall results were found to be acceptable based on important spatial and tempo-20

ral characteristics of rainfall (Jothityangkoon et al., 2000; Pathirana and Herath, 2002;
Tachikawa et al., 2004).

The focus of the present paper is to ameliorate the GCM precipitation for further use
in hydrological model by applying the bias-correction and stochastic disaggregation
method. Bias-correction method is applied to GCM precipitation at the grid node and25

then spatially downscaled using multiplicative random cascade model while preserving
the spatial heterogeneity for each month. The Ping River Basin, North of Thailand, is
selected for the application of the approach.
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2 Study area

The Ping River Basin is one of the eight sub-basins in Chao Phraya Basin. It stretches
from latitude 19.75◦ N to 15.75◦ N and from longitude 98.10◦ E to 100.20◦ E, with a
catchment area of 34 453 km2 (Fig. 1). It covers about 22% of the Chao Phraya River
Basin and contributes about 24% (9044×106 m3) of the total average annual runoff.5

Terraced mountains mainly characterize the topography of Ping River Basin. About
55.5% of total basin area is in the elevation range of 500–1500 m. The weather is
mainly influenced by the Southwest and Northeast monsoon. It is also influenced by
the depression from the South China Sea during July and September, resulting in
abundant rain from May to October. The climate is characterized by average annual10

precipitation of 1097 mm and average annual temperature of 26.7◦C. Nearly 90% of
rain occurs during rainy season (May–October). Water demand of Ping River Basin in
the year 2002 was 5809×106 m3 and it is expected to be 6316×106 m3 after 20 years
(Department of Water Resource, 2003). Climate change and its variability can signif-
icantly impact on water resources of the basin. The analyze of extreme precipitation15

and temperature events in this river basin reveal the presence of significant trends in
most of the climate indices, with a general tendency for a decrease in precipitation and
a significant increase in temperature indices (Sharma et al., 2006).

Daily precipitation data for the period 1991 to 1999 is obtained from the Royal Ir-
rigation Department (RID, Thailand), Thailand Meteorological Department (TMD) and20

Department of Meteorology and Hydrology (DMH, Myanmar) for 99 stations, as indi-
cated in Fig. 1.

3 Characteristics of ECHAM4/OPYC3

ECHAM4/OPYC3 is selected due to its easy accessibility, high temporal (6 hourly)
and spatial resolution as compared to other climate models (Feenstra et al., 1998).25

ECHAM4/OPYC3 model has been developed at the Max Planck Institute in Hamburg,
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Germany, using the weather forecasting model (ECMWF) and it is a model of fourth
generation. ECHAM4 uses 2.8◦×2.8◦ grid cells of a 19-layer atmosphere and an 11-
layer ocean (Roeckner et al., 1996). Six new greenhouse gases (GHGs) emission
reference scenario groups (A1B, A1FI, A1T, A2, B1, and B2), organized into four sce-
narios “families” (A1, A2, B1, and B2), were developed by the IPCC and published5

as the Special Report on Emissions Scenarios (SRES). Scenarios A2 and B2, two
contrasting future emission scenarios, are used to account for uncertainty in future
GHGs/sulphate emissions data. The A2 scenario assumes an emphasis on local tradi-
tions, high population growth, and less concern for rapid economic development. The
B2 scenario envisages less rapid, and more diverse technological change with em-10

phasis on community initiative and social innovation to find local, rather than global
solutions. This scenario is oriented toward environmental protection and social equity
(Nakicenovic and Swart, 2000).

The ECHAM4/OPYC3 climate model precipitation data for SRES A2 and B2 are
obtained from the World Data Center for Climate through CERA (Climate and Environ-15

mental Retrieving and Archiving) database system. Two grid boxes of selected model
are identified for the study area as shown in Fig. 1. These two grid boxes account for
about 96% of total Ping Basin area and out of it 82.4% is within grid 1. Daily rainfall
data is prepared by adding the 6 hourly model data.

Figure 2a reveals increasing trend of annual mean temperature for SRES scenarios20

A2 and B2 for both the grids. The rise in mean annual temperatures for SRES A2
and B2 are found to be about 0.30◦C/decade and 0.22◦C/decade respectively. Annual
temperature across the domain may increase in 2020s by 0.4 to 0.5◦C and 1.3◦C to
1.5◦C in 2050s, according to ECHAM4/OPYC3 with the high emissions scenario (A2).
With the low emissions scenario (B2), there may be a rise of 0.3 to 0.4◦C by 2020s25

and 0.9◦C to 1.1◦C by 2050s. The rate of temperature rise per decade is approximately
1.25 times more in scenario A2 than that in scenario B2. Figure 2b shows the monthly
increase in mean temperature per decade for SRES A2 and B2 for both the grids. The
variation in monthly increase in temperature is more uniform in grid 2 as compared to
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grid 1, under both the scenarios. Figure 3 illustrates the trend of annual standardized
anomalies of ECHAM4/OPYC3 precipitation scenarios. There is a tendency toward
less abundant rainfall (rainfall close to mean) in future. A comparison of these trends
suggests that warmer temperatures and lesser rainfall will affect the present situation of
water resources in the study area. Figure 4 shows the mean monthly trend of ECHAM45

model and observed rainfall. The selected model scenarios over predict the mean
monthly precipitation at grid 1 (82.4% of Ping Basin area) while it under predict at
grid 2 for rainy period. In dry season (November–April), ECHAM4 model over predicts
rainfall for the study domain. This shortcoming hinders in direct application of climate
model data in impact assessment studies.10

4 Methodology

4.1 Bias correction

Variability of rainfall largely depends on its frequency and amount, and it is difficult to
estimate average rainfall in a particular region. Gamma-gamma (GG) transformation
is used to reduce the gap between the daily GCM simulated and observed rainfalls15

using GCM bias correction tool – version 0.3a (Ines, 2004). The basic idea of this
bias-correction procedure is to reduce the biases from the frequency and amount at
grid node before applying downscaling technique. The steps are as follows:

(1) Establish the empirical distributions, F (x), by first classifying long-term daily rain-
fall data for each month, based on positions of the ordered datasets, using Eq. (1):20

F (x) =
n
m
, (1)

where n is the position of x in the ordered array, and m is the total number of data in
the array. This should be followed by calculation of a threshold value (x%

GCM), derived
from the empirical distribution of daily historical rainfall, to truncate the empirical distri-
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bution of the raw daily GCM rainfall for that particular month. Basically, F (xhis=0.0) is
determined and then map to the daily GCM rainfall distribution.

(2) GG transformation method is selected for rainfall amount correction. For GG
transformation, the truncated daily GCM rainfall and historical rainfall data are fitted
to a two-parameter gamma distribution (Eq. 2) and then the cumulative distribution5

(Eq. 3) of the truncated daily GCM rainfall is mapped to the cumulative distribution of
the truncated historical data (Eq. 4). The shape and scale parameters (α and β) for
each gamma distribution are determined using Maximum Likelihood Estimation.

f (x;α,β) =
1

βαΓ(α)
xα−1 exp

(
−x
β

)
; x ≥ xTrunc (2)

F (x;α,β) =

x∫
xTrunc

f (t)dt (3)10

F (xGCM; α,β|GCM) ⇒ F (xHis; α,β|His) (4)

The corrected GCM rainfall amount for the particular day can be calculated by taking
the inverse of Eq. (4) such that:

x′
GCM

= F −1{F (xHis; α,β|His)} (5)

The bias-correction method is applied to ECHAM4 SRES scenarios A2 and B2 relative15

to spatial interpolated rainfall at GCM grid node. Inverse Distance Weighting (IDW)
method is used to estimate the spatial average rainfall at grid node from observed daily
rainfall. Correlation coefficient (R), root mean square error (RMSE), standard deviation
(SD) and index of agreement (d ) are determined to assess the overall ability of the bias-
correction method. The quality of bias-corrected rainfall on monthly scale is evaluated20

using the mean square error (MSE) skill score with the raw GCM as a reference and
formulated as:

Skill Score, SS = 1 −
MSEcorrected

MSEraw
, (6)
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where MSEcorrected and MSEraw are mean square errors of the bias-corrected GCM and
raw GCM data. The range of MSE skill score varies from negative infinity to 1, and 0
indicates no skill when compared to raw GCM data.

4.2 Spatial disaggregation model

In spatial disaggregation model, rainfall is a combined effect of two processes i.e., a5

multifractal process that is highly variable in space but statistically uniform at smaller
scales, and a process that presents spatial heterogeneity of rainfall. The disaggrega-
tion model, based on multiplicative random cascade model, is used to distribute rainfall
mass on successive regular subdivisions of a scale in multiplicative manner with a
branching number. The branching number (b) is defined as the ratio of the number of10

segments at cascade stage “s+ 1” to the cascade stage “s”. Figure 5a shows the gen-
eral layout of cascade disaggregation process. At each cascade stage, each segment
is divided into b equal parts and each part is multiplied by a weighted value derived
from a specified distribution, which is known as the cascade generator (W ). The seg-
ment after “s” stages of subdivision is denoted by ∆i

s (i =1, ..., bs) and rainfall in this15

particular segment is expressed as µs

(
∆i

s

)
in Eq. (7).

µs

(
∆i

s

)
= R0λs

s
Π
j=1

Wj (i ), fori = 1,2, . . ., bs; s > 0 (7)

where R0 is rainfall depth at initial stage and λs is the dimensionless spatial scale,
which equals to b−s. Figure 5b shows the example of disaggregation model output
applied to GCM rain field with R0=3.6 mm at stage s=7.20

W is a random positive variable and is considered independent and identically dis-
tributed. Properties of W can be estimated from the moment scaling behaviour across
scales. The statistical moment is the summation of rainfall volumes and then raise to
the power “q” at each segment formed at a particular stage “s”. Thiessen polygon
method is used to calculate the rainfall volume at each segment at the selected stage.25
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Sample moment with order q (non-negative) is defined as:

Ms(q) =
bs∑
i=1

µq
s (∆i

s) (8)

In a random cascade, the statistical moments Ms(q) are shown to be a log-log lin-
ear function of the scale of resolution λs. The slope of the sample moment scaling
relationship is:5

τ(q) = lim
λs→0

logMs(q)

− log λs
(9)

Over and Gupta (1996) has proposed an intermittent beta-lognormal model because
of its ability to consider dry zone explicitly. It is given as:

P (W = bβ−σ2 log[b]
2 +σX ) = b−β

P (W = 0) = 1 − b−β, (10)10

where β and σ2 are model parameters and X is a standard normal variable. The
expected value of W is:

E (W ) = 1

E (W ) = E [(b−βbβ−σ2 log(b)
2 + σ X + (1 − b−β)0] = E [b−σ2 log(b)

2 + σ X ] = 1
(11)

They also proposed using Mandelbrot–Kahane–Peyriere (MKP) function (Mandelbrot,
1974; Kahane and Peyriere, 1976) to estimate the model parameters.15

χb(q) = (β − 1)(q − 1) + (σ2 log(b)

2
)/(q2 − q) (12)

The MKP function, χb(q), is defined as the slope of the statistical moment Ms(q) to the
disaggregation stage “s”. Considering that the cascade follows the scaling law (Eq. 9),
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the MKP function of the cascade is τ(q)/
d . The first and second derivatives of τ(q)

with respect to q, indicated by model parameters β and σ2 respectively, are calculated
using the finite difference method.

σ2 =
τ(2)(q)

d log(b)

β = 1 +
τ(1)(q)

d
+

σ2 log(b)(2q − 1)

2
(13)5

The model parameters β and σ2,respectively, represent intermittency and variability
of the cascade generator. Values estimated for model parameters are plotted with
average rainfall amount (large scale forcing) to find an empirical relation.

The modeling of rain fields using only multifractal does not consider the existing
spatial heterogeneity. To improve the output of multifractal model in term of spatial10

heterogeneity, a long-term average of rainfall was included in the modeling process
(Pathirana and Herath, 2002). The theoretical concept of the applied model is that the
rainfall on the segment is a multiplication of two factors namely, parameter of multifrac-
tal modeling (M) and component of rainfall (G) that is invariant over a long aggregation.
Spatial heterogeneity is incorporated in model by developing the field matrix (G) of nor-15

malized long-term monthly average rainfalls using IDW technique. The mathematical
notation of the model is:

Ri ,j = Mi ,jGi ,j Mi ,j =
{
0 forGi ,j = 0, Ri ,j/Gi ,j otherwise

}
(14)

The bias-corrected ECHAM4/OPYC SRES scenarios A2 and B2 are used in the mul-
tiplicative random cascade model for stage, s=7. The branching number (b) and em-20

bedding dimension (d ) for the study are considered as 4 and 2 respectively. The values
of β and σ2 are evaluated by computing the derivatives of τ(q) at q=1, separately for
each month. Outputs from the spatial disaggregation model are analyzed with respect

45

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/35/2007/hessd-4-35-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/35/2007/hessd-4-35-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
4, 35–74, 2007

GCM precipitation for
improved hydrologic

simulation

D. Sharma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

to rainfall amount distribution at different points, spatial distribution of rainfall, area dis-
tribution of residual and spatial autocorrelation of rain amounts to evaluate the model
performance. Spatial autocorrelation is generally used to measure the self-similarity
of rainfall field. The Moran’s “I” and Geary’s “c” indices are considered to measure
the spatial autocorrelation between cells. The value of Moran’s “I” range between –15

and 1 depending on the degree and direction of correlation. Geary’s “c” ranges from
0 (maximum positive autocorrelation) to a positive value for high negative autocorre-
lation. Its expectation in the absence of autocorrelation is 1 (Sokal and Oden, 1978).
Both statistics are defined as:

Moran′s “I ′′ =
(N/S0)

∑
i
∑

jwi j (xi − µ)(xj − µ)∑
i (xi − µ)2

,10

Geary′s “c′′ =
(N − 1)/2S0[

∑
i
∑

jwi j (xi − xj )
2]∑

i (xi − µ)2
, (15)

where µ is the mean of the variable x, wi j are the elements of the spatial weights
matrix, and S0 (sum of the elements of the weights matrix) =

∑
i

∑
j
wi j .

5 Results and discussion

5.1 GCM rainfall bias correction15

The gamma-gamma transformation method is applied to ECHAM4/OPYC3 SRES A2
and B2 precipitation scenarios to reduce the biases from the frequency and amount
when compared with the computed frequency and amount at reference grid nodes
based on the spatially interpolated field level rainfall data. Figure 6 shows the com-
parative trend in mean monthly rainfall amount, frequency and intensity for observed20

data, raw GCM scenarios and bias corrected GCM scenarios at each grid. The raw
GCM scenarios over predict the mean monthly precipitation at grid 1 and under predict
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at grid 2 for rainy season (May–October). In dry season (November–April), raw GCM
scenarios over predict rainfall for both the grids. It is observed that the GCM simulates
continuous rain events (rain>0.1 mm) with similar trend throughout the year. This trend
of simulated rainfall lacks the demarcation in seasons and results in a large difference
in the mean frequency of wet days obtained from model simulation and observed data.5

The mean rainfall intensity is also found to be low when compared to its corresponding
observed value in the study domain except for the period May to August at grid 1. It is
because of high difference in mean rainfall amount compared to mean frequency.

Statistical parameters indicating the correspondence of raw GCM and bias-corrected
GCM (GG-GCM) scenarios with deduced data from field observation for the monthly10

mean rainfall amount are provided in Table 1. The standard deviation of GG-GCM pre-
cipitation data, when compared to that for the raw GCM data, is closer to the standard
deviation deduced for observed values. Also there is increase in the correlation coef-
ficient for all the scenarios in case of GG-GCM compared to raw GCM. For example,
there is increase in correlation coefficient value from 0.32 to 0.64 in A2 scenario of grid15

1. A correlation coefficient of the order of 0.60 to 0.66 is achieved for grid 1, while the
correlation coefficient for grid 2 is in the range of 0.68 to 0.73. The RMSE for grid 1
varies between 2.06 and 2.15, while for grid 2 it varies between 6.0 and 6.45. The effect
of bias-correction method is also checked using MSE skill score, as shown in Fig. 7.
Positive value of the skill score reveals that the corrected data are better than the raw20

data, but the improvements vary with month. The improvement is relatively high during
dry months compared to rainy months. The high skill score in dry months is the effect
of reduction in wet days and in rainfall amount that happened to be the characteristics
of raw GCM data as explained earlier. The GG-transformation is, therefore, effective in
reducing the biases from the raw GCM precipitation when compared with the observed25

data. All these biases are taken as sources of uncertainties in climate change studies.
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5.2 Spatial disaggregation model

The spatial disaggregation method is applied on bias corrected ECHAM4/OPYC3
SRES A2 and B2 precipitation scenarios to improve the resolution and to incorporate
the spatial heterogeneity of rainfall for further use in hydrologic model application

5.2.1 Model parameter5

Spatial disaggregation model performance depends mainly on parameters values (β,
σ2), which capture seasonal precipitation characteristics. β determines the growth
of intermittency in the field (0<β< 1), and σ2 determines variance of the cascade
generator (σ2>0). High β indicates high intermittency while high σ2 indicates peaks in
the field and an increased level of multiscaling. These two parameters are estimated10

separately for each month based on nine years of observed daily rainfall data. Figure 8
shows the trend in precipitation scaling parameters between rainy and dry seasons. In
rainy season, intermittency (β) is low and the variance (σ2) is high as compared to dry
season. The range of σ2 is from 0.02 to 0.104 in both the grids. Positive values of σ2

indicate that the structure of precipitation field is multiscaling in all the months, however15

the extent of multiscaling is less in dry season. Figure 9 shows the existing trend
between the model parameters and the regional daily rainfall amount. The equation of
best-fit line between parameters and average rainfall amount is given with each figure.
Different forms of equation can be used to present this relationship as observed in other
studies (Over and Gupta, 1994; Shrestha et al., 2004). Individual values are binned20

into different classes with N (rainfall events)=10 to reduce the scattered pattern of the
parameters values. β values decrease with increase in rainfall while σ2 values may
remain almost not sensitive to rainfall amount (Over and Gupta, 1996; Jothityangkoon
et al., 2000; Assela and Herath, 2002). σ2 values show a seasonal trend but the trend
is opposite to that of β values. As can be seen in Fig. 9, high rainfall amounts are less25

intermittent on an average and there is less effect of rainfall variability. These two model
parameters are presented as a function of average spatial rainfall amount and both
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show a strong dependency on rainfall amount. Statistics of the two model parameters
for rainy months with SD, mean and coefficient of variation (CV ) are summarized in
Table 2. The results justify the use of parameters derived for the entire study area,
along with their relationship with average rainfall amount, to characterize the random
cascade process. In this study, simulation is done based on different σ2 values for each5

rainy month to capture the variability of rain.

5.2.2 Model validation

The developed disaggregation model is validated by checking its effectiveness in re-
producing the observed rainfall characteristics based on GCM scenarios. The com-
parative study is done taking into consideration the following statistical approaches:10

exceedance probability curves for rainfall amount distribution, spatial autocorrelation to
measure the self-similarity of rain field, area distribution of pixel residual. Also, daily
average rainfall map for the spatial heterogeneity and comparison of observed, raw
GCM simulated rain field with bias-corrected downscaled map are considered to verify
the spatial disaggregation model output.15

Four meteorological stations are selected from different directions (as shown in
Fig. 1) in both grids to develop exceedance probability curves between the observed
and downscaled rainfall. The downscaled rainfall is the value for a pixel of size 2x2 km
in which the selected station is located. Figure 10 shows the exceedance probability
curve for May and September months at selected stations. The model satisfactorily20

reproduces the observed trend and variation of daily rainfall amount in temporal scale,
however, the downscaled rainfall amounts during heavy rainfall events show certain
degree of variation.

Geary and Moran indices calculated for the adjacent cell are given in Table 3.
Moran’s “I” values are positive and close to 1 in almost all cases. Similarly, the Geary’s25

“c” values are positive and close to 0. The spatial correlation (R) values vary from
0.82 to 0.99 for all the rainy months. This is a good indicator of high correlation among
the observed and simulated rain field as mentioned in previous section. Moran’s “I”
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isotropic autocorrelogram is also calculated for variable separation distances. Moran’s
“I” is weighted by separation distance (h) between sample points rather than by simple
adjacency. As shown in Figs. 11a–b, Moran’s “I” autocorrelograms show high spatial
autocorrelation for rainy season in both the grids. In all the months, the Moran’s “I” be-
gin with high positive values and decrease with corresponding increase in lag distance.5

This observation implies that the pixel data in both the grids are regionalized, smooth
and clustered.

The percent area distribution of spatial residuals (observed-downscaled) from the
average monthly observed and simulated rain field is presented in Table 4. The residual
range is divided into seven classes. The values corresponding to these classes, as in10

the table, are the percent area of grid under particular class. Major portion of the two
grids is falling in classes 4 and 5. In grid 1, more than 75% of the total area is in these
two classes. The inference is that the most of the downscaled values are close to the
observed rainfall within the absolute residual of 1 mm/day. The downscaled model over
predicts in grid 1 and under predicts in grid 2. There is a strong correlation between15

magnitude of residual and rainfall amount for both grids. The area with high residual
is scattered over all classes in grid 2 compared to grid 1. This is due to high rainfall
amount, its variability and less number of stations in grid 2 as compared to grid 1.

The existence of spatial heterogeneity in the output of disaggregation model is veri-
fied by comparing the observed and downscaled rain fields. Figure 12 shows the spatial20

heterogeneity for May and September months. The trend in rainfall distribution pattern
is much similar in observed and downscaled rain fields. In grid 2, a large portion of the
grid is showing dark colour (heavy rain) without much variation in rainfall pattern. This
is the reflection of the lack of data availability (Thailand–Myanmar border) and a larger
area of grid 2 is covered by Andaman Sea.25

This spatial disaggregation methodology is further applied for downscaling the raw
GCM data and the spatial distribution pattern is compared to bias-corrected down-
scaled GCM. The average downscaled maps of raw GCM and bias-corrected down-
scaled GCM with their spatial differences for the month of May are shown in Fig. 13a.
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The raw GCM downscaled rain field produces more rain in spatial sense compared to
bias-corrected rain field. The bias-corrected downscaled map is found closer to the
average observed rain field with less residual range variation, as shown in Fig. 13b.
The values of residual are found to be more in the region with high rainfall amount.

In next section, these processed GCM precipitation scenarios are used in hydrologi-5

cal model to compare their skill with respect to observed flow.

6 Application: Upper Ping River Basin

A hydrological model is used to simulate the observed flow at a selected station in
the basin using processed precipitation scenarios. The United States Army Corps of
Engineers (USACE) watershed model HEC-HMS (version 3.0.1) is used as the hydro-10

logic model. The Ping River Basin is modeled with a focus on the upper watershed
that provides inflow to the Bhumibol reservoir. The location map of the upper Ping
River Basin and Bhumibol reservoir is indicated in Fig. 1. A detail description of HEC-
HMS set up can be found in HEC (2005). HEC-GeoHMS v-1.1, as described in HEC
(2003), is used to develop the input basin file for the HEC-HMS and it contains the15

hydrologic and hydraulic parameters of the basin. HYDRO-1K digital elevation model,
developed at the U.S. Geological Survey’s (USGS), is used to prepare the basin file.
HEC-HMS is applied with the deficit and constant loss method keeping the monthly
baseflow constant. MODCLARK transformation is used with Standard Hydrologic Grid
(SHG) size of 2×2 km2 for incorporating the distributed precipitation data for the model.20

The distributed precipitation data for Ping Basin are clipped from the bias-corrected
downscaled scenarios using ArcInfo GIS tool. The program named asc2dssGrid is
used for integration between data storage system (DSS) and ArcInfo through the use
of an intermediate ASCII text file.

The HEC-HMS model is calibrated for the year 1999 and is verified for the year 200025

with observed daily inflow at Bhumibol reservoir. The coefficient of determination (R2),
Nash-Sutcliffe efficiency (EI) and absolute percentage volume error (APVE) are calcu-
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lated to evaluate the model performance. The R2 values for calibration and validation
period are found to be 0.71 and 0.76, respectively. The EI values for calibration and
validation period are found to be 0.65 and 0.75, respectively. The APVE for calibration
and verification period are found to be 1.9% and 9.3%, respectively.

This calibrated model is then used to simulate the flow for two years (1999-2000)5

from four modified precipitation scenarios as given in Table 5. Figure 14 shows the
average monthly inflow to Bhumibol reservoir for the observed condition and the four
scenarios. These simulations illustrate how bias-correction and downscaling methods
are able to capture the essential precipitation features required for better simulation
of flow in the Ping River. It is observed that the raw GCM precipitation (scenario 1)10

misses the peak flow period and hydrograph trend. The peak flows for scenario 1
occur in July and August, while it occurs in November for observed flow. Minimum
monthly flow occurs in March for all scenarios. According to scenario 1, the simulated
flows in three months (June–August) are found to be 4.2 (A2) and 3.5 (B2) times of ob-
served flow. But, scenario 4 reduced it to 1.4 (A2) and 1.3 (B2) times of observed flow.15

This concludes that the simulated hydrologic flows from the downscaled scenarios are
able to capture the peak better than the raw and bias-corrected precipitation scenar-
ios. Scenario 4 (bias-corrected downscaled precipitation) is found to be accurate in
simulating the flow peak and trend as compared to other scenarios. This improve-
ment is a result of incorporating the spatial heterogeneity in precipitation, which retains20

the monthly variability of flow. The large-scale precipitation is able to provide the an-
nual and interseasonal information when it is downscaled at high spatial resolution.
The bias-correction and downscaling techniques can profoundly affect the hydrograph,
which cannot be simulated with raw GCM precipitation.

7 Conclusions25

Precipitation biases and low scale resolution are the two main factors related to appli-
cation of GCM scenarios to assess the impact of climate change on water resources
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at basin level. Gamma-Gamma (GG) transformation and spatial disaggregation model
are applied to the ECHAM4/OPYC3 SRES A2 and B2 precipitation scenarios for use in
high-resolution impact assessment models. Gamma-Gamma transformation method
reduces the biases from raw GCM precipitation whereas the spatial disaggregation
model is used in dealing with coarse resolution problem in GCM. In spatial disaggrega-5

tion model, β values decrease with increase in rainfall while σ2 values remain almost
not sensitive to rainfall amount. The decreasing value of β with increase in average
rainfall amount indicates that the fields with more rainfall are less intermittent. The bias-
corrected downscaled precipitation scenarios show more realistic hydrologic simulation
when compared to observed flow data. The applied approach can be further used for10

other GCM scenarios to make them more applicable for impact assessment research.
Lack of observed rainfall data particularly in Thailand–Myanmar border and larger area
covered by Andaman Sea are the two limiting factors for better estimation of disag-
gregation model parameters. The scattered characteristics of downscaled rain field for
heavy rainfall show the need to develop the disaggregation model by considering the15

different classes of rainfall amount.
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Table 1. Performance of bias-correction method on monthly rainfall amount.

SRES-A2 SRES-B2

SD R RMSE d SD R RMSE d

Grid 1

Observed 2.48 2.48
Raw-GCM 3.28 0.32 3.64 0.74 3.47 0.27 3.87 0.47
GG-GCM 2.52 0.66 2.06 0.81 2.30 0.60 2.15 0.76

Grid 2

Observed 8.48 8.48
Raw-GCM 4.08 0.34 7.02 0.83 4.42 0.32 7.06 0.61
GG-GCM 8.24 0.73 6.00 0.84 8.20 0.68 6.45 0.81

56

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/35/2007/hessd-4-35-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/35/2007/hessd-4-35-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
4, 35–74, 2007

GCM precipitation for
improved hydrologic

simulation

D. Sharma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 2. Statistics of estimated parameters for random cascade model.

Grid 1 Grid 2

σ2 β σ2 β

Month SD Mean CV SD Mean CV SD Mean CV SD Mean CV

May 0.045 0.062 0.002 0.154 0.229 0.024 0.081 0.077 0.007 0.173 0.263 0.030
June 0.044 0.081 0.002 0.130 0.212 0.017 0.063 0.095 0.004 0.107 0.185 0.012
July 0.042 0.077 0.002 0.125 0.201 0.016 0.061 0.104 0.004 0.104 0.176 0.011
August 0.045 0.092 0.002 0.125 0.154 0.016 0.052 0.098 0.003 0.104 0.165 0.011
September 0.043 0.081 0.002 0.136 0.176 0.019 0.068 0.097 0.005 0.120 0.176 0.014
October 0.046 0.063 0.002 0.157 0.228 0.025 0.072 0.076 0.005 0.178 0.266 0.032
Annual 0.084 0.060 0.007 0.158 0.276 0.030 0.075 0.078 0.006 0.171 0.251 0.029
Rainy 0.045 0.076 0.002 0.140 0.201 0.019 0.064 0.094 0.004 0.129 0.192 0.017
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Table 3. Spatial statistics of observed and simulated data relative to adjacent cells.

Grid-1 Grid-2

Month Data Moran’s “I” Geary “c” R Moran’s “I” Geary “c” R

May Simulated 0.936 0.054 0.974 0.024
Observed 0.989 0.001 0.923 0.997 0.001 0.973

June Simulated 0.976 0.016 0.995 0.006
Observed 0.990 0.001 0.946 1.001 0.001 0.993

July Simulated 0.975 0.018 0.986 0.012
Observed 0.991 0.001 0.969 0.998 0.001 0.981

August Simulated 0.976 0.015 0.984 0.011
Observed 0.993 0.002 0.983 0.988 0.003 0.984

September Simulated 0.967 0.025 0.978 0.020
Observed 0.990 0.001 0.972 0.997 0.001 0.972

October Simulated 0.873 0.123 0.911 0.084
Observed 0.991 0.002 0.816 0.992 0.001 0.874
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Table 4. Percent area distribution of pixel residual for rainy months (May–October).

Grid-1 Grid-2

Class Residual* [mm] May June July Aug Sept Oct May June July Aug Sept Oct

1 >3 0.5 0.8 4.9 0.1 0.1 0.0 0.2 9.8 12.0 15.2 4.2 0.0
2 2 to 3 1.4 1.6 3.2 0.8 0.7 0.2 1.7 3.9 5.0 4.5 5.9 0.2
3 1 to 2 8.7 2.5 4.5 3.3 5.3 3.1 9.5 5.8 7.4 5.3 0.8 6.3
4 0 to 1 39.0 41.9 17.8 37.3 43.4 46.5 40.5 12.6 19.4 8.2 22.3 44.7
5 –1 to 0 38.9 49.1 58.2 57.9 44.3 47.8 35.8 35.0 29.3 20.7 34.6 41.0
6 –2 to –1 10.7 3.2 10.1 0.7 5.3 2.4 9.9 18.0 11.1 20.4 16.5 7.4
7 < − 3 0.8 0.9 1.2 0.0 0.9 0.0 2.4 14.9 15.8 25.8 5.7 0.5

*Residual = (observed – downscaled)
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Table 5. Description of processed precipitation scenarios.

Scenario Scenario code Description

Scenario 1 A2R, B2R Raw ECHAM4/OPYC3 daily
precipitation with SRES A2/B2

Scenario 2 A2GG, B2GG Bias-corrected ECHAM4/OPYC3
daily precipitation with SRES A2/B2

Scenario 3 A2R d, B2R d Raw downscaled ECHAM4/OPYC3
daily precipitation with SRES A2/B2

Scenario 4 A2GG d, B2GG d Bias-corrected downscaled ECHAM4/OPYC3
daily precipitation with SRES A2/B2
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Fig. 1. Location map of Ping River Basin.
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Fig. 2. Trend in ECHAM4 SRES A2 and B2 mean temperature from 1990 to 2100 (a) mean
annual temperature variation in two grids (b) Decadal rise in monthly temperature in two grids.
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Fig. 3. Annual variability of the standardized rainfall anomalies for 100 years (2000–2100),
[(ECHAM4 simulated – mean)/standard deviation].
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Fig. 4. Mean monthly rainfall trend of ECHAM4 SRES A2 and B2 scenarios compared with
observed rainfall data (1990–1999) for (a) grid 1, and (b) grid 2.
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Fig. 5. Spatial Disaggregation model (a) representation of disaggregation process at various
stages, and (b) spatial disaggregation of GCM rain field (horizontal plane) with R0= 3.6 mm at
stage s=7.
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Fig. 6. Comparison of observed, raw GCM and bias-corrected GCM scenarios (a) grid 1-A2,
(b) grid 1-B2, (c) grid 2-A2, and (d) grid 2-B2.
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Fig. 7. Monthly variation in MSE skill scores for ECHAM4/OPYC rainfall with bias correction
method.
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Fig. 9. Graph presents the relation of model parameters (β, σ2) with average rainfall (a) grid
1-β, (b) grid 1-σ2, (c) grid 2-β, and (d) grid 2-σ2.
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Fig. 10. Exceedance probability curve of rainfall amount at four rainfall stations from observed
and downscaled data (a) grid 1-May, (b) grid 1-September, (c) grid 2-May, and (d) grid 2-
September.
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(a)

(b)

Fig. 11. Moran’s ‘I ’ isotropic autocorrelogram between ECHAM4 SRES A2 downscaled precip-
itation rain field and observed rain field for (a) grid 1-wet period, and (b) grid 2-wet period.
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(a) (b)

(c) (d)

Fig. 12. Spatial heterogeneity between observed and simulated rain field (a) grid 1- May month,
(b) grid 1- September month, (c) grid 2- May month, (d) grid 2- September month.
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(a)

(b)

Fig. 13. Spatial distribution pattern shows (a) average downscaled maps of raw GCM and bias-
corrected downscaled GCM (b) average observed rain field and bias-corrected downscaled
map.
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Fig. 14. Average monthly inflow to Bhumibol reservoir for the observed condition and the four
modified precipitation scenarios (a) SRES A2, and (b) SRES B2.
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