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Abstract

The amount of sand moving parallel to a coastline forms a prerequisite for many har-
bour design projects. Such information is currently obtained through various empirical
formulae. Despite much research in the past an accurate and reliable estimation of
the rate of sand drift has still remained as a problem. The current study addresses5

this issue through the use of artificial neural networks (ANN). Feed forward networks
were developed to predict the sand drift from a variety of causative variables. The
best network was selected after trying out many alternatives. In order to improve the
accuracy further its outcome was used to develop another network. Such simple two-
stage training yielded most satisfactory results. An equation combining the network10

and a non-linear regression is presented for quick field usage. An attempt was made to
see how both ANN and statistical regression differ in processing the input information.
The network was validated by confirming its consistency with the underlying physical
process.

1 Introduction15

Littoral drift indicates movement of sediments parallel to a coastline caused by the
breaking action of waves. Ocean waves attacking the shoreline at an angle produce
a current parallel to the coast. Such longshore current is responsible for the long-
shore movement of the sediment (Komar, 1976). Littoral drift poses severe problems
in coastal and harbour operations since it results in siltation of deeper navigation chan-20

nels so that ships cannot enter or leave the harbour area. An accurate estimation of
the drift is needed in order to know the amount of excavation required so that corre-
sponding budgetary provisions could be made in advance. Unfortunately this is easier
said than done because the underlying physical process is too complex to model in the
form of mathematical equations – either parametric or differential. Despite this, work-25

able empirical formulae that relate the drift to a set of causative variables are currently

2498

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/2497/2007/hessd-4-2497-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/2497/2007/hessd-4-2497-2007-discussion.html
http://www.egu.eu


HESSD
4, 2497–2519, 2007

Prediction of littoral
drift with artificial
neural networks

A. K. Singh, M. C. Deo,
and V. S. Kumar

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

in use. They are based on a collection of measurements made in the field or on a
hydraulic model followed by a curve fitting exercise. The technique of fitting normally
employed is non-linear statistical regression. However, it is well known that soft tools
such as artificial neural networks (ANN) may provide a better alternative to the statis-
tical methods (see e.g. ASCE Task Committee, 2000; Kambekar and Deo, 2003) and5

hence a variety of investigators have applied the technique of ANNs to solve problems
in coastal engineering. These works typically include (a) wave height predictions (Deo
and Naidu, 1999; Tsai et al., 2002; Makarynskyy, 2004; Altunkaynak and Ozger, 2004;
Jain and Deo, 2004) (b) evaluating tidal levels and timings of high and low water (Deo
and Chaudhari, 1998; Lee, 2004) (c) predicting sea levels (Vaziri, 1997; Cox, 2002) (d)10

forecasting wind speeds (Lee and Jeng, 2002; More and Deo, 2003) (e) establishing
estuarine characteristics Grubert (1995) and (f) predicting coastal currents (Babovic
et al., 2001) and (g) other met-ocean parameters (Krasnopolsky and Chalikov, 2002;
Refaat, 2001). A comprehensive review of ANN applications in related areas can be
found in Jain and Deo (2006). The application of ANNs, however, generally suffers15

from problems such as the lack of guarantee of success, arbitrary accuracy, and diffi-
cult choices related to training schemes, architectures, learning algorithms and control
parameters. Any new application of ANNs that addresses these issues therefore de-
serves the attention of the potential user community. The current study is directed
along this line and discusses an application of ANNs to determine littoral drift. Novel20

methods of network training are employed. An equation combining the ANN and the
non-linear regression is presented for those desirous of making hand calculations. An
attempt is made to see how both ANNs and statistical regression differ in processing
the input information. The consistency of the network against the underlying physical
process is then checked.25
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2 Network development

2.1 Training schemes

Most of the previous applications of ANNs to water flow has involved the use of feed-
forward networks (ASCE Task Committee, 2000). The current study was also based
on the same network architecture. Both a multi-layered perceptron network (MLP) as5

well as its variant, the radial basis function (RBF) was used. Training of the MLP was
achieved with the help of alternative learning schemes such as Conjugate Gradient
Polak-Rebiere Update (CGP), Powell Beale Restarts (CGB), Scaled Conjugate Gradi-
ent (SCG), the One Step Secant algorithm (OSS) and Resilient Backpropagation (RP).
The reader is referred to Demuth et al. (1998) in order to understand details of these10

training algorithms.

2.2 The database used

The network was trained with the help of field observations. The location belonged to
a four-km stretch of the coast off Karwar along the western coast of India. These field
measurements have been collected by the National Institute of Oceanography at Goa15

over a period of four months starting 5 February 1990. The measurements of the sig-
nificant wave height and average zero cross wave period along with the wave direction
corresponding to the spectral peak were made with the help of a wave rider buoy. The
breaking wave height and corresponding angle were derived as per the procedure in
Skovgaard et al. (1975) and Weishar and Byrne (1978) and also visually confirmed.20

The width of the surf zone was measured daily using a graduated rope. The average
longshore currents were measured daily (in terms of the distance covered in two min-
utes) using the Rhodanine-B type dye injected at the trap locations. The sediments
were measured along a cross section of the surf zone at six stations at the same time
and at a number of points vertically at each station. The suspended load was collected25

by mesh traps with circular openings and the bed load was gathered by streamer traps.
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The procedure of Kraus (1987) was used to determine the total sediment transport and
this was based on the trapezoidal rule. A standard sieve analysis gave the median size
distribution.

2.3 Network formulation

The phenomenon of littoral drift is influenced by a variety of causative factors - some5

of which could be of importance while others may be less influential in determining the
rate of drift. The Shore Protection Manual (1984) as well as the Coastal Engineering
Manual (2002) list these variables as incident significant wave height, Hs, breaking
wave height Hb, significant or average zero cross period, Tz, angle of the wave at the
time of breaking, αb, width of the wave breaking (surf) zone, W , sediment size, d50, and10

longshore current, V . A network with these parameters as input and the rate of drift, Q,
as output, was considered. In total 81 input-output patterns were available through the
measured data out of which 75 percent were randomly selected for training. Such a
trained network was tested with the help of the remaining 25 percent of the patterns. It
should be noted that the collection of these parameters simultaneously in fierce oceanic15

conditions is a difficult task due to the variety of instruments and equipment involved,
and hence most of the time the investigators were only able to work with a limited
sample size. An alternative to this is to resort to laboratory measurements. However,
this is always associated with problems such as scale effects and ignorance of complex
real sea conditions.20

Out of all the causative variables listed above some are of primary importance while
others are secondary. A sensitivity analysis of the inputs was done using the pruning
method in which all causative variables were considered. The network was trained and
the testing performance in terms of the various error measures described subsequently
was noted. Thereafter each input was omitted one by one and the training and testing25

was repeated. This exercise revealed that exclusion of any of the parameters of Hs,
Tz, Hb and αb resulted in low performance. However, it was also noted that in addition
to these, if we include W in preference to V and d50 then the best performance is
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obtained. Table 1 shows the resulting performance over the testing pairs (when the
best learning algorithm was employed) in terms of the multiple error criteria of the
coefficient of correlation (r), root mean squared error (rmse) and mean absolute error
(mae).

From Table 1 it is clear that a network that includes the width of the surf zone, W , in5

addition to that of Hs, Tz, Hb, and αb gives the best accuracy for testing. However, it
should be mentioned that this accuracy resulted after resorting to training by alternative
schemes such as SCG, RP, OSS, CGP, CGB and not by adoption of any one of these
randomly.

The number of hidden nodes in case of the above network (inputs: Hs, Tz, Hb, αb, W )10

was 6. This was decided through trials conducted by increasing the number of hidden
nodes one at a time, noting the performance of the trained network using the above
listed error statistics, and stopping when such performance did not change with further
addition of any the hidden nodes. A scatter plot checked the testing performance of
this network (Fig. 1), which further qualitatively indicates a satisfactory result.15

3 Regression models

In order to check how the neural network performs vis--vis the statistical regression,
three new regression equations (linear multiple (LM) as well as non-linear (NL1 and
NL2)) were fitted to the training data set. The resulting equations respectively are:

Q = −18.7152 − 13.379Hs − 0.3759Tz + 39.4895Hb20

+ 0.3455αb + 0.2340W (1)

Q = 0.28H−0.7693
s T−0.0704

z H2.7935
b α0.0005

b (2)

lnQ = −0.6566 − 1.2978Hs − 0.026Tz + 3.5802Hb25

+ 0.0016αb + 0.0283W (3)
2502
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The last 3 rows of Table 2 show the testing performance of these regression fits vis-à-
vis the ANN, which confirms the necessity of employing ANNs for this problem in place
of the traditional regression (higher “r” and lower “rmse” and “mae”).

The selected network thus yielded a higher level of accuracy compared with the
traditional regression models; the major underlying reasons were that ANNs represent5

a model-free estimation procedure as well as the flexibility in the mapping process
involved.

3.1 Traditional formulae

The above study discussed how the network performed vis-à-vis the derived statistical
regression models based on the data collected by the authors. Traditionally, however,10

most of the harbour and coast development works in India are carried out by using an
empirical equation known as the Coastal Engineering Research Centre (CERC) for-
mula and also by the Walton and Bruno equation. The CERC formula (Shore Protec-
tion Manual, 1984) assumes that the drift or Q is proportional to the longshore energy
flux Pl , i.e.15

Q = KPl (4)

where K is a dimensionless constant. The flux, Pl , in turn depends on the sediment
characteristics (such as mass density, ρs and porosity, p), the breaking wave height Hb
and its angle αb with the shore and the wave period T . Specifically

Pl =
1

64π
[(ρs − ρw )g(1 − p)]−1ρwg

2H2
bT sin 2αb (5)20

In the above equation, ρw is the mass density of seawater and g is the acceleration
due to gravity.

The Walton and Bruno formula on the other hand relies more on the derived param-
eters rather than the actual measured ones. The introduction of the surf zone width is

2503

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/2497/2007/hessd-4-2497-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/2497/2007/hessd-4-2497-2007-discussion.html
http://www.egu.eu


HESSD
4, 2497–2519, 2007

Prediction of littoral
drift with artificial
neural networks

A. K. Singh, M. C. Deo,
and V. S. Kumar

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

also a specialty of this formula. Accordingly the longshore flux is given by:

Pls = 0.008(
v
v0

[(ρs − ρw )g(1 − p)]−1ρwHbWV (6)

The above equation is based on the assumption that the friction factor is 0.005 and
that the theoretical non-dimensional longshore current velocity (v /v0) is calculated with
a mixing parameter of 40%. Equation (6) also uses the actual longshore current speed5

V .
The drift predicted by the above formulae was compared with its corresponding value

actually measured in the field for the testing data conditions. Figure 2 shows the out-
come. It clearly indicates that the field observations of the rate of sediment transport
are entirely different than the corresponding values suggested by the two traditional for-10

mulae. The latter even indicated a wrong direction (i.e. negative values) of the littoral
drift at times. The empirical constants used in these earlier derived equations were
determined on the basis of measurements made at some alien locations where the
coastal environment and the geomorphology as well as the topographic characteristics
are very different from those found at the Indian site.15

The unacceptable predictions obtained in the above exercise further confirm the ne-
cessity of using the ANN or ANN-regression hybrid models (described later) developed
in this study.

4 Extended two-stage network

In order to increase the accuracy of the network prediction further, the network out-20

put (created with the following architecture: 5-6-1) was used as the input to another
network. This additional network had one input node, one output node and two hidden
nodes, selected from the trials mentioned earlier and shown in Fig. 3. Such a two-stage
network, where a cause-effect network carries out the basic function approximation in
the beginning and the recycler network later does the fine-tuning, was trained with the25
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help of the training pairs and tested with the help of the testing pairs, as earlier. The
testing results (Fig. 4) indicated that such a two-stage network performs much better
than the earlier single-stage one, with “r” as high as 0.913 and rmse and mae as low
as 3.006 (kg/sec) and 2.222 (kg/sec), respectively.

The use of two networks in this way seems to work better than that of an equiva-5

lent single network with three or so hidden layers since, in the case of the two-stage
network, a pool of hidden neurons are allowed to learn independently and further by
capturing the finer details left out after the basic learning process of the main network.

5 ANN-regression hybrid model

In the light of the fact that the NL1 regression was next in line in terms of the testing per-10

formance (Table 2) and that for quick field applications or for making hand calculations
an equation would be preferred by the practitioners rather than the complex matrix of
trained weight and bias, a new and simple network with one-input node belonging to
the littoral drift rate, Q, given by Eq. (2), or NL1 model, and one output node belonging
to the output value of Q was trained and further tested on the basis of the testing data15

set. The result was encouraging (r=0.832, rmse=4.349 (kg/sec), mae=3.411) although
not as satisfactory as the two-stage ANN, and this is given in an equation form below:

Q = f (−0.0555f (−16.8QNL1 + 16.8)

+ 0.5738f (16.8QNL1 − 8.4)

+ 0.312f (16.8QNL1 − 0.9999) (7)20

where QNL1 is the output from Eq. (2), and in general for any x,

f (x) = [1 + exp(−x)]−1 (8)
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6 Consistency in following the physical process

The ANN developed by training cannot be put into practice unless its performance af-
ter training is found to be consistent with the underlying physical process. This may
be viewed as especially necessary when one works with a rather limited sample size.
A parametric study was therefore performed in which one input variable was varied5

over its full range keeping all other input quantities as constant. The idea was that the
variation drawn in this way must match with the one that can be expected from the
known physics of the underlying process. Thus an increase in the magnitude of the
wave height should yield larger drift owing to an increase in the resulting longshore
current. This can be clearly seen in Fig. 5a and Fig. 6a which indicate what happens to10

the trained network when significant wave heights and breaking wave heights become
higher. Many studies in the past (e.g., Narasimhan and Deo, 1979) have shown that
there is only a weak correlation between the wave height Hs and the wave period Tz.
A given wave height can occur in association with any value of the wave period and
thus can be associated with a range of values of the wave period. However, as Hs15

starts increasing from a low value, Tz also increases, but this trend continues only up
to a certain higher value of Hs after which a reverse trend is observed. Thus very high
Hs values usually correspond to some middle range of Tz values. Higher Hs would
mean larger drifts and thus it can be guessed that the maximum drift would correspond
to some middle range of Tz values. This relationship is confirmed in Fig. 7. Similarly20

higher values of the breaking angle, αb, should mean a lower longshore current com-
ponent and hence a smaller drift. A clear tendency towards this is not seen in Fig. 8
(although a weak trend may be speculated). This may probably be due to the limited
range of αb values involved during the period of data collection. The developed net-
work can thus be seen to be generally consistent with the physical process of coastal25

sediment movement.
In order to understand why the ANN performed better than the regression, a para-

metric variation of Q against all causative variables was studied. Figure 5a and b as
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well as Fig. 6a and b show examples of how the trained network and the regression
Eq. (2) processed the input of increasing Hs and Hb values, respectively. The rela-
tively low spread of points around the fitted line in the case of the regression (Fig. 5b
and Fig. 6b) indicates that the regression performs rigid approximations with changing
inputs compared with the ANN and therefore has resulted in a lower accuracy.5

7 Conclusions

Feedforward networks were developed to predict the rate of littoral drift from a variety of
causative variables. The use of a two-stage network system in which a regular network
trained in the best possible manner first carries out a cause-effect modeling and an-
other one later on fine tunes its outcome resulted in improved accuracy of predictions.10

New regression Eqs. (1) to (3) derived in this study can also be used to forecast the
value of the littoral drift although with less accuracy then the ANN. An Eq. (7) combin-
ing the ANN and the non-linear regression is presented for quick field usage, although
it may not predict the drift with accuracy equal to that of the ANN. An analysis show-
ing how both ANNs and statistical regression process the input is also presented. It15

is found that the regression performs rigid approximations with changing inputs com-
pared with the ANN and as a result, its accuracy drops. The developed network was
found to be consistent with the underlying physical process and generally followed ex-
pected trends in the variation of the drift with an increase in the values of causative
parameters.20
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Table 1. Effect of changing the inputs on the testing data set.

Input Training r rmse mae
algorithm (kg/sec) (kg/sec)

Hs, Tz, Hb, αb, W CGB 0.867 3.664 2.929
Hs, Tz, Hb, αb, V RP 0.793 4.443 3.510
Hs, Tz, Hb, αb, d50 RP 0.831 5.137 4.390
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Table 2. Comparison of the ANN and regression results on the testing data set.

Scheme r rmse mae
(kg/sec) (kg/sec)

ANN 0.867 3.664 2.929
LM 0.699 5.356 4.773
NL1 0.799 5.271 3.935
NL2 0.764 5.615 4.019
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Fig. 1. Predicted versus observed drift (traditional ANN)

network using the above listed error statistics, and stopping
when such performance did not change with further addition
of any the hidden nodes. A scatter plot checked the testing
performance of this network (Figure 1), which further quali-
tatively indicates a satisfactory result.

3 Regression Models

In order to check how the neural network performs vis--vis
the statistical regression, three new regression equations (lin-
ear multiple (LM) as well as non-linear (NL1 and NL2)) were
fitted to the training data set. The resulting equations respec-
tively are:

Q = −18.7152− 13.379Hs − 0.3759Tz + 39.4895Hb

+ 0.3455αb + 0.2340W (1)

Q = 0.28H−0.7693
s T−0.0704

z H2.7935
b α0.0005

b (2)

lnQ = −0.6566− 1.2978Hs − 0.026Tz + 3.5802Hb

+ 0.0016αb + 0.0283W (3)

The last 3 rows of Table 2 show the testing performance
of these regression fits vis--vis the ANN, which confirms the
necessity of employing ANNs for this problem in place of
the traditional regression (higher r and lower rmse and mae).

The selected network thus yielded a higher level of ac-
curacy compared with the traditional regression models; the
major underlying reasons were that ANNs represent a model-
free estimation procedure as well as the flexibility in the map-
ping process involved.

Table 2. Comparison of the ANN and regression results on the
testing data set.

Scheme r rmse mae
(kg/sec) (kg/sec)

ANN 0.867 3.664 2.929
LM 0.699 5.356 4.773
NL1 0.799 5.271 3.935
NL2 0.764 5.615 4.019

3.1 Traditional Formulae

The above study discussed how the network performed vis--
vis the derived statistical regression models based on the data
collected by the authors. Traditionally, however, most of the
harbour and coast development works in India are carried out
by using an empirical equation known as the Coastal Engi-
neering Research Centre (CERC) formula and also by the
Walton and Bruno equation. The CERC formula (Shore Pro-
tection Manual, 1984) assumes that the drift orQ is propor-
tional to the longshore energy fluxPl, i.e.

Q = KPl (4)

whereK is a dimensionless constant. The flux,Pl, in turn
depends on the sediment characteristics (such as mass den-
sity, ρs and porosity,p), the breaking wave heightHb and its
angleαb with the shore and the wave periodT . Specifically

Pl =
1

64π
[(ρs − ρw)g(1− p)]−1ρwg2H2

b T sin 2αb (5)

In the above equation,ρw is the mass density of seawater
andg is the acceleration due to gravity.

The Walton and Bruno formula on the other hand relies
more on the derived parameters rather than the actual mea-
sured ones. The introduction of the surf zone width is also a
specialty of this formula. Accordingly the longshore flux is
given by:

Pls = 0.008(
v

v0
[(ρs − ρw)g(1− p)]−1ρwHbWV (6)

The above equation is based on the assumption that
the friction factor is 0.005 and that the theoretical non-
dimensional longshore current velocity (v/v0) is calculated
with a mixing parameter of 40%. Equation (6) also uses the
actual longshore current speedV .

The drift predicted by the above formulae was compared
with its corresponding value actually measured in the field
for the testing data conditions. Figure 2 shows the outcome.
It clearly indicates that the field observations of the rate of

www.copernicus.org/EGU/hess/hess/0000/0001/ Hydrology and Earth System Sciences, 0000, 0001–6, 2007

Fig. 1. Predicted versus observed drift (traditional ANN).
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Fig. 2. Comparison of empirical formulae with observed drift

sediment transport are entirely different than the correspond-
ing values suggested by the two traditional formulae. The
latter even indicated a wrong direction (i.e. negative values)
of the littoral drift at times. The empirical constants used
in these earlier derived equations were determined on the
basis of measurements made at some alien locations where
the coastal environment and the geomorphology as well as
the topographic characteristics are very different from those
found at the Indian site.

The unacceptable predictions obtained in the above exer-
cise further confirm the necessity of using the ANN or ANN-
regression hybrid models (described later) developed in this
study.

4 Extended Two-stage Network

In order to increase the accuracy of the network prediction
further, the network output (created with the following archi-
tecture: 5-6-1) was used as the input to another network. This
additional network had one input node, one output node and
two hidden nodes, selected from the trials mentioned earlier
and shown in Figure 3. Such a two-stage network, where a
cause-effect network carries out the basic function approxi-
mation in the beginning and the recycler network later does
the fine-tuning, was trained with the help of the training pairs
and tested with the help of the testing pairs, as earlier. The
testing results (Figure 4) indicated that such a two-stage net-
work performs much better than the earlier single-stage one,
with r as high as 0.913 and rmse and mae as low as 3.006
(kg/sec) and 2.222 (kg/sec), respectively.

The use of two networks in this way seems to work better
than that of an equivalent single network with three or so
hidden layers since, in the case of the two-stage network, a
pool of hidden neurons are allowed to learn independently

Fig. 3. The two-stage network

Fig. 4. Predicted v/s observed drift (revised ANN)

and further by capturing the finer details left out after the
basic learning process of the main network.

5 ANN-Regression Hybrid Model

In the light of the fact that the NL1 regression was next in
line in terms of the testing performance (Table 2) and that for
quick field applications or for making hand calculations an
equation would be preferred by the practitioners rather than
the complex matrix of trained weight and bias, a new and
simple network with one-input node belonging to the littoral
drift rate, Q, given by equation (2), or NL1 model, and one
output node belonging to the output value of Q was trained
and further tested on the basis of the testing data set. The
result was encouraging (r = 0.832, rmse = 4.349 (kg/sec),
mae = 3.411) although not as satisfactory as the two-stage
ANN, and this is given in an equation form below:

Q = f(−0.0555f(−16.8QNL1 + 16.8)
+ 0.5738f(16.8QNL1 − 8.4)

Hydrology and Earth System Sciences, 0000, 0001–6, 2007 www.copernicus.org/EGU/hess/hess/0000/0001/

Fig. 3. The two-stage network.
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Fig. 2. Comparison of empirical formulae with observed drift

sediment transport are entirely different than the correspond-
ing values suggested by the two traditional formulae. The
latter even indicated a wrong direction (i.e. negative values)
of the littoral drift at times. The empirical constants used
in these earlier derived equations were determined on the
basis of measurements made at some alien locations where
the coastal environment and the geomorphology as well as
the topographic characteristics are very different from those
found at the Indian site.

The unacceptable predictions obtained in the above exer-
cise further confirm the necessity of using the ANN or ANN-
regression hybrid models (described later) developed in this
study.

4 Extended Two-stage Network

In order to increase the accuracy of the network prediction
further, the network output (created with the following archi-
tecture: 5-6-1) was used as the input to another network. This
additional network had one input node, one output node and
two hidden nodes, selected from the trials mentioned earlier
and shown in Figure 3. Such a two-stage network, where a
cause-effect network carries out the basic function approxi-
mation in the beginning and the recycler network later does
the fine-tuning, was trained with the help of the training pairs
and tested with the help of the testing pairs, as earlier. The
testing results (Figure 4) indicated that such a two-stage net-
work performs much better than the earlier single-stage one,
with r as high as 0.913 and rmse and mae as low as 3.006
(kg/sec) and 2.222 (kg/sec), respectively.

The use of two networks in this way seems to work better
than that of an equivalent single network with three or so
hidden layers since, in the case of the two-stage network, a
pool of hidden neurons are allowed to learn independently

Fig. 3. The two-stage network

Fig. 4. Predicted v/s observed drift (revised ANN)

and further by capturing the finer details left out after the
basic learning process of the main network.

5 ANN-Regression Hybrid Model

In the light of the fact that the NL1 regression was next in
line in terms of the testing performance (Table 2) and that for
quick field applications or for making hand calculations an
equation would be preferred by the practitioners rather than
the complex matrix of trained weight and bias, a new and
simple network with one-input node belonging to the littoral
drift rate, Q, given by equation (2), or NL1 model, and one
output node belonging to the output value of Q was trained
and further tested on the basis of the testing data set. The
result was encouraging (r = 0.832, rmse = 4.349 (kg/sec),
mae = 3.411) although not as satisfactory as the two-stage
ANN, and this is given in an equation form below:

Q = f(−0.0555f(−16.8QNL1 + 16.8)
+ 0.5738f(16.8QNL1 − 8.4)

Hydrology and Earth System Sciences, 0000, 0001–6, 2007 www.copernicus.org/EGU/hess/hess/0000/0001/

Fig. 4. Predicted v/s observed drift (revised ANN).
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+ 0.312f(16.8QNL1 − 0.9999) (7)

whereQNL1 is the output from equation (2), and in gen-
eral for anyx,

f(x) = [1 + exp(−x)]−1 (8)

6 Consistency in Following the Physical Process

The ANN developed by training cannot be put into practice
unless its performance after training is found to be consistent
with the underlying physical process. This may be viewed
as especially necessary when one works with a rather limited
sample size. A parametric study was therefore performed
in which one input variable was varied over its full range
keeping all other input quantities as constant. The idea was
that the variation drawn in this way must match with the one
that can be expected from the known physics of the underly-
ing process. Thus an increase in the magnitude of the wave
height should yield larger drift owing to an increase in the
resulting longshore current. This can be clearly seen in Fig-
ure 5a and Figure 6a which indicate what happens to the
trained network when significant wave heights and break-
ing wave heights become higher. Many studies in the past
(e.g., Narasimhan and Deo, 1979) have shown that there is
only a weak correlation between the wave height Hs and the
wave period Tz. A given wave height can occur in associa-
tion with any value of the wave period and thus can be asso-
ciated with a range of values of the wave period. However, as
Hs starts increasing from a low value, Tz also increases, but
this trend continues only up to a certain higher value of Hs
after which a reverse trend is observed. Thus very high Hs
values usually correspond to some middle range of Tz val-
ues. Higher Hs would mean larger drifts and thus it can be
guessed that the maximum drift would correspond to some
middle range of Tz values. This relationship is confirmed
in Figure 7. Similarly higher values of the breaking angle,
ab, should mean a lower longshore current component and
hence a smaller drift. A clear tendency towards this is not
seen in Figure 8 (although a weak trend may be speculated).
This may probably be due to the limited range of ab values
involved during the period of data collection. The developed
network can thus be seen to be generally consistent with the
physical process of coastal sediment movement.

In order to understand why the ANN performed better
than the regression, a parametric variation of Q against all
causative variables was studied. Figure 5a and b as well
as Figure 6a and b show examples of how the trained net-
work and the regression equation (2) processed the input of
increasingHs and Hb values, respectively. The relatively
low spread of points around the fitted line in the case of the
regression (Figure 5b and Figure 6b) indicates that the re-
gression performs rigid approximations with changing inputs

Fig. 5. (a) Input (Hs) processing by the ANN (b) Input (Hs) pro-
cessing by regression

Fig. 6. (a) Input (Hb) processing by the ANN (b) Input (Hb) pro-
cessing by regression

compared with the ANN and therefore has resulted in a lower
accuracy.

7 Conclusions

Feedforward networks were developed to predict the rate of
littoral drift from a variety of causative variables. The use
of a two-stage network system in which a regular network
trained in the best possible manner first carries out a cause-
effect modeling and another one later on fine tunes its out-
come resulted in improved accuracy of predictions. New re-
gression equations (1) to (3) derived in this study can also
be used to forecast the value of the littoral drift although
with less accuracy then the ANN. An equation (7) combin-
ing the ANN and the non-linear regression is presented for
quick field usage, although it may not predict the drift with
accuracy equal to that of the ANN. An analysis showing how
both ANNs and statistical regression process the input is also
presented. It is found that the regression performs rigid ap-
proximations with changing inputs compared with the ANN
and as a result, its accuracy drops. The developed network
was found to be consistent with the underlying physical pro-
cess and generally followed expected trends in the variation
of the drift with an increase in the values of causative param-
eters.

www.copernicus.org/EGU/hess/hess/0000/0001/ Hydrology and Earth System Sciences, 0000, 0001–6, 2007

Fig. 5. (a) Input (Hs) processing by the ANN (b) Input (Hs) processing by regression.
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+ 0.312f(16.8QNL1 − 0.9999) (7)

whereQNL1 is the output from equation (2), and in gen-
eral for anyx,

f(x) = [1 + exp(−x)]−1 (8)

6 Consistency in Following the Physical Process

The ANN developed by training cannot be put into practice
unless its performance after training is found to be consistent
with the underlying physical process. This may be viewed
as especially necessary when one works with a rather limited
sample size. A parametric study was therefore performed
in which one input variable was varied over its full range
keeping all other input quantities as constant. The idea was
that the variation drawn in this way must match with the one
that can be expected from the known physics of the underly-
ing process. Thus an increase in the magnitude of the wave
height should yield larger drift owing to an increase in the
resulting longshore current. This can be clearly seen in Fig-
ure 5a and Figure 6a which indicate what happens to the
trained network when significant wave heights and break-
ing wave heights become higher. Many studies in the past
(e.g., Narasimhan and Deo, 1979) have shown that there is
only a weak correlation between the wave height Hs and the
wave period Tz. A given wave height can occur in associa-
tion with any value of the wave period and thus can be asso-
ciated with a range of values of the wave period. However, as
Hs starts increasing from a low value, Tz also increases, but
this trend continues only up to a certain higher value of Hs
after which a reverse trend is observed. Thus very high Hs
values usually correspond to some middle range of Tz val-
ues. Higher Hs would mean larger drifts and thus it can be
guessed that the maximum drift would correspond to some
middle range of Tz values. This relationship is confirmed
in Figure 7. Similarly higher values of the breaking angle,
ab, should mean a lower longshore current component and
hence a smaller drift. A clear tendency towards this is not
seen in Figure 8 (although a weak trend may be speculated).
This may probably be due to the limited range of ab values
involved during the period of data collection. The developed
network can thus be seen to be generally consistent with the
physical process of coastal sediment movement.

In order to understand why the ANN performed better
than the regression, a parametric variation of Q against all
causative variables was studied. Figure 5a and b as well
as Figure 6a and b show examples of how the trained net-
work and the regression equation (2) processed the input of
increasingHs and Hb values, respectively. The relatively
low spread of points around the fitted line in the case of the
regression (Figure 5b and Figure 6b) indicates that the re-
gression performs rigid approximations with changing inputs

Fig. 5. (a) Input (Hs) processing by the ANN (b) Input (Hs) pro-
cessing by regression

Fig. 6. (a) Input (Hb) processing by the ANN (b) Input (Hb) pro-
cessing by regression

compared with the ANN and therefore has resulted in a lower
accuracy.

7 Conclusions

Feedforward networks were developed to predict the rate of
littoral drift from a variety of causative variables. The use
of a two-stage network system in which a regular network
trained in the best possible manner first carries out a cause-
effect modeling and another one later on fine tunes its out-
come resulted in improved accuracy of predictions. New re-
gression equations (1) to (3) derived in this study can also
be used to forecast the value of the littoral drift although
with less accuracy then the ANN. An equation (7) combin-
ing the ANN and the non-linear regression is presented for
quick field usage, although it may not predict the drift with
accuracy equal to that of the ANN. An analysis showing how
both ANNs and statistical regression process the input is also
presented. It is found that the regression performs rigid ap-
proximations with changing inputs compared with the ANN
and as a result, its accuracy drops. The developed network
was found to be consistent with the underlying physical pro-
cess and generally followed expected trends in the variation
of the drift with an increase in the values of causative param-
eters.
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Fig. 6. (a) Input (Hb) processing by the ANN (b) Input (Hb) processing by regression.
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Fig. 7. .Variation of the drift with wave period in the ANN

Fig. 8. Variation of the drift with the breaking angle in the ANN
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