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Abstract

Extreme hydro-meteorological events have become the focus of more and more stud-
ies in the last decade. Due to the complexity of the spatial pattern of changes in
precipitation processes, it is still hard to establish a clear view of how precipitation has
changed and how it will change in the future. In the present study, changes in extreme5

precipitation and streamflow processes in the Dongjiang River Basin in southern China
are investigated. It was shown that little change is observed in annual extreme pre-
cipitation in terms of various indices, but some significant changes are found in the
precipitation processes on a monthly basis. The result indicates that when detect-
ing climate changes, besides annual indices, seasonal variations in extreme events10

should be considered as well. Despite of little change in annual extreme precipitation
series, significant changes are detected in several annual extreme flood flow and low-
flow series, mainly at the stations along the main channel of Dongjiang River, which
are affected significantly by the operation of several major reservoirs. The result high-
lights the importance of evaluating the impacts of human activities in assessing the15

changes of extreme streamflows. In addition, three non-parametric methods that are
not-commonly used by hydro-meteorology community, i.e., Kolmogorov–Smirnov test,
Levene’s test and quantile test, are introduced and assessed by Monte Carlo simula-
tion in the present study to test for changes in the distribution, variance and the shift
of tails of different groups of dataset. Monte Carlo simulation result shows that, while20

all three methods work well for detecting changes in two groups of data with large data
size (e.g., over 200 points in each group) and big difference in distribution parameters
(e.g., over 100% increase of scale parameter in Gamma distribution), none of them are
powerful enough for small data sets (e.g., less than 100 points) and small distribution
parameter difference (e.g., 50% increase of scale parameter in Gamma distribution).25
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1 Introduction

Extreme meteorological and hydrological events may have huge impacts on human
society. With significant global warming, it seems that the occurrence of extreme events
gets more frequent, and therefore more and more efforts are put on the research of
extreme events in various relevant fields in the last decade.5

It is widely conceived that with the increase of temperature, the water cycling process
will be speeded up, which in consequence will possibly result in the increase of precip-
itation amount and intensity. Many outputs from Global climate models (GCMs) indi-
cate the possibility of substantial increases in the frequency and magnitude of extreme
daily precipitation (e.g., Gordon et al., 1992Fowler and Hennessy, 1995; Hennessy et10

al., 1997; McGuffie, 1999). The increase also shows itself in observed data. Karl et
al. (1995) found that the contribution to total annual precipitation of 1-day precipitation
events exceeding 50.8 mm (2.0 in.) increased from about 9% in the 1910s to about 11%
in the 1980s and 1990s. Further on, Karl and Knight (1998) found that the 8% increase
in precipitation across the contiguous United States since 1910 is reflected primarily in15

heavy and extreme daily precipitation events. The results of Kunkel et al. (1999) con-
firm that the national trend in short duration (1–7 days) extreme precipitation events
for the United States is upward at a rate of 3% decade−1 for the period 1931–1996. In
Australia, much of the country has experienced increases in heavy precipitation events,
except in southwestern Australia where there has been a decrease in both rain days20

and heavy precipitation events (Suppiah and Hennessy 1998; Haylock and Nicholls,
2000). In the United Kingdom increases in heavy wintertime events and decreases in
heavy summertime events have been found (Osborn et al., 1999). New et al. (2001)
show that, on the basis of gridded observed monthly precipitation data, global land
precipitation (excluding Antarctica) has increased by about 9 mm over the twentieth25

century, and data from a number of countries provide evidence of increased intensity
of daily precipitation, generally manifested through increased frequency of wet days
and an increased proportion of total precipitation occurring during the heaviest events.
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Roy and Balling (2004) found that, in general, evidence exists for an increase in the fre-
quency of extreme precipitation events in India over the period 1910 to 2000. According
to the observed data over half of the land area of the globe, there is a widespread in-
crease in the frequency of very heavy precipitation in the mid-latitudes during the past
50 to 100 yr (Groisman et al., 2005). The results of Zhai et al. (2005) indicate that while5

there is little trend in total precipitation for China as a whole, significant increases in
extreme precipitation have been found in western China, the mid-lower reaches of the
Yangtze River, and parts of the southwest and southern China coastal areas.

While in many areas the increased intensity of heavy rainfall is observed, in quite
a number of other areas and other studies little significant increase is observed. For10

instance, Nicholls et al. (2000) calculated various indices for monitoring variations in
Australian climate extremes, and showed that, most of the trends in the various in-
dices of climate extremes investigated were relatively weak and lacked statistical signif-
icance, and no clear trend has emerged in the percentage of Australia in extreme rain-
fall (drought or wet) conditions, since 1910. Zhang et al. (2001) showed that there has15

been no long-term trend in the frequency or intensity of extreme precipitation events in
Canada during the 20th century. Koning and Franses (2005) show that no statistically
significant shift is found in the annual largest values of daily rainfall in the Nether-
lands over the course of a century, which suggests that the probability of extremely
high levels has not changed over time. Zhang et al. (2005) showed that the trends20

in precipitation indices, including the number of rainy days, the average precipitation
intensity, and maximum daily precipitation events in Middle East, are weak in general.
Su et al. (2006) analyzed the observed extreme temperature and precipitation trends
over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorologi-
cal stations, and found no statistically significant change in heavy rain intensity from a25

basin-wide point of view, although a significant positive trend was found for the num-
ber of days with heavy rainfall (daily rainfall >=50 mm). Klein Tank et al. (2006) find
that most regional indices of precipitation extremes show little change between 1961
and 2000 in central and south Asia. Moberg et al. (2006) show that, while winter pre-
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cipitation totals, averaged over 121 European stations north of 40◦ N, have increased
significantly by 12% per 100 years, trends in 90th, 95th and 98th percentiles of daily
winter precipitation have been similar. New et al. (2006), in their study of trends in
daily extremes over mainly southern Africa for the period 1961 to 2000, concluded that
there are few consistent and statistically significant trends in the precipitation indices5

that they calculated.
While the evidence for increasing trends appears in many regions, statistically signif-

icant decreasing trends in extreme rainfall events have also been found in some areas,
including the Sahel region of Nigeria (Tarhule and Woo 1998), southwestern and west-
ern Australia (Suppiah and Hennessy 1998; Haylock and Nicholls, 2000), Southeast10

Asia and parts of the central Pacific (Manton et al., 2001; Griffiths et al., 2003), north-
ern and eastern New Zealand (Salinger and Griffiths, 2001), the UK in summer (Osborn
et al., 2000), Poland (Bielec, 2001), and some parts in India (Roy and Balling, 2004).
Therefore, the spatial pattern of changes in precipitation is complex and varied over
the world.15

On the other hand, in the context of significant global changes in many regions,
whether or not the streamflow processes has changed is of great concern because
streamflow processes are mainly driven by meteorological processes, and possibly
more extreme weather may result in higher flood and drought risks. For example,
when investigating the relationship of changes in the probability of heavy precipitation20

and high streamflow over the contiguous United States, Groisman et al. (2001) showed
that the variations of high and very high streamflow and heavy and very heavy precipi-
tation are similar. In a recent study, Zhang et al. (2005) evaluated the relations between
the temperature, the precipitation and the streamflow during 1951–2002 of the Yangtze
River basin, suggesting that the present global warming will intensify the flood hazards25

in the basin. However, the link between excessive precipitation and hydrologic flooding
is affected by several factors, including meteorological factors (such as antecedent pre-
cipitation amount and the intensity, duration and spatial pattern of precipitation events),
human activities (such as land-use change and dam construction), and basin charac-
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teristics (such as the size, topography, control structures, and drainage network of the
basin). These factors vary from event to event, from season to season, and from region
to region.

The objective of this study is to determine whether the precipitation process, espe-
cially the extreme precipitation, in the Dongjiang River Basin in southeastern China5

has changed in the context of global warming, and whether streamflows, including
high flows and low-flows, in the basin have changed as well with the intensified cli-
mate change and human intervention. Furthermore, we want to introduce several
techniques not commonly used by the hydrology and meteorology community for de-
tecting changes in precipitation and evaluate the reliability of the methods. In Sect. 2,10

we will briefly describe our study area and the data used. Description of the change
detection methods used in the study will be given in Sect. 3. Results for detecting
changes in extreme precipitation and streamflow are reported in Sect. 4, followed by
some discussions and conclusions in Sects. 5.

2 Study area and data used15

Dongjiang River originates in Jiangxi Province in southern China and flows through
eastern Guangdong Province, converged into the Pearl River. It has a 562 km long
mainstream with a drainage area of 35 240 km2. The streamflow process of Dongjiang
River demonstrates strong seasonality due to a sub-tropical monsoon climate. The
Dongjiang River is important for not only local region but also for Hong Kong because20

about 80% of Hong Kong’s water supply comes from Dongjiang River through cross-
basin water transfer in recent years. Three major reservoirs (see Fig. 1) were built in
the basin, inlcuding Xinfengjiang Reservoir (started to operate in 1959), Fengshuba
Reservoir (started to operate in 1973) and Baipenzhu Reservoir (started to operate in
1984).25

In the present study, daily precipitation data at 4 meteorological stations and daily
streamflow data at 6 hydrological stations are used for the analysis (Fig. 1). The de-
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scriptions of all the 10 gauging stations are listed in Table 1. Annual precipitation in
the center of the basin (at station 59293) is about 1932 mm, with nearly 80% falling
in spring and summer from March to August. As shown in Fig. 1, three (Longchuan,
Heyuan and Boluo) of the 6 streamflow gauging stations are significant impacted by
reservoir operation, whereas another three are little impacted by any major hydraulic5

works. Daily discharges were available for 45 to 50 years, whereas the daily precipita-
tion mainly for 52 years. Very few data are missing in these series, and missing data
are filled with linear interpolation. For the period 1956 to 2004, the basin daily areal
rainfall is estimated from the daily precipitation observed at 4 meteorological stations
by using the classical Thiessen polygon method.10

3 Methods for detecting climate change

Statistical tools for assessing changes in extremes are varied, and the community has
not generally agreed to a “best” approach. In the present study, four non-parametric
methods will be applied, including the Mann-Kendall trend test, Kolmogorov–Smirnov
distribution test, Levene’s variance homogeneity test and quantile test. Descriptions of15

these methods are given in this section.

3.1 Mann-Kendall trend test

An important task in hydrological modeling is to determine if any trend exists in the
data, not only for the purpose of modeling because many models have assumptions of
stationarity, but also for detecting possible links between hydrological processes and20

environment changes. Many methods are available for detecting trend in mean val-
ues. Non-parametric trend detection methods are less sensitive to outliers (extremes)
than are parametric statistics such as Pearson’s correlation coefficient. In addition,
nonparametric test can test for a trend in a time series without specifying whether the
trend is linear or nonlinear. Therefore, a rank-based nonparametric method, the Mann-25
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Kendall’s test (Kendall, 1938; Mann, 1945), referred to as MK test hereafter, is applied
in this study.

Under the null hypothesis H0, that a series {x1, . . . , xN} come from a population
where the random variables are independent and identically distributed, the MK test
statistic is5

S =
N−1∑
i=1

N∑
j=i+1

sgn(xj − xi ) where sgn(x) =


+1, x > 0
0, x = 0
−1, x < 0

(1)

And tau is estimated as:

τ =
2S

N(N − 1)
. (2)

Kendall (1975) showed that the variance of S, Var (S), for the situation where there may
be ties (i.e., equal values) in the x values, is given by10

σ2
S
=

1
18

[
N(N − 1)(2N + 5) −

m∑
i=1

ti (ti − 1)(2ti + 5)

]
, (3)

where, m is the number of tied groups in the data set and ti is the number of data
points in the i th tied group.

Under the null hypothesis, the quantity z defined in the following equation is approx-
imately standard normally distributed:15

z =


(S − 1)/σs if S > 0

0 ifS=0
(S + 1)/σs if S < 0

(4)

At a 0.05 significance level, the null hypothesis of no trend is rejected if |z|>1.96.
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3.2 Kolmogorov–Smirnov test

The two-sample Kolmogorov–Smirnov (KS) test is one of the most useful and general
nonparametric methods for comparing two samples to determine whether two samples
follow the same distribution. The KS test is a distribution-free test, which is based on
looking at the maximum vertical distance between the empirical distribution functions5

of two samples. Let n1 and n2 be the sizes of the two samples, n1≥n2. The value of
the test statistic for the two-sided two-sample Kolmogorov–Smirnov test is

T = sup
x

|F1(x) − F2(x)| (5)

where F1 and F2 are the empirical distribution functions based on the two samples. The
asymptotic p value for this statistic as n1, n2 → ∞ is given by10

p = Q

(
T

√
n1n2

n1 + n2

)
(6)

where Q(z)=2
∞∑
k=1

(−1)k−1e−2k2z2

. Because the above series converges rapidly,

Q(z) can be approximated using Q(z)≈2e−2z2

, or for even greater accuracy, using

Q(z)≈2(e−2z2

−e−8z2

) (Greenwella and Finchb, 2004). Massey (1951) calculated the
exact value of p as an alternative to the use of symptotic formula given above when15

the two sample sizes are equal. Kim and Jennrich (1973) developed a more general
algorithm for any two sample sizes, and created tables for various values of n1 and n2.

3.3 Test for homogeneity of variance

KS test is designed to detect a shift in the whole distribution of group 1 relative to the
distribution of group 2, and it tends to be more sensitive near the center of the distribu-20

tion than at the tails (Filliben and Heckert, 2006), whereas when detecting changes in
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extreme events, we are very interested in the variance and the tails of the data, because
the variance difference and tail fatness may indicate the difference of the occurrence of
extreme events. Therefore, in addition to the KS test, we would apply Levene’s test, a
test for the homogeneity of variances between different groups, and the quantile test,
a test for the shift of the upper tail.5

The F-test is most popular to test if the standard deviations of two populations are
equal. But F-test is extremely sensitive to the non-normality, so is another commonly
used test method Bartlett’s test (Bartlett, 1937), while precipitation data almost always
violate the normality assumption. Thus, in the present study, we use Levene’s test (re-
ferred to as L-test hereafter), which is less sensitive than the Bartlett test to departures10

from normality (Conover et al., 1981; Snedecor and Cochran, 1989, p. 252), to detect
whether the variances of k groups are identical.

L-test is based on computing absolute deviations from the group mean within each
group. Given a variable Y with sample of size N divided into k subgroups, the L-test
statistic is defined as:15

W =
(N − k)

(K − 1)

∑k
i=1 Ni

(
Z̄i − Z̄

)2∑k
i=1

∑Ni
j=1

(
zi j − Z̄i

)2 (7)

where Ni is the sample size of the i th subgroup; the within-group absolute deviations
zi j=|xi j−x̄i |, i=1,2,. . . , k, j=1,2,. . . ,Ni , x̄i is the mean of the i th sub-group; Z̄i is the
group mean of zi j ; and Z̄ is the overall mean of the zi j .

The L-test rejects the hypothesis of equal variances if20

W > F (α, k − 1, N − k) (8)

where F (α, k−1, N−k) is the upper critical value of the F distribution with k–1 and N−k
degrees of freedom at a significance level of α.
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3.4 Quantile test

For detecting the changes in extreme events, we are also interested in detecting a
difference between two distributions where only a portion (especially the lower tail or
upper tail) of the distribution of group 1 is shifted relative to the distribution of group 2.
The quantile test (referred to as Q-test hereafter) is a two-sample rank test to detect5

such a shift (Johnson et al., 1987) based on permuting the ranks of the observations
in the tail. The mathematical notation for this kind of shift is

F1(t) = F2(t) + ε[F3(t) − F2(t)),−∞ < t < ∞ (9)

where F1 andF2 denote cdfs of group 1 and 2; ε denotes a fraction between 0 and
1. Under the null hypothesis, F1 and F2 are the same. If the distribution of group10

1 is partially shifted to the right of the distribution of group 2, F3 denotes a cdf such
that F3(t)≤F2(t), –∞<t<∞, with a strict inequality for at least one value of t. If the
distribution of group 1 is partially shifted to the left of the distribution of group 2, F3
denotes a cdf such that F3(t)≥F2(t), –∞<t<∞, with a strict inequality for at least one
value of t.15

If the alternative hypothesis is that the distribution of group 1 is partially shifted to
the right of the distribution of group 2, the test combines the observations, ranks them,
and computes k, which is the number of observations from group 1 out of the r largest
observations. The test rejects the null hypothesis if k is too large. The p-value is
computed as20

p =
r∑

i=k

(
N − r
n1 − i

)(
r
i

)/(
N
n1

)
(10)

where n1 and n2 are the size of group 1 and group 2, and N=n1+n2. The value of r is
the smallest rank determined by r /(N+1) >q, where q is the target quantile.
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4 Results for the precipitation processes and streamflow processes in
Dongjiang River Basin

4.1 Extreme hydro-meteorological indices

Considerable efforts have been put on defining the index for evaluating the changes
in extreme climate. For instance, Karl et al. (1996) proposed a Climate Extremes5

Index (CEI) based on an aggregate set of conventional climate indicators which, af-
ter two notable modifications in 2003 (http://www.ncdc.noaa.gov/oa/climate/research/
cei/cei.html), include the following types of data: 1) monthly maximum and minimum
temperature; 2) daily precipitation; 3) monthly Palmer Drought Severity Index (PDSI);
4) landfalling tropical storm and hurricane wind velocity. The Expert Team on Climate10

Change Detection, Monitoring and Indices (ETCCDMI), which was jointly established
by the WMO Commission for Climatology and the Research Programme on Climate
Variability and Predictability (CLIVAR), developed 27 climate change indices (Peter-
son et al., 2001), many of which are widely used in evaluating extreme temperature
and precipitation in many studies for Middle East, central Asia, etc. (e.g., Zhang et al.,15

2005; Klein Tank et al., 2006; Alexander et al., 2006). Similar definitions for extreme
climate events are also seen in many other studies (e.g., Nicholls et al., 2000; Frichet
al., 2002; STARDEX Project, 2005). In the EMULATE (European and North Atlantic
daily to multi-decadal climate variability) project a more detailed 64 climate indices are
defined (Moberg et al., 2006).20

In the present study, 9 indices defined by ETCCDMI are used. The indices re-
ported on are listed in Table 2. RClimDex, which is developed at the Climate Research
Branch of Meteorological Service of Canada, and available from the ETCCDMI Web
site (http://cccma.seos.uvic.ca/ETCCDMI), was used for calculating these indices ex-
cept for CDD. Because RClimDex calculate all indices based on calendar year without25

considering actual seasonality, which is not suitable to calculate CDD for cases where
the dry season crosses two years, therefore CDD was calculated separately based on
hydrological year starting from 1 October and ending on 30 September.
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The analysis of extreme flood flow events can be conducted with the annual maxi-
mum flood (AMF) approach, or the peaks-over-threshold (POT) approach, also called
partial duration series approach (PDS) (see Lang et al., 1999). An AMF sample is con-
structed by extracting from a series of flows the maximum value of each year (annual
flood), i.e. only one event per year is retained. Due to its simplicity, the AMF approach5

is adopted in the present study for analyzing extreme flood events.
In the minimum low-flow analysis, the minimum 7-day low flow is used. The 7-day

low-flow index was chosen for three reasons (Chen et al., 2006): (a) The 7-day low-flow
is the most widely used index in the USA, UK and many other countries; (b) Previous
studies have shown that, compared with 1-day low flow, an analysis based on a time10

series of 7-day average flows is less sensitive to measurement errors; (c) Dongjiang
basin is dominated by a humid sub-tropical monsoon climate, the 7-day low flow better
represents the drought conditions of concern and can be used more effectively in water
management.

In addition, the timing of annual maximum daily discharge and minimum 7-day aver-15

age discharge is also analyzed.

4.2 Trend test for annual hydro-meteorological series

The MK test was applied to all the annual precipitation and streamflow series, including
annual total/average series and annual extremal series.

It has been found that the positive serial correlation inflates the variance of the MK20

statistic Sand hence increases the possibility of rejecting the null hypothesis of no trend
(von Storch, 1995). In order to reduce the impact of serial correlations, it is common
to prewhiten the time series by removing the serial correlation from the series through
yt=xt-φ x t−1, where yt is the prewhitened series value, xt is the original time series
value, and φ is the estimated serial correlation coefficient at lag one. However, in25

our case, none of the data series for detecting trend has significant serial correlation
at 5% level, except the minimum 7-day low-flow series at Boluo with a 0.599 lag-one
autocorrelation. Therefore, prewhitening is not applied in this study. The results of
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trend test are listed in Table 3 and Table 4. From Tables 3 and 4 we see that:

1. There is no significant change in either annual total precipitation (PRCPTOT) pro-
cesses or annual average discharge.

2. It is shown that no trend is present in annual extreme precipitation series in gen-
eral at 0.05 significance level, except consecutive wet days (CWD) at station5

59102.

3. Significant trends are detected in several annual streamflow processes, including:
three annual daily maximum flow series at three stations (Longchuan, Heyuan,
and Boluo) along the main channel and one at a station (Yuecheng) along a trib-
utary which exhibit significant negative trends; two annual 7-day minimum flow10

series at two stations (Heyuan and Boluo) along the main channel and another
two at stations (Jiuzhou and Yuecheng) along tributaries which exhibit significant
positive trends. In addition, the timing of the occurrence of low-flow at the two
stations (Heyuan and Boluo) along the main channel gets significantly earlier. For
the stations along the main channel, the changes could be explained by the regu-15

lation of three major reservoirs. The reason of significant changes in the extreme
flows at Yuecheng and Jiuzhou may be a combined effect of land-use/land-cover
change and the impacts of small reservoirs.

4.3 Testing changes in precipitation for the periods before and after 1979

As shown by the trend test for various annual indices in Sect. 4.2, no significant trend is20

present in the annual extreme precipitation series when taking the period from 1950s
to early 2000s as a whole. However, it is possible that significant changes occurred
in different seasons. On the other hand, it has been found that the climate in China
experienced a significant decadal change in the late 1970s (Wang, 1994), which is
related to the abrupt change in the large-scale boreal winter circulation pattern over25

the North Pacific during the late 1970s (Graham, 1994). Dyurgerov and Meier (2000)
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showed that the time series of change in global glacier volume suggest a significant
shift during the late 1970s. Yu and Lin (2002) showed that there is significant difference
before and after the late 1970s in terms of the Northern Hemisphere sea level pressure,
500 hPa height and North Pacific sea surface temperature, and such a jump affected
the climate of China significantly. Gong and Ho (2002) noticed a significant regime5

shift in the summer rainfall over the whole eastern China in about 1979. The existence
of such a climate shift is also shown in many other research results (e.g., Xu et al.,
2005; Li et al., 2006). Therefore, we will investigate evidences of changes in daily
precipitation on a monthly basis in two periods, i.e., the period before 31 December
1979, and another after 1 January 1980.10

A commonly used technique for checking if the distributions of two data sets are
different is to draw a Quantile-Quantile (Q-Q) plot. A Q-Q plot is a plot of the quantiles of
the first data set against the quantiles of the second data set. If the two sets come from
a population with the same distribution, the points should fall approximately along a 45-
degree reference line. The greater the departure from this reference line, the greater15

the evidence for the conclusion that the two data sets have come from populations with
different distributions. To save space, only the Q-Q plots for the daily basin average
precipitation for each month in the period 1956–1979 versus 1980–2004 are shown
here in Fig. 2.

Q-Q plots give us graphical evidences indicating significant changes in the upper part20

of the probability distribution in many months, e.g., increase in heavy rainfall in January,
February, March, April and July, decrease in heavy rainfall in June and October. Q-Q
plots also indicate changes in many months for the precipitation observed at all the 4
meteorological stations, but the results are not in good agreement with each other.

To verify the heuristic results from Q-Q plots, we need some formal statistical tests.25

One way to do so is to fit a probability distribution model to the data set of each period,
and then compare the fitted models to examine if anything has changed. Groisman
et al. (1999) used a gamma distribution based model of daily precipitation to investi-
gate the changes in the probability of summer heavy precipitation from eight countries.
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They showed that the shape parameter of this distribution remains relatively stable,
while the scale parameter is most variable spatially and temporally. Tromel and Schon-
wiese (2007) detected probability change of extreme precipitation by comparing the
stationary Gumbel distribution of different periods of time fitted to observed 100-year
monthly total precipitation.5

However, on one hand, uncertainty in estimating the parameters of a distribution
function may considerably affect results for assessing changes, especially for short
data sets, although some methods, for instance, the L-moments (Hosking and Wallis,
1997), may improve the estimation for small dataset; on the other hand, statistical tests
are not applicable for testing the significance of differences among estimated parame-10

ters based on two groups of dataset. Therefore, instead of detecting the changes in the
parameters of fitted probability distribution models, we apply statistical tests, including
the KS test, L-test and Q-test (for the upper tail with q=0.95), directly to the observed
data for the data sets of the two periods. The calculation is conducted with software
package EnvironmentalStats for S-PLUS (Millard, and Neerchal, 2001), which is an15

add-on module to the statistical software package S-PLUS. The results are reported in
Table 5.

According to the test results, only the overall distribution of the rainfall in Septem-
ber at station 59096 and October at 59102 changed significantly. There are significant
changes in variances for several months at each station, but the months are in not in20

good agreement among the stations. And, the rightward shift of upper tail is detected
in several months at two stations (59096 and 59293), but the months are not in good
agreement either between the two stations. As for the mean areal precipitation, sig-
nificant changes in variance are detected for rainfall in March, June, July, August and
October, but significant right-ward shift of upper tails is only found in March.25

The statistical test results seem to be more or less different from what we see from
the Q-Q plots. For instance, while the QQ-plot for areal precipitation in October shown
in Fig. 2 indicates significant change in the distribution, the test result in Table 5 indi-
cates no change by KS test. Are the statistical test results reliable? We therefore make
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a Monte Carlo simulation to evaluate the effectiveness of these test methods.

4.4 Evaluation of test methods for detecting changes in precipitation

To evaluate the methods for detecting changes in precipitation, we only consider
Gamma distributed variables because rainfall processes are normally considered to
follow Gamma distribution (e.g., Groisman et al., 1999; Liao et al., 2004) with a proba-5

bility density function in the form of

f (x) =
1

Γ(α)βα
xα−1e−x/β (11)

where α is the shape parameter and β the scale parameter. Groisman et al. (1999)
estimated that the scale parameter β changes by an order of magnitude from subarctic
regions and deserts (1/0.3) to humid tropics (∼1/0.03), and the shape parameter α has10

little spatial variation, which may vary from 0.5 up to 1.2. Liao et al. (2004) showed
that for rainfall data in most areas of China, α ∈(0.3, 0.5), β ∈(2, 40). Therefore, in our
simulation experiment, we concentrate on α=0.5 and β=10∼40. The plots of distribu-
tion functions with α=0.5 and β=10, 40 are shown in Fig. 3, and the 0.99 and 0.999
quantiles for probability for each distribution are listed in Table 6. Obviously, the larger15

the value of β, the more extreme of the distribution, and the quantile corresponding to a
given probability increases in a rate equal to the rate of increase in the scale parameter.

Now we investigate the robustness and power of the three test methods applied
in our study in detecting the changes when the variable changes from a distribution
with a low value of β to a distribution with a higher value of β, namely, a more extreme20

distribution. By robustness, we mean the ability of the test to not falsely detect changes
when the underlying data are in fact distributed equally. By power, we mean the ability
of the test to detect changes when the distribution indeed changes.

We make 10 000 simulations for Gamma distributed samples with fixed value of α =
0.5, varied values of β=10, 15, 20, 30, 40, and varied length of data size L=50, 100,25

200, and 300. In each simulation two groups of data are generated, with one group of
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length L generated with low value of β=b1, and another group of the same length L but
higher value of β=b2 (b2≥b1). The Monte Carlo simulations are repeated for b1=10
and 20, b2=10, 15, 20, 30 and 40 (b2≥b1), and L=50, 100, 200, 300. The results are
reported in Table 7. The simulation results in Table 7 show that:

1. While the robustness of the tests has little dependence on data size, the power of5

all the tests is closely related to the data size and depends on the magnitude of
change (in terms of variance ratio).

2. The KS test and especially Q-test are quite robust, with a wrong rejection rate
less than 0.05 at 5% significance level mostly. But the L-test is not robust, with a
wrong rejection rate of around 18% at 5% significance level for all cases where10

variance ratio = 1. Therefore, a rejection by L-test alone does not give a reliable
evidence of change, whereas a rejection by KS test or Q-test is a good evidence
of the presence of change.

3. In case of a sharp 100% increase of the scale parameter β changing from 10 to
20 or 20 to 40, while it is not possible to detect the change between two groups15

of data set with 50 points each, generally, all the three tests are powerful enough
to correctly detect the change for large data sets (200 or 300 points) (over 98%
correct rejection of null hypothesis). But for smaller changes, such as a 50% in-
crease of changing from 20 to 30, the rate of correct rejection of null hypothesis
is low, even for large data sets (e.g., 70.31% for data set with 300 points). Unfor-20

tunately, In real world, we often lack enough data, and as shown by Groisman et
al. (1999), the change percentage in scale parameter is normally less than 50%,
and seldom over 100% for most areas.

From the above analysis, we know that, the good news is, if the null hypothesis of
no change is rejected, it is a good indication of change, whereas the bad news is, if25

the null hypothesis is accepted, we are still not sure if or not there is any significant
change present. By revisiting the analysis in the Sect. 4.3, we see that the rainy days
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for the months from March to September are mostly over 300, while for the months
from October to February over 90. Thus the test results for months from March to
September should be reliable in general, especially if sharp changes occur, whereas
less reliable for the months from October to February. Therefore, from Table 5 we know
that, changes indeed occur in some months in the Dongjiang Basin, but the changes5

are not uniform at different locations in the region. On the other hand, because all
the test methods for mediate changes, such as a 50% change in scale parameter,
are not powerful enough, we cannot conclude that no change occurs in other months
which seem to have apparently experienced change according to QQ-plots in Fig. 2.
Consequently, we suggest combining the use of QQ-plot method and statistical test10

methods to detect changes in extreme events, but the combined use of these methods
are still not conclusive.

5 Discussions and conclusions

1. Little change is observed in various annual extreme precipitation indices. Al-
though it is widely believed that it is physically reasonable to expect increases15

in extreme precipitation if and when significant warming occurs, it is virtually cer-
tain that such changes will not be uniform across the globe (Kunkel, 2003), and,
according to the literature, it seems that, from the year’s point of view, there are
no less regions (including the present study area) all over the world seen little
changes in annual extreme precipitation events than regions experienced signifi-20

cant changes.

2. On the other hand, significant changes are observed in the precipitation pro-
cesses on a monthly basis, although the seasonal variations are not uniform even
in a medium-size basin such as the Dongjiang River Basin. This is probably be-
cause extreme events at a specific location depend not just on the moisture avail-25

ability and thermodynamic instability, but also on other factors, primarily the fre-
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quency and intensity of precipitation-producing meteorological systems (Kunkel,
2003), and the activeness of these systems is seasonally varied. To get statisti-
cally significant results in detecting changes, we need more robust statistical test
methods, and may need some indices that take the changes in seasonality into
account as well. In fact, seasonality has been considered in the calculation of the5

64 climate indices in the EMULATE project (Moberg et al., 2006).

3. Despite of little change in extreme precipitation, significant changes are detected
at all the three stations along the main river channel, i.e., Longchuan, Heyuan and
Boluo. All of the three show significant negative trends in the annual maximum
flow, and two of them (Heyuan and Boluo) exhibit significant positive trend in10

minimum 7-day low-flow. Among three streamflow series observed at tributary
stations with medium-size drainage areas and no intervention by major reservoirs,
one (Yuecheng) shows significant negative trend in annual maximum flows, and
two (Jiuzhou and Yuecheng) show significant positive trend in minimum 7-day low-
flows. The changes in annual extremal streamflows at the three stations along the15

main river channel are obviously due to the operation of several major reservoirs in
the basin, whereas the changes at tributary stations are possibly due to land use
change and/or operation of small reservoirs. The results indicate that, in the case
of little precipitation changes, the operation of major reservoirs is most influential
on the extreme streamflow events, whereas land-use/land-cover changes may20

have secondary impacts. It is common in many studies to examine if extreme high
or low flows are associated with climate change or land-use/land-cover change
(e.g., Tu et al., 2005; George, 2007; de Wit et al., 2007). But when there are
major reservoirs present, in assessing the impacts of environment changes on
streamflow processes, especially flood events, how the reservoirs are operated25

should be considered first.

4. It is expected that with the global warming, the water cycling will be sped up, and
the enhanced water cycling will include the increase of evaporation and precip-
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itation. But in fact, in many regions of the world the observed pan evaporation
is decreasing (e.g., Peterson and Groisman, 1995; Chattopadhyay and Hulme,
1997; Roderick and Farquhar, 2002; Liu et al., 2004), which is considered as a
“paradox”. A significant decreasing trend is also observed in the pan evapora-
tion processes in most parts (including the present study area) of China (Liu et5

al., 2004; Ren and Guo, 2006). It has been demonstrated by some researchers
that the actual evaporation is negatively related to pan evaporation (Brutsaert and
Parlange, 1998; Lawrimore and Peterson, 2000; Golubev et al., 2001). Whether
the actual evaporation has increased with the decrease of pan evaporation for
the case of China, specifically for the case of Dongjiang River Basin, is an open10

question. If it is true, still we have a problem that, with increased evaporation, no
significant change is detected in annual total precipitation and annual runoff, and
the amplitude of extreme precipitation has not changed much either. Runoff may
be affected by the changes of water abstraction for industry and agriculture use
(especially irrigation), and the increase/decrease of forest coverage which leads15

to increased/decreased plant transpiration, because the establishment of forest
cover would result in increased transpiration and therefore decreases water yield
(e.g., Hibbert, 1967; Bosch and Hewlett, 1982). Therefore, how the land cover has
changed and how human activities affects the streamflow process in this area will
be the subjects of a future study.20

5. In detecting changes in extreme hydro-meteorological events, two approaches
are commonly seen in literature, i.e., testing trend in annual mean or extremal
series, and comparing probability distribution parameters for data observed dur-
ing different periods. However, by using trend test, we cannot find changes in
overall statistical property, while by comparing distribution parameters, the result25

is subject to parameter estimation uncertainties and statistical tests are hard to
be applied to test for the difference in parameters. Therefore, in the present study,
besides the Mann-Kendall trend test which has been widely used in the hydrology
community, three more non-parametric methods, i.e., Kolmogorov-Smirnov test,
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Levene’s test and quantile test, are introduced to test for changes in the distri-
bution, variance and the shift of tails of different groups of data. While all three
methods work well for detecting changes in two groups of data with large data
size (e.g., over 200 points in each group) and big difference in distribution pa-
rameters (e.g., over 100% increase of scale parameter in Gamma distribution),5

none of them are powerful enough for small data sets (e.g., less than 100) and
small distribution parameter difference (e.g., 50% increase of scale parameter
in Gamma distribution). Unfortunately, small dataset sizes and small distribution
parameter changes are common in real world applications. Therefore, statistical
testing methods of better performance are needed in detecting changes in ex-10

treme hydro-meteorological events, and graphical exploratory methods, such as
Quantile-Qantile plots, are recommended to be used in combination with present
statistical test methods.

6. Caution must be taken when prewhitening a series before conducting Mann-
Kendall trend test, because removal of positive AR(1) from time series by15

prewhitening will remove a portion of trend and hence reduces the possibility
of rejecting the null hypothesis while it might be false (Yue and Wang, 2002); on
the other hand, when the change in a real-world process has its physical back-
ground, the detected trend cannot be ignored even if it is possibly resulted from
a significant serial correlation. For instance, in the case of minimum 7-day low-20

flow series at Jiuzhou, there is a weak autocorrelation 0.223 at lag one which is
not significant at 0.05 significance level. When the series is not prewhitened, a
positive trend could be detected at a 0.05 significance level, but no trend would
be detected after prewhitening. Similar is the case of annual maximum flow at
Yuecheng. In another case of minimum 7-day low-flow series at Boluo, the auto-25

correlation at lag one is 0.599. If the series is prewhitened, the positive trend is not
significant at a 5% level. But the positive trend, we believe, has its physical basis
because three major reservoirs, whose major effects are lowering peak flows and
increasing low flows, were built in the end of 1950s’, the beginning of 1970s’ and
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early 1980s’, which regulated streamflow significantly. Therefore, when there is
a sound physical basis for the changes in a natural process, we suggest that the
original series, rather than the prewhitened series, should be used for detecting
the trend.

7. Before fitting distribution models to a sample precipitation or streamflow data se-5

ries, it would be wise to investigate the stationarity first, not only the trending
behaviour in mean value but also the behaviour in variance and even higher mo-
ments. The regulation of reservoir outflows and impacts of land-use/land-cover
changes have made many streamflow processes exhibit significant changes,
which make the flood frequency analysis more tricky than for stationary cases. If10

no consideration is given to the nonstationary situations in the flood and low-flow
frequency analysis (e.g., Chen et al., 2006), the results may be biased. Tech-
niques of food frequency analysis for nonstationary situations (see Khaliq et al.,
2006) will get more and more popularity in the future research.
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Table 1. Meteorological and hydrological Gauging stations.

Station type Station Latitude longitude Elevation Drainage Period Length
(m) area (km2) (year)

Meteorology 59096 114◦29′ 24◦22′ 214.5 – 1953–2004 52
59102 115◦39 24◦57 303.9 – 1956–2004 49
59293 114◦41′ 23◦44′ 40.8 – 1953–2004 52
59298 114◦25′ 23◦05′ 22 – 1953–2004 52

Hydrology Jiuzhou 114◦59′ 23◦07′ – 385 1959–2005 47
Yuecheng 114◦16′ 24◦06′ – 531 1960–2005 46
Lantang 114◦56′ 23◦26′ – 1080 1958–2005 48
Longchuan 115◦15′ 24◦07′ – 7699 1952–2002 51
Heyuan 114◦42′ 23◦44′ – 15 750 1951–2002 52
Boluo 114◦18′ 23◦10′ – 25 325 1953–2002 50
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Table 2. Extreme precipitation indices used in this study.

Index Description Unit

CDD Annual maximum number of consecutive days with RR <1 mm Days
CWD Annual maximum number of consecutive days with RR ≥1 mm Days
R20mm Annual count of days when RR≥ 20mm Days
R50mm Annual number of days when RR ≥50 mm Days
RX1day Annual maximum precipitation in 1 day mm
RX5day Annual maximum precipitation in 5 consecutive days mm
PRCPTOT Annual total precipitation from wet days (RR≥ 1 mm) mm
SDII Simple pricipitation intensity index, average daily mm/day

precipitation amount on wet days with RR ≥1 mm

Note: RR denotes daily precipitation amount.
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Table 3. Mann-Kendall trend tests on annual precipitation series.

Annual series MK test 59096 59102 59293 59298 Areal

RX1day tau 0.0287 –0.1108 –0.0309 –0.0136 –0.048
p-value 0.7703 0.2704 0.7523 0.8933 0.635

RX5day tau 0.0747 –0.0940 –0.0641 –0.0762 –0.146
p-value 0.4393 0.3507 0.5074 0.4300 0.140

CDD tau –0.0706 0.0195 0.0157 –0.0847 –0.045
p-value 0.4690 0.8516 0.8773 0.3842 0.656

CWD tau –0.1704 –0.2961 –0.1342 –0.0694 –0.167
p-value 0.0739 0.0026 0.1580 0.4666 0.091

PRCPTOT tau –0.0136 –0.0656 0.0271 –0.0106 –0.021
p-value 0.8933 0.5165 0.7824 0.9183 0.836

R20mm tau –0.0890 –0.0745 0.0920 0.1109 –0.052
p-value 0.3548 0.4593 0.3387 0.2479 0.604

R50mm tau 0.0837 –0.1507 0.0845 –0.0739 –0.050
p-value 0.3813 0.1267 0.3785 0.4387 0.614

SDII tau 0.0543 –0.0895 0.0551 0.0173 –0.020
p-value 0.5749 0.3741 0.5698 0.8621 0.849
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Table 4. Mann-Kendall trend tests on annual discharge series.

Series MK test Longchuan Heyuan Boluo Jiuzhou Lantang Yuecheng

Annual average discharge
tau 0.0573 0.0905 0.0748 –0.0361 –0.0559 –0.0667
p-value 0.5587 0.3477 0.4533 0.7274 0.5815 0.5196

Annual maximum
tau –0.3780 –0.4472 –0.2449 –0.1203 –0.1605 –0.2271
p-value 0.0001 0.0000 0.0133 0.2368 0.1096 0.0267

Annual 7-day minimum
tau 0.0918 0.3394 0.4405 0.2081 –0.1118 0.3527
p-value 0.3461 0.0004 0.0000 0.0400 0.2553 0.0006

Timing of annual maximum
tau –0.0243 –0.0400 0.1216 –0.0130 -0.0399 0.1092
p-value 0.8074 0.6815 0.2207 0.9051 0.6957 0.2888

Timing of annual 7-day minimum
tau –0.1671 –0.3167 –0.3010 –0.0740 0.0743 –0.1691
p-value 0.0850 0.0009 0.0023 0.4686 0.4515 0.0993
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Table 5. P-values for changes in statistical properties of daily rainfall in each month for the
periods before and after 1979.

Station Test Jan Feb March April May June July Aug Sep Oct Nov Dec

59096 KS-test 0.354 0.168 0.680 0.792 0.658 0.128 0.092 0.196 0.042 0.076 0.262 0.377
L-test 0.130 0.005 0.005 0.039 0.446 0.142 0.215 0.365 0.001 0.001 0.833 0.996
Q-test 0.121 0.008 0.100 0.010 0.790 0.770 0.464 0.164 0.027 0.989 0.882 0.434

59102 KS-test 0.338 0.126 0.377 0.830 0.059 0.027 0.591 0.992 0.426 0.024 0.905 0.331
L-test 0.160 0.251 0.001 0.059 0.298 0.009 0.135 0.694 0.601 0.155 0.474 0.181
Q-test 0.131 0.623 0.086 0.230 0.557 0.895 0.446 0.086 0.561 0.916 0.442 0.744

59293 KS-test 0.988 0.963 0.359 0.916 0.608 0.644 0.169 0.167 0.198 0.336 0.723 0.718
L-test 0.142 0.535 0.000 0.538 0.795 0.160 0.011 0.000 0.166 0.037 0.280 0.950
Q-test 0.225 0.136 0.002 0.286 0.511 0.495 0.171 0.012 0.231 0.960 0.271 0.361

59298 KS-test 0.558 0.155 0.332 0.767 0.692 0.999 0.334 0.373 0.169 0.679 0.155 0.373
L-test 0.422 0.033 0.090 0.141 0.330 0.458 0.964 0.098 0.862 0.037 0.202 0.968
Q-test 0.558 0.185 0.148 0.290 0.946 0.722 0.596 0.431 0.616 0.973 0.938 0.211

Areal KS-test 0.999 0.677 0.274 0.265 0.781 0.074 0.530 0.010 0.813 0.130 0.108 0.854
L-test 0.118 0.098 0.000 0.416 0.647 0.033 0.024 0.041 0.497 0.000 0.827 0.717
Q-test 0.521 0.302 0.022 0.361 0.802 0.915 0.081 0.019 0.192 1.000 0.716 0.405

Note: Significance level = 0.05. The alternative hypothesis of Q-test is that the distribution of
data after 1980 is partially shifted to the right of the distribution of data before 1979, and the
target quantile is q=0.95.
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Table 6. Quantiles of Gamma distributions with different values of β.

Probability β=10 β=15 β=20 β=30 β=40

0.99 33.2 49.8 66.3 99.5 132.7
0.999 54.1 81.2 108.3 162.4 216.6
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Table 7. Rejection rate (in percentage) of null hypothesis for testing changes in two groups of
data with three test methods.

Size of each group B1 B2 Variance ratio KS test L-test Q-test
(q=0.95)

50 10 10 1 4.08 18.51 3.16
15 2.25 13.93 48.88 18.65
20 4 36.55 80.77 42.52
30 9 76.64 98.21 77.96
40 16 93.01 99.86 92.82

20 20 1 3.96 17.86 2.82
30 2.25 13.9 49.17 18.71
40 4 36.95 81.15 42.79

100 10 10 1 3.78 17.58 0.85
15 2.25 25.05 69.22 17.7
20 4 65.73 96.48 53.97
30 9 97.38 99.99 92.77
40 16 99.9 100 99.19

20 20 1 3.59 17.98 0.82
30 2.25 24.65 69.6 18.5
40 4 65.7 96.55 53.53

200 10 10 1 5.4 17.51 1.95
15 2.25 54.8 90.32 50.57
20 4 95.85 99.9 92.58
30 9 100 100 99.97
40 16 100 100 100

20 20 1 5.44 17.43 1.68
30 2.25 55.66 90.37 50.83
40 4 95.71 99.9 92.56

300 10 10 1 5.12 17.36 4.39
15 2.25 73.75 96.82 81.39
20 4 99.47 100 99.73
30 9 100 100 100
40 16 100 100 100

20 20 1 5.12 17.97 4.52
30 2.25 72.9 96.9 81.75
40 4 99.52 100 99.62

Note: The null hypotheses of all three methods are no change. Significance level 0.05. B1 and B2 are respectively the

scale parameters of the first and second group of simulated gamma distributed data with the same shape parameter

0.5. The variance ratio is the ratio of the variance of the first dataset over the second dataset.
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Fig. 1 Location of the study area (left) and locations of gauging stations (right) 
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Fig. 1. Location of the study area (left) and locations of gauging stations (right).
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Fig. 2 Q-Q plots for the daily basin average precipitation for each month for periods before 
December 31, 1979 and after January 1, 1980 
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Fig. 2. Q-Q plots for the daily basin average precipitation for each month for periods before 31
December 1979 and after 1 January 1980.
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Fig. 3 Two Gamma densities with scale parameter β = 10 and 40, and shape parameter α = 0.5 
(Note: The embedded is the Q-Q plot for the two Gamma distributions) 
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Fig. 3. Two Gamma densities with scale parameter β=10 and 40, and shape parameter α=0.5.
(Note: The embedded figure is the Q-Q plot for the two Gamma distributions)
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