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Abstract

In this approach, exploration of the cost function space was performed with an inexpen-
sive surrogate function, not the expensive original function. The Design and Analysis
of Computer Experiments(DACE) surrogate function, which is one type of approximate
models, which takes correlation function for error was employed. The results for Monte5

Carlo Sampling, Latin Hypercube Sampling and Design and Analysis of Computer Ex-
periments(DACE) approximate model have been compared. The results show that
DACE model has a good potential for predicting the trend of simulation results. The
case study of this document was WATCLASS hydrologic model calibration on Smokey-
River watershed.10

1 Introduction

Hydrologic model calibration has been a challenge for hydrologists for decades. A
hydrologic model is a representation of a part of nature which is capable of reproduc-
ing some of its characteristics, such as streamflow. Generally, in a hydrologic model,
many parameters are involved and the process of finding the suitable values for these15

parameters is called model calibration or parameter estimation.
The process of parameter estimation will be essentially an optimization process, in

which a cost function will be optimized and the corresponding parameter set will be
selected. The main issues that make this optimization process more complicated than
a traditional optimization problem are: first, the cost function is not convex and smooth;20

second, the cost function is usually computationally very expensive; third, although
most of parameters have physical meaning individually, the combination which give
optimum results is not necessarily a reasonable answer.

One point of view in hydrologic model calibration is that there is just one set of the
best parameters. Consequently, because of the nature of the problem the optimiza-25

tion methods used for finding this one point are more concentrated around population
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based optimization methods such as Genetic Algorithm (Fraser and Burnell, 1970),
Simulated Annealing (Metropolis et al., 1953) and Shuffle Complex Evolution (Duan
et al., 1992). These processes usually start from a randomly chosen initial point and
continue by searching the space for a better point until no better point is found. These
methods are considerably successful in finding near global optima, yet there is no5

mathematical proof for any of them except for SA if the annealing process cools down
very slowly (SA converges to a Monte Carlo), they do not offer any insight into the
performance of the model. In other words, it is unlikely to discover a region where the
model performs well and a region where it does not.

The other point of view claims that there are many good sets of parameters. Usually10

more than one set of good parameters are chosen and all of them will be reported as
candidates. Since all hydrologic models, both conceptual and physically distributed,
are based on some kinds of approximation and simplification, the second point of view
seems more attractive.

This project attempts to discover regions where the model performs reasonably15

well. This paper compares Monte Carlo Sampling, Latin Hypercube Sampling (LHS)
and loosely grided LHS along with DACE method for calibration of WATCLASS over
Smokey Watershed. Using DACE as surrogate model, the process of finding the sets
of best parameters will be done. By doing this, the computational cost will be reduced
and the performance of the process will improve. The reminder of this document is or-20

ganized as follows: a brief description of the Smokey-River Watershed will be followed
by a brief introduction of WATCLASS.1.The theory of DACE and the experimental part
will come next.

1During this research a new version of WATCLASS was released. Although this new version
results were better than the version we worked with, the computational cost of the experiments
did not allow us to repeat these experiments with the new version.
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1.1 Smokey-river watershed

Smokey-River watershed is a part of Peace River watershed. With a drainage area of
3840 km2, this river drains to the foothills of Rocky Mountains. This watershed is mostly
alpine forest and is located in the northwest of Edmonton, Alberta, Canada.

1.2 WATCLASS5

WATCLASS (Soulis and Verseghy, 2000) model is an integration of WATFLOOD Kouwen
(1988) and CLASS Verseghy (1991), the former model is a hydrologic model and the
latter model is a land scheme model.

WATFLOOD is based on the GRU (Grouped Response Unit), which for each grid
takes a dominant landcover based on the largest vegetated area. This model takes10

the distribution of precipitation, interception and infiltration over the landscape. Class,
Canadian Land Surface Scheme, is a landcover-based model with a modeling strategy
similar to GRU. In this approach each grid cell is represented by a single landscape
type. The properties of each landscape, however, are made of different landscape
types. WATCLASS approach is very similar to GRU, but it is more developed in a sense15

that any landscape unit with its defined hydrological response could be considered. In
addition to that, in order to accommodate the gradient needed for lateral flow a local
slope is assigned to each of the landscapes.

Generally, a combination of an atmospheric model and a hydrologic model that satis-
fies Environment Canada standard was the main motivation behind coupling these two20

models. This coupling enables WATCLASS users to take advantage of strength of both
models such as complete vertical processes modeled in CLASS and a well developed
routing algorithm in WATFLOOD. The end target of development of WATCLASS is to
construct an operational model for climate simulation and forecasting.
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2 Surrogate optimization

In many real world problems, traditional optimization methods fail to work. In cases the
objective function is not convex and the derivative is either expensive or not available ,
these methods are not very applicable. As mentioned before, WATCLASS calibration
is one of these cases. Thus the use of other types of optimization methods such as5

approximate modeling approach becomes reasonable.
The idea of employing approximate model in optimization of expensive functions

was first propounded by Jones et al. (1998) called Design and Analysis of Computer
Experiments(DACE) (Jones, 1998). This idea has been customized and applied in
variety of engineering problems such as shape optimization (Marsden et al., 2004),10

calibration of groundwater bioremediation models (Mugunthan, 2005) and assessment
of parameter uncertainty in groundwater models (Mugunthan and Shoemaker, 2006).

In this method, it is supposed that simulations have been produced by a mathemati-
cal model and this model is the so called surrogate model. Based on simulated points,
the surrogate model or approximate model is constructed. This approximate model15

imitates that part of the region of objective function and it will be used to predict the
model optimum. This process is an iterative process and when the surrogate found
the optimum with a good approximation the process is terminated. In other words, the
optimum of the constructed approximate model will be compared to its corresponding
simulated result, if the error was lower than the threshold, the model is good enough20

and this model could be used later, otherwise the model will be modified and another
simulation will be performed. Once the approximate model prediction was satisfactory,
it could imitate the expensive process of simulation.
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2.1 Introduction to DACE

In optimization using DACE approach, it is assumed that observations are coming from
a model and ŷ could be modelled as follows:

y(xi ) =
n∑

i=1

βhfh(xi ) + εi (i = 1, ..., n) (1)

In this equation, n is number of inputs, fh(x)’s are linear or nonlinear functions of x; the5

β’s are their corresponding coefficients, which are unknown; and εi are white noise,
which is a normally distributed, independent error terms with zero mean and variance
σ2.

There is a subtle point worth mentioning here, that makes this approach very different
from response surface approach. In this approach, it is assumed that errors are related10

or correlated, but not independent, and the correlation between error terms depends on
their distances. In other words, the correlation is high when two points are close, and
as they get farther apart, the correlation decreases. So, the approximate model will not
be the same as a regression model. This particular type of stochastic process using
spatial correlation functions is called Kriging Krige (1988). This method is named after15

a South African engineer, who originally developed this model to predict the location
of ore reserves precisely. Commonly, the above stochastic process is called ”DACE
stochastic process model.”

The main reason for treating error in this way comes from the nature of errors in
computer codes, which stems from modeling errors not measurement or noise. The20

correlation between errors at xi and xj is defined as:

Corr[ε(xi ), ε(xj )] = exp[−d (xi , xj )] (2)

In Eq. (2), d is the distance between two points and is defined as:

d (xi , xj ) =
k∑

i=1

θh|xi
h − xj

h|
ph (θh ≥ 0, ph ∈ [1,2]) (3)
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In Eq. (3), θh and ph are two parameters that needed to be adjusted. θh is the param-
eter that controls the weight of the distance of two variables and ph is the parameter
that controls the smoothness of the function in h direction. These parameters will be
estimated by maximizing the likelihood of the sample. As a result, based on known
points we are able to predict unknowns.5

Suppose the value of the function is unknown in a location and we wish to predict its
value based on the values of known points. In the case of a linear predictor, we have

ŷ(xi ) = c(x)T ys (4)

In this equation, ys’s are function values of m known points; c is the vector of coeffi-
cients. By determining c, it is possible to estimate the value of unknown points. Now,10

using Eq. (4) and Eq. (1), we can estimate the value of unknowns by minimizing the
Mean Square Error (MSE) for the estimated points as follows:

MSE[(ŷ(x))] = E [c(x)TYs − Y (x)]2 (5)

Substituting and imposing unbiasedness constraint gives

MSE[(ŷ(x))] = E [ε2 + cTeeTc − 2cTeε] (6)15

In Eq. (6), ε is a realization of e; we have [E(ε2)]=σ2, E[eε] = σ2r and E[eeT ]=σ2R,
where r is the correlation vector between the error of unknown points and an untried
point x, and R is the correlation matrix between the error of the known points. Minimiz-
ing MSE will result in a set of regression and correlation function coefficients.

There are several choices for the basis function and correlation function. However,20

in this problem the polynomial function and exponential correlation function were se-
lected.
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3 Experiments and results

3.1 Decision variables

In this experiment, 14 parameters were calibrated. It is supposed that all of these pa-
rameters are uniformly distributed within their upper and lower bounds.The description
and intervals of these parameters are in Table 1.5

3.2 Experiment process

The error criterion that was chosen for evaluation of the suggested model was Nash-
Sutcliffe Nash and Sutcliffe (1970) coefficient which is defined as following:

NS(x) = 1 −
∑n

i=1(Yobserved − Ysimulated)2∑n
i=1(Yobserved − E (Yobserved))2

(7)

The time interval in Eq. (7) is from 1 to n. This case study is based on one daily reading10

of streamflow in period of 3 years. In this equation Y is the predicted value (streamflow
here) and E (Yobserved) is expectation of Yobserved. NS number will be negative when the
prediction of the model is very different from the observed value, and close or equal to
one when the model prediction is perfect. Therefore, as NS numbers become closer
to 1 model prediction becomes closer to observed values. In this paper, a NS number15

greater than or equal to 0.7 is considered acceptable.
In order to evaluate the approximate model, Monte Carlo sampling with 10 000 ran-

dom samples was done. This way, the performance of the approximate model will be
compared with the performance of the WATCLASS. In the second set of experiment,
6000 Latin Hypercube Samples McKay et al. (1979) were produced. In LHS, random20

samples are generated from a grided space, this ensures that samples are from the
entire space.

The third set of experiments was focused on approximate model evaluation. This
set had two parts. In the first part, 1000 LHS were generated on the input space and
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their corresponding NS number was computed.In order to increase the concentration
of points with good prediction (lower error values/higher NS coefficient), 10 best points
were selected and in the close vicinity of these points another 500 simulations were
performed. This 500 points were located in a hypercube that its edges extend up to
the upper bound and lower bound of what that previously 10 selected parameter sets5

were located. In the second part of the third set of experiment, based on the 500 best
results, an approximate model was constructed. This approximate model employed to
predict points with NS numbers more than 0.70. So, 10 000 LHS were generated and
their corresponding NS coefficients were evaluated by the approximate model. Then,
among these 10,000 points 100 best points were selected. To evaluate the perfor-10

mance of the approximate model, these best points were simulated with WATCLASS.
Then, the estimated results were compared to the simulated results. Deviation of pre-
dicted results (from approximate model) from the simulated results (WATCLASS) was
the measure for goodness of the approximate model. After 4 iterations (400 points)
of approximate model evaluation satisfactory results were achieved. The schematic of15

the algorithm is shown in Fig. 1. Efficiency of these processes are compared in Ta-
ble 2. Since the complete process of approximate model construction relies on random
sampling of the points, the process replicated 10 times and the mean and standard
deviation of approximate model process is reported.

All of the simulations were performed on a “Shared Hierarchal Academic Research20

Computing Network” Called SHARCNET 2 This service allows the users to conduct
hundreds of jobs in parallel.

Comparison of the results shown in Table 2 shows that Latin Hypercube Sampling
was slightly more successful in finding points with high NS numbers than random sam-
pling (Monte Carlo). Since in LHS all the space has been sampled, the approximate25

model was constructed based on this sampling method. This way, the entire space of

2SHARCNET based on SHARCNET website is “A multi-institutional high performance com-
puting network that spans 16 leading academic institutions in south central Ontario, Canada.”
University of Waterloo is part of this network.
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parameters will be explored.
In the first row of Table 2, the entire process of DACE approximate model is shown.

In the entire process 1900 simulation performed, which only 400 of simulations were
based on approximate model prediction. Comparison of LHS and DACE (firts part)
shows that on average 24% of points have NS greater than 0.7, whereas in case of5

LHS method 15% of points have NS number greater than 0.7. In addition to that,
standard deviation of the distribution is small.

The results are the same for the rest of NS number intervals, but the standard de-
viation is slightly higher correspondingly. However, all of 10 trials in this experiments
have better results than LHS and as NS intervals moves to the higher intervals the10

capability of approximate model to find good points increases. In the second part of
DACE, the NS number of 400 points that were simulated based on the approximate
model is reported. In this part, 36% of the results are above the first threshold, which
is 21% better than LHS. Among all identifying points, 29% were in the next threshold
(NS greater than 0.71), but in LHS only 11% of points were in that interval.15

Overall, DACE method outperformed previous methods in identifying good input sets.
DACE model was used to map part of the input space that seemed to contain more
acceptable outputs. Model precision increased in each iteration until the error criteria
met. This experiment continued for 4 iterations. DACE has the potential of being
adapted with any other model, for example neural network or spline can be one of the20

cases for the approximate model.
The other advantage of DACE is its adaptability with other optimization methods.

This technique is not only permits user to employ other types of optimization meth-
ods such as GA or SA, but also can be combined with any of these methods in an
efficient way. For instance, one of the main disadvantages of these population based25

techniques is being computationally expensive especially when the dimension of the
space is high. However, if the input space shrinks by using DACE (smaller parame-
ter intervals, in this case input interval became 50% of the original input interval), the
computational cost will be definitely less.
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4 Conclusions

he goal of this research was to evaluate the performance of DACE for hydrologic model
calibration. Number of acceptable points corresponding to different methods were com-
pared and the results are reported in Table 2.

This experiment showed promising results for calibration of a small watershed (in5

North American term). Application of DACE along with LHS reduced the computa-
tional cost of calibration process. For example, in this experiment, each WATCLASS
simulation took 8 min. Therefore, finding 100 points with NS number greater than 0.7
using LHS method will take 5152 min if the process is completely serial, whereas using
DACE for the same case will take only 3360 min. So that, the overall computational10

cost will be 35% less.
DACE could be combined well with clustering techniques and this way the modeling

process will be done on the part of the space that contains acceptable points. This
way, the computational expenses will be even less by being more concentrated on the
region of interest and getting less sample from other part of the space. It could be also15

combined with dimensionality reduction techniques and work in a lower dimension. So,
the dimension of the modeled space will be smaller (much smaller).

In general, this technique showed the potential of working with any expensive opti-
mization problem, such as calibration of the hydrologic models over large watershed.
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Table 1. WATCLASS Parameter description.

Parameter Description Lower Bound Upper Bound

drnrow Drainage index for layer 1 0 1
wfcirow An interflow index (mean of KSATa) for layer 1 0 20
sand11 volume of sand in layer1 landclass1 0 100
clay11 volume of clay in layer1 landclass1 0 100
sand12 volume of sand in layer1 landclass2 0 100
clay12 volume of clay in layer1 landclass2 0 100
sand21 volume of sand in layer2 landclass1 0 100
clay21 volume of clay in layer2 landclass1 0 100
sand22 volume of sand in layer2 landclass2 0 100
clay22 volume of clay in layer2 landclass2 0 100
drnrow Drainage index for layer 2 0 1
wfcirow interflow index (mean of KSAT)for layer 2 0 20
drnrow Drainage index for layer 3 0 1
wfcirow interflow index (mean of KSAT)for layer 3 0 20

a Hydraulic Conductivity at Saturation
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Table 2. Comparison of mean of number of simulations for different methods.

Nash Coefficient

Method Number
of simu-
lations

>0.7 >0.71 >0.72 >0.73

Monte Carlo 10000 1300 1011 380 18
LHS 5000 776 561 198 7
DACEa(First Part)mean value 1900 450 360 148 12
DACE(First part)standard deviation 1900 2.5 5 19 6
DACE (Second Part)mean 400 144 118.5 48.8 12.6
DACE(Second part)standard deviation 400 2.6 4.8 10.5 12.9

a value with polynomial fit function
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 1. Generate 1000 WATCLASS 

2. Find Upper limit (UP ) and     

lower limit (LP ) of 10 best 

points

3. Generate 500 WATCLASS 

in [UP,LP ]  

4. Select 500 best points of all 

data points and construct 

DACE model 

5. Generate 10,000 DACE 

 6 . Select 100 best points and 

simulate with WATCLASS 

7. Compare DACE  and        

WATCLASS  

If DACE prediction is 

very different from 

WATCLASS, Go to step 4 

If DACE prediction is 

similar to WATCLASS, 

Stop. 

Fig. 1. DACE Algorithm.

2321

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/2307/2007/hessd-4-2307-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/2307/2007/hessd-4-2307-2007-discussion.html
http://www.egu.eu

