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Abstract

The paper compares two independent approaches to estimate soil moisture at the re-
gional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first es-
timate is derived from a physically-based hydrological model (TOPKAPI). The second
estimate is derived from the scatterometer on board on the European Remote Sens-5

ing satellite (ERS). Results show a very good correspondence between the modelled
and remotely sensed soil moisture, illustrated over two selected seasons of 8 months
by regression R2 coefficients lying between 0.78 and 0.92. Such a close similarity
between these two different, independent approaches is very promising for (i) remote
sensing in general (ii) the use of hydrological models to back-calculate and disaggre-10

gate the satellite soil moisture estimate and (iii) for hydrological models to assimilate
the remotely sensed soil moisture.

1 Introduction

The content of water in the first active metres of soil plays a central role in the regulation
of the hydraulic and energy transfers between the soil, the surface and the atmosphere.15

Soil moisture is thus widely recognized as a key variable in numerous environmental
disciplines especially in meteorology, hydrology and agriculture. For hydrological and
agricultural purposes, the estimation of soil moisture is crucial since it controls (i) the
quantity of water available for the growth of vegetation (Rodriguez-Iturbe, 2000), as well
as the recharge of deep aquifers (Hodnett and Bell, 1986); (ii) the saturation of soils20

which controls the partitioning of rainfall between runoff and infiltration (Merz and Plate,
1997). In meteorology, the soil moisture content has a great impact on the transfer of
energy from the surface into the atmosphere since it controls the evapotranspiration
fluxes (Entekhabi et al., 1996).

An accurate estimation of soil moisture is difficult to obtain since it is highly variable in25

both space and time (Western and Blöschl, 1999). The two main sources of soil mois-
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ture information come from ground-based and remote sensing estimations. In the field,
data can be obtained from gravimetric sampling, this gives the most accurate mea-
surement of the soil water content but is obviously not suitable for automation. Probes
(Neutron or Time Domain Reflectometry) can be easily calibrated to also provide an ac-
curate and possibly automated estimation of soil moisture. Ground observations have5

helped to document soil moisture patterns at plot to hillslope scales (less than 1 km2)
in different regions of the world (e.g. Grayson et al., 1997; McNamara et al., 2005;
De Lannoy et al., 2006; Hébrard et al., 2006). However, when catchment scales are
of interest, one is rapidly confronted with scaling issues (Western and Blöschl., 1999)
since ground measurements provide soil moisture estimation limited (i) to small spatial10

support (from few centimetres for probes, to 1 m for gravimetric sampling) and (ii) to
relatively small areas (extension in the order of a few hectares) since the implemen-
tation of a probe network of large extent is subject to obvious logistical and economic
constraints.

Remote sensing of soil moisture from satellites is a promising alternative to ground15

measurements. Microwave frequencies are most often used, both in active (scatterom-
eter or SAR) and passive (radiometer) instruments, to estimate soil moisture (see Wag-
ner et al., 2007 for a detailed review). The advantage of microwave remote sensing is
that it provides extended soil moisture estimations, gridded on averaged surface (foot-
print) from tens of metres to 50 km resolution, scales more suitable for catchment20

hydrology. However microwave estimations are only representative of the top few cen-
timeters of soil, provided that the vegetation is not too dense, and the data availability
is often dependent on a low frequency repeat cycle at a point (from 1 day to several
weeks depending on the satellite).

Due to the uncertainties associated with the estimation of soil moisture, Kostov and25

Jackson (1993) suggest that the ideal approach for estimating soil moisture is to com-
bine soil moisture measurements with hydrological models by using assimilation tech-
niques. In fact, remotely sensed soil moisture is often directly assimilated into hydro-
logical models (Ottlé and Vidal-Madjar,1994; Pauwels et al., 2002; Aubert et al., 2003;
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Parajka et al., 2006) or into land surface schemes (Bruckler and Witono, 1989; Houser
et al., 1998; Reichle et al., 2001; Walker et al., 2001) in order to initialize, drive, up-
date and/or re-calibrate models, with the main objective of improving the simulations
of river discharges or atmospheric fluxes respectively. However, very few studies in
the literature compare the estimations of soil moisture from remote sensing with the5

estimations from hydrological models (Biftu and Gang, 2001; Parajka et al., 2006).
One must however be able to know a priori the compatibility between the model and
remotely sensed soil moisture estimations to better evaluate the effective potential of
(i) hydrological models to provide back-calculated estimations of soil moisture for eval-
uating remotely sensed soil moisture, followed by the use of physical disaggregation10

tools to improve the low resolution typical of remotely sensed soil moisture fields, (ii)
remotely sensed soil moisture estimates to be assimilated into hydrological models.
Wagner et al. (2003) point out the necessity of comparing remotely sensed soil mois-
ture with independent data derived from ground observations, models and/or other
remote sensing techniques. Blyth (2002) mentions the necessity of modelling the soil15

moisture in detail and intercomparing models and data. Pellenq et al. (2003) argue
that it is essential to accurately understand all the processes involved in the soil mois-
ture variability and their scale interactions. For that purpose, Western et al. (2002)
point out the potential of process-based hydrological models that explicitly represent
the dynamic and the spatial scales of the processes that control the soil moisture.20

In the present study, we compare two independent approaches of soil moisture esti-
mation on a regional size catchment in South Africa (Liebenbergsvlei, 4625 km2). The
first estimations are derived from the physically-based distributed hydrological model
TOPKAPI (Liu and Todini, 2002). The second estimations are derived from the scat-
terometer on board on the European Remote Sensing satellite ERS.25

The region, data and hydrological model are presented in Sect. 2. In Sect. 3, the
capacity of the TOPKAPI model to mimic the discharges on the studied catchment is
evaluated. In Sect. 4, the modelled and remotely sensed soil moisture estimates are
compared. The results are discussed in Sect. 5.
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2 Region, data and hydrological model

2.1 Characteristics of the Liebenbergsvlei catchment

The Liebenbergsvlei catchment (4625 km2) is located in the Free State province of
South Africa (Fig. 1). The climate is semi-arid, characterized by a mean annual rain-
fall between 600 and 700 mm and a mean annual evapotranspiration between 14005

and 1500 mm. The landscape is characterized by (i) hillslopes and steep relief in the
southern part of the catchment which corresponds to the border of the Lesotho and
the Maluti mountains, (ii) grassland and cropland over the bulk of the catchment since
farming is the main activity in the region. These features are shown in the two first
digital maps of Fig. 2a (Digital Elevation Model-DLSI, 1996; and Landcover/use-GLCC,10

1997). Information about soil properties is also available (Fig. 2a, Soil type-SIRI, 1987;
Soil texture-Midgley et al., 1994).

2.2 Hydrologic data set

Rainfall and flow data

Hydrological data are available on the catchment (Fig. 3). A unique rain gauge network15

consisting of 45 tipping bucket rain gauges provided 5 min. time step ground rainfall
measurement for the period 1993–2002.

Two flow gauges (labelled 1 and 2 in Fig. 3) are available at the outlet of the catch-
ment and further upstream, with unequal data availability and quality between 1993
and 2001. External flows arrive from Lesotho via an inter-basin transfer, beginning in20

September 1997. These inter-basin transfer flows are recorded at a station located
at the outlet of the transfer tunnel (labelled 3 in Fig. 3). The quality of the flow data
stations 1 and 2 has improved since 2002, but the recent flow data are not considered
since the dense rain gauge network was no longer operational after the year 2002.
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Satellite derived soil moisture data

The remotely sensed soil moisture estimates used in this study are derived from scat-
terometers on-board of the satellites ERS-1 and ERS-2 (Wagner et al., 2003). The
ERS scatterometer is a C-band radar (5.3 GHz), operational since 1991 up to at least
2007, which has acquired data with a spatial resolution of 50 km with a vertical polar-5

ization at a 25 km grid spacing. Global coverage is achieved by the satellite every 3 or
4 days on average, but since the ERS scatterometer is in operational conflict with the
ERS Synthetic Aperture Radar, only a part of the coverage is effectively available for
scatterometer measurements. The repeat cycle at one point is thus 7 days on average,
varying irregularly from 3 to 10 days. ERS scatterometer grid points over the Lieben-10

bergvlei are represented by the red crosses on Fig. 3. Over Southern Africa, ERS data
are available until 2000.

Scatterometer microwave radiation data are very sensitive to the moisture content of
the surface soil layer due to the strong variation of the dielectric constant of the soil with
water content. However other factors influence the scatterometer backscatter signal.15

Retrieval soil moisture methods must mainly take into account the effects of vegeta-
tion, surface roughness and heterogeneous land cover. The retrieval method technique
adopted for the data used here is based on the change detection method proposed by
Wagner et al. (1999a). To account for effects of roughness and heterogeneous land
cover, the lowest and highest values of backscatter coefficients are determined (re-20

spectively σ0
dry and σ0

wet) on the nine-year measurement period 1992–2000. The two
limiting reference values are assumed to be representative of the vegetated land sur-
face under respectively dry and saturated soil conditions. The measured backscatter
coefficients are then compared to σ0

dry and σ0
wet, resulting in the definition of topsoil

moisture contents ms (<5 cm) interpreted as a relative quantity ranging between 0 and25

1 (respectively, 0–100%), scaled between zero soil moisture and saturation. At any
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time t, ms is then defined as:

ms (t) =
σ0 (t) − σ0

dry

σ0
wet − σ0

dry

(1)

The effects of plant growth and decay are taken into account through the application
of varying seasonally σ0

dry and σ0
wet values as proposed by Wagner et al. (1999b). This

method exploits the multi-incidence capabilities of the ERS scatterometer to describe5

the effect of enhanced volume scattering in the vegetation layer and the corresponding
decrease of the ground scattering contribution.

2.3 The hydrological model TOPKAPI

TOPKAPI is an acronym which stands for TOPographic Kinematic APproximation and
Integration and is a physically-based distributed rainfall-runoff model. In the original10

version proposed by Liu and Todini (2002), TOPKAPI consists of five main modules
comprising soil, overland, channel, evapotranspiration and snow modules. The first
three are modules in the form of non-linear reservoirs controlling the horizontal flows.
The reservoir equations are approximated by the kinematic wave model differential
equations at a point. The well-known point-scale differential equations are then analyti-15

cally integrated in space to the finite dimension of a grid cell, which is taken to be a pixel
of the digital elevation model (DEM) that describes the topography of the catchment.
The evapotranspiration module implemented for this study has been slightly modified
compared to the original module presented in Liu and Todini (2002). The snow module
component is ignored in the present study as the influence of snow can be neglected20

for the Liebenbergsvlei catchment.

Model assumptions

The TOPKAPI model is based on six fundamental assumptions (Liu and Todini, 2002):
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1. Precipitation is constant in space and time over the integration domain (namely
the single grid cell or pixel and the basic time interval, usually few hours).

2. All precipitation falling on the soil infiltrates, unless the soil is already saturated
(Dunne, 1978).

3. The slope of the groundwater table coincides with the slope of the ground.5

4. Local transmissivity, like horizontal subsurface flow in a cell, depends on the inte-
gral of the total water content of the soil in the vertical.

5. In the soil surface layer, the saturated hydraulic conductivity is constant with depth
and, due to macro-porosity, is much larger than in deeper layers.

6. During the transition phase, the variation of water content in time is constant in10

space.

Ordinary Differential Equations controlling the reservoir flows

The equations of each of the three reservoirs (soil, overland and channel) that compose
a cell i can be written as a classical differential equation of continuity:

dVi
dt

= Qin
i −Qout

i (2)15

where all the variables are observed at time t: Vi is the total volume stored in the
reservoir, dVi

dt is the rate of change of water storage, Qin
i is the total inflow rate to the

reservoir, Qout
i is the total outflow rate from the reservoir.

The kinematic wave approach used to resolve the continuity and mass balance in
TOPKAPI (by neglecting the dynamic acceleration terms in the energy equation) leads20

to a nonlinear relationship between Qout
i and Vi , turning Eq. (2) into to an ordinary

differential equation (ODE) of the form:

dVi
dt

= Qin
i − biV

α
i (3)
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where bi is constant in time (it frequently varies spatially) and is a function of the
geometrical and physical characteristics of the reservoir. bi also depends on the ex-
ponent coefficient α which originates from either the infiltration equations describing
soil reservoir behaviour or from Manning’s equations used in the overland and channel
reservoir specifications (see Liu and Todini, 2002 for more details about the theoretical5

basis). For the three reservoirs (soil, overland and channel), the expressions of bi and
α are reported in Table 1. Depending on the type of reservoir, Qin

i is a combination of
the forcing variables (interconnecting flows between the elemental storage reservoirs
within the cell and from upper connected cells and including rainfall and evapotranspi-
ration in the case of the soil reservoir; Table 2).10

At each simulation time step, the inflow rate Qin
i is computed, assumed to be a con-

stant over the interval, then the ODE equation is solved by numerical integration. In this
application of TOPKAPI a combination of a quasi–analytical solution (proposed by Liu
and Todini, 2002) with a numerical integration procedure based on the Runge-Kutta-
Fehlberg method was used (Gerald and Wheatley, 1992). This fast, numerically stable15

and accurate hybrid scheme was used to integrate the appropriate variations of Eq. (3)
over the time interval ∆t, dependent on the initial volume stored in the reservoir at time
t, to obtain the volume Vi (t+∆t) stored at t +∆t. This solution of Eq. (3) differs from the
method recommended by Liu and Todini (2002) and was chosen after carefully exam-
ining the ability of the various solutions to numerically satisfy the continuity equations20

at each time step and in each cell. In Table 2 all the variables that are computed for
each reservoir from the ODE finite difference solution showing the reservoir and cell
connectivity are reported. Table 2 is associated with Fig. 4 which illustrates the fluxes
and connections for a typical modelled cell.

Evapotranspiration25

The evapotranspiration module was slightly modified from the original version of Liu
and Todini (2002). In the channel, the evaporation is extracted at the rate of the po-
tential evaporation of a free surface of water. On the hillslopes, the actual evapotran-
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spiration is computed as a proportional ratio of the reference crop evapotranspiration
depending on a constant crop factor kc and the current saturation of the reservoir com-
puted at each time step.

3 Comparison between modelled and observed discharges

3.1 Modelling features5

Selected period

From the data set presented in Sect. 2.2, two seasons of eight months were selected
during which the rainfall and flow data were both continuous and of good quality. The
first season (Season 1) between November 1993 and June 1994 was used to ad-
just the parameters of the TOPKAPI model. The second season (Season 2) between10

November 1999 and June 2000 is used in Sect. 3.2 as a model verification period. In
both seasons the modelled soil moisture is compared with the corresponding remotely
sensed soil moisture in Sect. 4.

Model resolution

The model spatial resolution was imposed by the desire to use a freely available DEM at15

1 km (DLSI, 1996; see Sect. 2.1). A 6 h time step was chosen which is small enough to
model the main discharge variations, since the catchment response time is estimated
to be between 1 and 2 days.

Forcing variables

For the two seasons considered in this study, the 6 h time step rainfields were kriged at20

1 km resolution by using a climatological spherical variogram with range of 30 km and
a zero nugget (Wesson and Pegram, 2006).
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As no evapotranspiration data are available for the simulated periods on the catch-
ment, the mean annual evapotranspiration over the region was used and disaggregated
at a daily time step, according to a mean seasonal signal determined by McKenzie and
Craig (1999).

3.2 TOPKAPI parameter adjustment5

A priori estimation of the parameters

Because of its physical basis, the model parameters can be estimated a priori from the
catchment characteristics (Liu and Todini, 2002). The priori values or range of values
of the parameters of the model are reported in Table 3, as well as the data and/or
literature references that were used to infer the values. Among the 13 parameters of10

the TOPKAPI model, 7 are spatially variable. As a complement to Table 3, Fig. 2b
shows the maps of the spatially variable parameters and their link to the data available
over the Liebenbergsvlei catchment (Fig. 2a). A Geographical Information System
was used in junction with the DEM in order to (i) compute the slope (tan(β)) of each
cell (ii) delineate the stream network and (iii) compute the Strahler orders of each15

channel reach (Strahler, 1957). The ordering method of Strahler is used to infer the
values of the channel roughness Manning’s coefficients nc. In Liu and Todini (2002),
channel orders of 1, 2, 3 and 4 were assigned values of 0.045, 0.04, 0.035 and 0.035
for the Upper Reno catchment in Italy. In the absence of any information about the
channel reach properties, these values were assumed to be suitable as starting values20

for the Liebenbergsvlei catchment. The values of the overland roughness Manning’s
coefficient no were derived from the landuse/cover map (GLCC, 1997), using the tables
in Chow et al. (1988). Maps of soil depths L and saturated soil moisture θs were already
available over the catchment in the data set of soil properties (SIRI 1987). The residual
soil moisture θs and the hydraulic conductivity at saturation Ks were derived from the25

soil texture map (Midgely et al., 1994) according to parameter tables for the Green-
Ampt infiltration model (Maidment, 1993). As in Liu and Todini (2002), the pore-size
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distribution parameter αs was uniformly set to the value 2.5. A sensitivity analysis (not
presented here) showed that varying the value of αs in the realistic range of its values
(between 2 and 4 according to Liu and Todini, 2002) had only a small influence on
the simulations. As a first approximation, and because of the relatively homogeneous
cropland/grassland landcover, the crop factor kc was assumed to be spatially uniform5

over the catchment and equal to 1.
The other parameters concern the channel geometry. The threshold value of the

area over which the water is considered to be drained in a channel (Athreshold) was fixed
at 25 km2 after checking the limit of the streams with those shown on 1:250 000 maps.
The minimum and maximum width of the channel (respectively Wmin and Wmax) were10

fixed at respectively 5 m and 35 m (estimation from pictures taken at the flow station). A
linear relationship between the drained area and the channel width at a point proposed
by Liu and Todini (2002) was used to determine the channel width along the catchment.

Because of the uncertainty in the estimation of the catchment’s characteristics from
a priori datasets, a calibration was required.15

Calibration procedure

The method used to calibrate the model was inspired by the Ordered Physics-based
Parameter Adjustment method (OPPA) proposed by Vieux et al. (2004). This method
aims to calibrate the physically distributed hydrological model parameters in a specific
order. First the parameters controlling the production of the runoff are adjusted such20

that a discharge volume objective function is minimized. Then the parameters con-
trolling the runoff routing are adjusted such that a discharge timing objective function
is minimized. According to a sensitivity analysis of the model parameters (not shown
here, but also in accordance with the work of Liu et al., 2005), the most important pa-
rameters controlling the production in TOPKAPI are the soil depth L and the soil con-25

ductivity Ks, while the timing of runoff is mainly controlled by the Manning roughness of
the channel nc and of the overland surfaceno. In the absence of any quantitative infor-
mation, the initial soil moisture Vs initial, which was shown to have a strong influence on
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the simulations, was also calibrated. Ten values of mean catchment saturation between
1 and 90% were tested.

In order to have realistic patterns of initial soil moisture fields that preserve the most
likely spatial distribution of soil moisture on the catchment, the model was run with the
a priori parameters and zero rainfall input. The initial soil saturation of the catchment5

was 100% (meaning that each cell was 100% saturated). At each 6 hourly simulation
time step, the mean catchment saturation was calculated. From these simulations,
10 soil moisture maps were extracted corresponding as closely as possible to mean
saturation levels regularly spaced between 90% and 1%. These maps were used as
reference initial soil moisture maps.10

As suggested by Vieux et al. (2004) and by most of the studies dealing with the cali-
bration of distributed hydrological models, the parameters are not tuned independently
for each cell, but the parameter map is calibrated by using a multiplicative factor applied
uniformly in space. For our application the four multiplicative factors to be applied were
facL (for the soil depth), facKs (for the hydraulic conductivity), facno (for the overland15

roughness) and facnc (for the channel roughness).
The trio of parameters (facL, facKs, Vs initial) and the pair of parameters (facno, facnc)

were calibrated independently, after verifying that they were effectively independent,
meaning that their variation influenced exclusively (respectively) the production and the
timing of runoff. The triplet (facL, facKs, Vs initial) was adjusted in order to minimize the20

Root Mean Square Error (RMSE) objective function comparing modelled and observed
discharge volumes aggregated at a monthly time step. Then the pair (facno, facnc) was
adjusted using the regression coefficient (R2) in order to match the timing of observed
and modelled discharges at a 6 h time step.

In order to reduce the computation time required by the calibration procedure, the25

calibration was carried out using the flows estimated at the station 2 (see Fig. 3). At
this station, the drainage area is 3563 km2, which effectively preserves the main soil
heterogeneity of the entire catchment.
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3.3 Results

Figure 5a shows the results of the calibration. There is a good correspondence be-
tween observed and modelled hydrographs (Nash efficiency of more than 0.8). In
Table 3 the values of the four calibrated multiplying factors are reported. It is worth
noting that all the values of the parameters estimated a priori were quite appropriate5

except for the soil conductivity which has been increased by a factor 100; (this aspect
will be discussed in Sect. 5). The initial soil moisture was also adjusted by calibration
to a mean value of 40% over the catchment.

As a verification of the relevance of the calibration procedure and its effect on other
discharge time series, the calibrated model was applied to the entire catchment. For10

the same season (Season 1) the observed and modelled discharges at the outlet of
the catchment (Station 1) are plotted in Fig. 5b. Globally, there is once again a good
correspondence between observed and modelled flows, however at some points, the
observed data seem to be unreliable since some peaks recorded at Station 2 do not
appear as they should at the outlet and the recession shape of the main peak discharge15

seems somewhat unrealistic. In order to check the verification procedure on more
reliable data, the model was then applied to an independent season (Season 2). During
this season, the discharges are influenced by the inter-basin transfer flows arriving
from Lesotho. In order to reliably compare the modelled and observed discharges, the
external flows observed at Station 3 were injected at the location the closest to Station20

3. Again in absence of any information about the initial soil moisture, the value of
40% calibrated for Season 1 was assumed to be applicable for Season 2. Results are
plotted in Figs. 5c and d. Again, good simulations of the hydrographs were obtained
even if the main peak discharges are slightly underestimated. One can also note that
the timing of the flows is remarkable, especially at the beginning of the season, when in25

absence of rainfall, the flows are mainly explained by the external flows that are routed
from the upper part of the catchment; these appear pulsed because of hydropower
generation.
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4 Comparison of remotely sensed and modelled soil moisture

4.1 Definition of a remotely sensed and modelled Soil Water Index (SWI)

As already noted in Sect. 2.2, the remotely sensed soil moisture estimation is repre-
sentative of the relative water content of the first 5 centimetres of topsoil effectively
‘seen’ by the scatterometer. However, for the purpose of the present study, which is5

to compare the soil moisture as modelled by TOPKAPI and the remotely sensed soil
moisture, the variable of concern is the soil moisture in the entire soil layer.

In order to provide a reliable comparison, the soil moisture in the whole soil layer
must thus be obtained from the surface soil moisture estimated by the satellite. The
method used here to estimate the soil moisture profile in the soil horizon was proposed10

by Wagner et al. (1999c). It is a simple conceptual infiltration model based on an
exponential filter, temporally smoothing the signal of the (instantaneously estimated)
relative surface soil moisture to give the Soil Water Index, SWI:

SW I (t) =

∑
i
ms (t)e−(t−ti )/T

∑
i
e−(t−ti )/T

for ti ≤ t (4)

where ms is the surface soil moisture estimate from the ERS scatterometer defined15

in Eq. (1). T represents a characteristic time length depending to the soil properties
(mainly soil depth, diffusivity and moisture state). To maintain the crucial independence
of the physically based approach of TOPKAPI and the remotely sensed soil moisture
estimates, it was decided not to refine the estimation of the parameter T for the par-
ticular study area by using the soil data. Thus the value of T=20 days, suggested by20

Wagner et al. (1999c) as an average value, was retained.
A surrogate for SWI can easily be defined for TOPKAPI by computing the soil satu-

ration at each catchment cell, for each time step of the simulation.
Two different scales are considered to make the comparison between the modelled
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and remotely sensed soil moisture. The first is the catchment scale, at this scale: (i) the
mean catchment SWI is computed from the hydrological model by averaging over the
catchment the SWI computed at each cell, (ii) the mean catchment SWI is computed
from the scatterometer data, by averaging over the catchment the SWI computed for
the scatterometer grid points in and surrounding the catchment (the average being5

weighted according to Thiessen polygons). The second scale is the scatterometer
footprint scale, which is smaller than the catchment scale. This corresponds to the
original scatterometer resolution defined by a circle of diameter 50 km. The footprint
SWI is computed from the hydrological model by averaging the SWI computed at each
cell within the footprint. In order to make a robust comparison, only the three footprints10

showing the largest areal coverage of the catchment were considered

4.2 Results

At catchment scale

The modelled and remotely sensed mean catchment SWI are compared in Figure 6 for
the two modelled seasons, at the time step of ten days imposed by the ERS sampling15

interval. There is a very good correspondence between the two SWI estimates, as
illustrated by the regression coefficients (R2) of 0.780 for the first season and 0.922
for the second season. According to the regression equation, a slight relative bias
is observed (which seems to be independent of the season) that is likely to be due to
uncertainties in the estimation of the dry and wet reference backscatter values σ0

dry and20

σ0
wet used for the calculation of the remotely sensed surface soil moisture value (Eq. 1).

Despite this, the order of magnitude of the remotely sensed and the modelled SWI is
still very similar. As an interesting example, the value of the initial soil moisture, which
has been calibrated at 40%, could have been estimated by using the remotely sensed
value. This result is very encouraging since the initialization of hydrological models25

after a dormant period remains a constant problem in hydrology.
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At footprint scale

Figures 7 and 8 show respectively the remotely sensed and the modelled SWI at foot-
print scale and the associated scatter plots. The results show that the good corre-
spondence already found at catchment scale is retrieved at the smaller scale of the
footprint. The correlations are still very good (greater than 0.7), while according to the5

regression equations, the bias between the two SWI is relatively stable and appears to
be independent of season and location.

5 Discussion and conclusion

The paper aimed to compare, for the purpose of corroboration, not validation, two
independent approaches used to estimate soil moisture at the scale of a region-sized10

catchment (Liebenbergsvlei, 4625 km2, South Africa). The first estimation was derived
from physically based hydrological modelling of the catchment using the TOPKAPI
model (Liu and Todini, 2002) and the second was derived from the remotely sensed
observations of the scatterometer on board on the ERS satellite.

A calibration procedure of the TOPKAPI model has been carried out consisting of15

the adjustment of the four most sensitive parameters of the model according to runoff
production and routing. The results of the calibration showed that the values of the
parameters of the TOPKAPI can be estimated a priori with a very good reliability from
information about the topography and the soil properties associated to parameter ta-
bles from the literature. The exception was the hydraulic conductivity at saturation,20

which had to be multiplied by a factor 100 to capture the phenomenon of lateral flows
in the subsurface. A very good agreement was found between observed and modelled
hydrographs of the Liebenbergsvlei catchment for both calibration and verification pe-
riod.

Obviously one can argue that such a multiplying factor of Ks is not physically realis-25

tic. However, one has to be aware that the values of Ks estimated a priori were derived
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from Green-Ampt infiltration model tables that are associated with the local scale of a
column of soil and for vertical infiltration fluxes. The alternative behavior of the hori-
zontal hydraulic conductivity has already been reported in the literature, particularly by
the developers and users of TOPMODEL (Beven and Kirkby, 1979; Beven, 1997) and
is mainly attributed to the fact that the lateral fluxes controlled by the topography are, in5

the subsurface, likely to occur in preferential paths (macropores, root pipes, soil cracks
etc.). The calibration procedure tends to show that rapid flows in preferential paths are
effectively dominant in the Liebenbergsvlei catchment. Another reason might be that
the production of runoff can also be due to infiltration excess mechanisms (or Hortonian
processes). Such processes are indeed likely to occur especially in semi-arid areas,10

as in the Liebenbergsvlei catchment. The difficulty of the model to respond to observed
precipitation in the beginning of the wet season is probably linked to the production of
Hortonian runoff, when the soils are dried and potentially crusted and the vegetation is
not fully developed. However, the assumption of the predominance of subsurface flows
and the associated saturation excess runoff production seems to be realistic in the15

area for the major part the season. Some field experiments have been conducted at
the hillslope scale in the region which tend to confirm that saturation excess production
of runoff is predominant (C. Everson, 2007, personal communication). These experi-
ments suggest that the TOPKAPI hypothesis and the calibrated hydraulic conductivity
are quite realistic on the Liebenbergsvlei catchment. It is also worth noting that a part20

of this increase of the hydraulic conductivity could be explained by the resolution of
1 km used to implement the model. Martina (2004) identified the 1 km resolution as the
upper limit of physical scale above which the TOPKAPI model parameters no longer
match the physics.

The comparison between the modelled and the remotely sensed soil moisture es-25

timates were done using the computation of the Soil Water Index (SWI) which is the
relative soil moisture through the soil depth. As the satellite only provides soil moisture
for the topsoil layer (first 5 centimeters), a conceptual infiltration model developed by
Wagner et al. (1999c) was applied to the surface soil moisture estimates in order to
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estimate a remotely sensed SWI. The comparison between the modelled and remotely
sensed SWI was shown to be very good with regression coefficient greater than 0.7.

One can of course question the reason for such a good correspondence between
the two independent soil moisture estimates. This is likely due to three main reasons:

1. The Soil Water Index is considered in the present study, meaning the relative5

water content along the soil depth. Many studies focus on vertical transfers (Soil
Vegetation Atmosphere Transfer model) but ignore the lateral transfers (horizontal
subsurface flows) that occur in the soil layer and partly control the soil moisture.
In the present study, the lateral transfers are explicitly modelled by the TOPKAPI
model to represent the subsurface flow processes.10

2. The scatterometer estimations are very sensitive to the vegetation and are better
in less vegetated regions (Wagner et al., 1999b). In the Liebenbergsvlei, the
grassland and cropland surfaces are likely to result in reliable estimates of soil
moisture from this source.

3. The remotely sensed SWI comes from a conceptual infiltration model (Wagner et15

al., 1999c) whose parameters seem to be quite suitable for the study area.

4. The raingauge network is characterized by a very high spatial density of well
calibrated pluviometers that gives a reliable estimation of the precipitation amount
at the catchment scale.

The results obtained at this stage are thus very encouraging for (i) hydrological mod-20

elling and the possibility of using remotely sensed soil moisture to validate the models
and also to initialize them; assimilation of the remotely sensed soil moisture data into
hydrological models during simulations is also an exciting possibility, (ii) remote sens-
ing and the possibility of using physically based hydrological models to validate and
disaggregate the soil moisture estimations down to fine spatial scales.25

Further research will aim to improve the modelling of the vertical fluxes that explic-
itly represent the vertical water transfers in the soil and will allow direct comparison
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between the remotely sensed soil moisture at the surface (first 5 centimeters of soil)
without being dependant on the conceptual infiltration model used in the present study
to infer the soil moisture profile from the surface remotely sensed soil moisture. Such a
complete physically based model should help to better understand the processes that
control the soil moisture patterns at regional scale and will be applied as a physically5

based soil moisture back-calculation and disaggregation tool.
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Table 1. Expressions and/or typical values of the coefficient bi and α of Eq. (3) for each
component store in a cell.

Reservoir bi α

Soil bi =
Csi

X

X 2α with Csi
=

LiKsi
tan(βi )

(θsi
−θri )

α
Lα
i

where:
-Li is the soil depth
-Ksi

is the saturated hydraulic conductivity
–tan (βi ) is the tangent of the ground slope βi
-θsi

is the saturated soil moisture content
-θri

is the residual soil moisture content

α = αs
with
2 ≤ αs ≤ 4
Where αs is a pore-size distri-
bution parameter (Brooks and
Corey, 1964)

Overland bi =
Coi

X

X 2α with Coi
= 1

noi

√
tan (βi )

-noi
is Manning’s roughness coefficient

-tan (βi ) is the tangent of the ground slope βi

α = αo = 5/
3

Channel bi =
Cci

Wi

(XWi )
α with Cci

= 1
nci

√
tan (βi )

- Wi is the width of the channel
-nci

is Manning’s roughness coefficient
-tan (βi ) is the tangent of the ground slope βi

α = αc = 5/
3
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Table 2. Variables computed at each cell i between time t and ∆t : see Fig. 4 for flow paths.

Initial value:
Volume
at t

Inflow rates
during [t, t+∆t]

ODE solution:
Volume
at t+∆t

Outflow rates
during [t, t+∆t]

Flow partitioning:
Flow rate to next cell
during [t, t+∆t]

Soil Vsi (t) Qin
si
= PiX

2 +Qup
si

+Qup
oi

Vsi (t + ∆t) Qout
si

= Qin
si
− Vsi (t+∆t)−Vsi (t)

∆t To next soil reservoir Qout
si

−
Qexcess

si
− Wi

X Qout
si

Overland Voi
(t) Qin

oi
= Qexcess

si
= max

(
0, Qout

si
−Qsmax i

)
with Qsmaxi

= XKsi
Li tan (βi )

Voi
(t + ∆t) Qout

oi
= Qin

oi
− Voi (t+∆t)−Voi (t)

∆t To next soil reservoir Qout
oi

−
Wi
X Qout

oi

Channel Vci
(t) Qin

ci
= Qup

ci
+ Wi

X Qout
si

+ Wi
X Qout

oi
Vci

(t + ∆t) Qout
ci

= Qin
ci
− Vci (t+∆t)−Vci (t)

∆t To next channel
Qout

ci
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Table 3. Values of the TOPKAPI model parameters estimated a priori from data and literature,
and values of multiplying factors used for the calibration procedure.

 

Table 3: Values of the TOPKAPI model parameters estimated a priori from data and 

literature, and values of multiplying factors used for the calibration procedure. 

Parameter 
Value 

a priori 

Origin and 

references 

Calibrated 

multiplying 

factor 

value 

Spatially variable (cf. Figure 2b) 

Surface Slope tanβ  1.7E-4–1.81E-1 DEM (DLSI,1996)  

Depth of surface soil layer (m) L 0.33–0.81 
Soil type map 

(SIRI,1987) 
facL 1.1 

Saturated hydraulic conductivity 
(m.s-1) 

Ks 1.67E-6–5.18E-4 

Soil texture map 

(Midgley et al., 1994) 

+ Maidment (1993) 

facKs 100. 

Residual soil moisture content θr 0.02–0.09 

Soil texture map 

(Midgley et al., 1994) 

+ Maidment (1993) 

 

Saturated soil moisture content θs 0.41–0.44 
Soil type map 

(SIRI,1987) 
 

Manning’s surface roughness coeff. no 0.025–0.1 

Landuse map (GLCC, 

1997) 

+ Chow et al. (1988) 

facno 1. 

Manning’s channel roughness coeff. nc 0.035–0.045 
Strahler order method 

(Liu and Todini 2002) 
facnc 1.7 

Constant 

Horizontal dimension of cell (m) X 1000 DEM (DLSI,1996)  

Non-linear soil exponent αs 2.5 Liu and Todini (2002)  

Max. channel width at outlet (m) Wmax 35 Field pictures  

Min. channel width for Athreshold (m) Wmin 5 -  

Area required to initiate channel (m2) Athreshold 2500000 -  

Crop factor kc 1. 
Landuse map (GLCC, 

1997) 
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Liebenbergsvlei
(4625 km2)

Africa

South-Africa

Fig. 1. The Liebenbergsvlei catchment (4625 km2) in South Africa.
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DEM 
from DLSI (1996)

Land use/Land cover
from GLCC (1997)

Soil type
from SIRI (1987)

Soil texture
from Midgley et al. (1994)

GIS treatment Liu and Todini (2002) Chow et al. (1988) Maidment (1993)SIRI (1987)

Slope n
channel

n
overland

Soil 
depth

Saturated
Soil 

moisture

Residual
Soil 

moisture

Soil 
conductivity

(a)

(b)

Fig. 2. (a) Catchment characteristics. (b) Estimations a priori of the TOPKAPI model parame-
ters.
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Rain
Gages

Rainfall

Runoff

Soil Moisture

ERS 1/2

2
1

Flow
gages

3

1

2

Liebenbergsvlei
(4625 km2)

3 (Lesotho)

Fig. 3. Hydrological data availability on the Liebenbergsvlei catchment, South Africa.
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Fig. 4. Water balance in the TOPKAPI model (note that for clarity, the evapotranspiration losses
are not represented on the figure).
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CALIBRATION and VERIFICATION

2

1

Season 1 Season 2
(a)

(b)

(c)

(d)

Fig. 5. Modelled and observed hydrographs. Calibration (a) and verification (b, c, d) of the
model at two station and for two distinct 8 month seasons.
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Season 1 Season 2
At catchment scale

R2 = 0.780
y = 0.69x + 21.9

R2 = 0.922
y = 0.75x + 23.6

Fig. 6. Comparison between the modelled and the remotely sensed SWI computed at catch-
ment scale. The white dots are the TOPKAPI estimates at time corresponding to the scatterom-
eter estimates (black dots).
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Season 1 Season 2
At footprint scale

Coverage
59%

Coverage
79%

Coverage
87%

Fig. 7. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scat-
terometer footprint scale.
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Coverage
59%

Coverage
79%

Coverage
87%

Season 2

R2 = 0.783
y = 0.85x + 20.2

R2 = 0.706
y = 0.78x + 20.7

Season 1

R2 = 0.847
y = 0.73x + 25.9

R2 = 0.791
y = 0.65x + 23.0

R2 = 0.877
y = 0.77x + 24.5

R2 = 0.783
y = 0.65x + 22.9

Fig. 8. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scat-
terometer footprint scale (Scatter plots and regression equations).
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