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Abstract

The variable parameter Muskingum-Cunge (MC) flood routing approach, together with
several variants proposed in the literature, does not fully preserve the mass balance,
particularly when dealing with very mild slopes (<10−3). This paper revisits the deriva-
tion of the MC and demonstrates (i) that the loss of mass balance in MC is caused by5

the use of time variant parameters which violate the implicit assumption embedded in
the original derivation of the Muskingum scheme, which implies constant parameters
and at the same time (ii) that the parameters estimated by means of the Cunge ap-
proach violate the two basic equations of the Muskingum formulation. The paper also
derives the modifications needed to allow the MC to fully preserve the mass balance10

and, at the same time, to comply with the original Muskingum formulation in terms
of water storage. The properties of the proposed algorithm have been assessed by
varying the cross section, the slope, the roughness, the space and the time integration
steps. The results of all the tests also show that the new algorithm is always mass
conservative. Finally, it is also shown that the proposed approach closely approaches15

the full de Saint Venant equation solution, both in terms of water levels and discharge,
when the parabolic approximation holds.

1 Introduction

In 1938 McCarthy (1938, 1940) proposed an original “hydrological” flood routing
method, which has become quite popular under the name of the Muskingum approach.20

The attribute “hydrological” to a flood routing model generally indicates that a finite river
reach is taken into account by solving directly for the outflow discharges as a function
of the inflow ones, while all the geomorphological characteristics and the hydraulic
properties of the reach are lumped into a number of model parameters. For instance,
other “hydrological” modelling approaches to flood routing are the Diffusion Analogy25

response function model (Hayami, 1951; Dooge, 1973; Todini and Bossi, 1986); the
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cascade of linear reservoirs (Nash, 1958) whose applicability to flood routing was
demonstrated by Kalinin and Miljukov (1958) or the cascade of non-linear reservoirs
developed as part of the TOPKAPI hydrological model (Liu and Todini, 2002, 2004).

In 1969, Cunge extended the Muskingum method to time variable parameters whose
values could be determined as a function of a reference discharge, by recognizing that5

the original Muskingum approach could be viewed as a first order kinematic approxi-
mation of a diffusion wave model, but then converting it into a parabolic approach by
proposing a particular estimation of its parameter values which would guarantee that
the real diffusion would be equalled by the numerical diffusion.

The method has been widely and successfully used for discharge routing notwith-10

standing the fact that several authors pointed out that the approach displays a mass
balance error that can reach values of 8 to 10% (Tang et al., 1999; Tang and Samuels,
1999). Although many authors worked on the problem of the mass balance inconsis-
tency (Ponce and Yevjevich, 1978; Koussis, 1983; Ponce and Chaganti, 1994; Tang et
al., 1999; Tang and Samuels, 1999; Perumal et al., 2001), a conclusive and convincing15

reason was not demonstrated.
In addition to the lack of mass balance, an even more important inconsistency is gen-

erated by the variable parameter Muskingum, known as the Muskingum-Cunge (MC)
approach, which apparently has never been reported in the literature; if one substitutes
back into the Muskingum equations, the parameters derived using Cunge approach,20

two different and inconsistent values for the water volume stored in the channel, are
obtained.

The above mentioned pitfalls of MC approach have provided the motivation for this
paper and it was deemed essential to revisit the Muskingum-Cunge model in order to
find the causes and possibly to overcome the inconsistencies, since after 37 years from25

its development, the MC method has still a fundamental role in modern hydrology. First
of all, the MC is widely used as the routing component of several distributed or semi-
distributed hydrological models, in which case the preservation of the mass balance is
an essential feature. Moreover, although several (more or less expensive) computer
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packages are available today that solve the full de Saint Venant equations (for instance
SOBEK – Stelling and Duinmeijer, 2003; Stelling and Verwey, 2005; MIKE11 – DHI
Water & Environment, 2000; HEC-RAS – U.S. Army Corps of Engineers, 2005; and
many others) the variable parameter MC, is still widely used all throughout the world
when the lack of knowledge of river cross sections does not justify the use of more5

complex routing models. Another attractive reason is that it can be easily programmed
at practically no cost.

This paper describes the analysis that was carried out and the corrections that were
found to be appropriate. The quality of the new results was then assessed by routing a
test wave, specifically the asymmetrical wave proposed by Tang et al. (1999), through10

three channels with different cross sections (rectangular, triangular and trapezoidal),
by varying the slope, the roughness, the space and time integration intervals. All the
results obtained show that the new approach in all the cases fully complies with the
requirements of preserving mass balance, and, at the same time, of satisfying the
Muskingum equations.15

Finally a comparison with MIKE11 (DHI Water & Environment, 2000) shows that,
when the parabolic approximation holds, the proposed algorithm is capable of closely
approximating the full de Saint Venant equations results both in terms of discharge
and water levels. This is obviously true provided that the original limitations of the
kinematic wave model and of the Muskingum model, in all its variants, are taken into20

account: namely the approach can only be applied in river or channel reaches not
affected by the downstream conditions and backwater effects.

2 The derivation of the Muskingum variable parameter equations

The derivation of the original Muskingum approach is based upon the following two
equations (Eq. 1) written for a channel (or river) reach without lateral inflow.25
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{ dS
dt = I − O (1a)
S = k ε I + k (1 − ε) O (1b)

The first equation (Eq. 1a) represents the mass balance, globally applied to the reach
between the upstream and the downstream sections, while the second one (Eq. 1b)
expresses S [L3], the volume stored in the reach, as a simple linear combination of
I [L3T−1] the inflow discharge at the upstream section and O [L3T−1] the outflow dis-5

charge at the downstream section. In (Eq. 1), k [T ] and ε [dimensionless] are the two
model parameters to be determined from the observations. It will be noticed that the
two Muskingum equations define the storage S and its derivative dS

dt as a function of
the inflow I and outflow O discharges as well as of the two parameters k and ε.

Note that although the original derivation assumes that the very basis of the Musk-10

ingum routing procedure is that the storage consists of both “prism” (level pool) storage
and “wedge” storage that reflects the imbalance between inflow and outflow (e.g. Chow,
1964; Chow et al., 1988), the model can be more proficiently thought of as a two pa-
rameter “lumped” model at the river reach scale, the storage of which can be expressed
at any point in time as in Eq. (1b).15

In the classical derivation of the Muskingum model the second expression in Eq. (1b)
is substituted into the first one to give:

d [k ε I ]
dt

+
d [k (1 − ε) O]

dt
=I − O (2)

and, by assuming that k and ε are constant in time one can write:

k ε
dI
dt

+k (1 − ε)
dO
dt

=I − O (3)

Equation (3) is then solved using a centred finite difference approach by expressing
the various quantities as follows:

I =
It+∆t + It

2
; O=

O
t+∆t

+ Ot

2
;
dI
dt

=
I
t+∆t

− It
∆t

;
dO
dt

=
O

t+∆t
− Ot

∆t
(4)
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Substitution in Eq. (3) of the quantities defined in Eq. (4) yields:

k ε
It+∆t − It

∆t
+ k (1 − ε)

Ot+∆t − Ot

∆t
=

It+∆t + It
2

−
Ot+∆t + Ot

2
(5)

By multiplying both sides by 2∆t the following expression can be found:

2 k ε (It+∆t−I t)+2 k (1 − ε) (Ot+∆t−Ot)= ∆t

(It+∆t+I t)−∆t (Ot+∆t+Ot) (6)

which can be rewritten as:

[2 k (1 − ε)+∆t] Ot+∆t= [−2 k ε + ∆t] I t+∆t5

+ [2 k ε + ∆t] It + [2 k (1 − ε)−∆t] Ot (7)

to give:

Ot+∆t =
−2 k ε + ∆t

2 k (1 − ε) + ∆t
It+∆t +

2 k ε + ∆t
2 k (1 − ε) + ∆t

It +
2 k (1 − ε) −∆t
2 k (1 − ε) + ∆t

Ot (8)

Finally, Eq. (8) can be rewritten as:

Ot+∆t= C1It+∆t+C2It+C3Ot (9)

with the following substitutions:

C1 =
−2 k ε + ∆t

2 k (1 − ε) + ∆t
; C2 =

2 k ε + ∆t
2 k (1 − ε) + ∆t

; C3 =
2 k (1 − ε) −∆t
2 k (1 − ε) + ∆t

(10)

where C1, C2 and C3 are three coefficients subject to the following property:

C1 + C2 + C3 = 1 (11)

as can be easily verified.
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Cunge (1969) extended the original Muskingum method to time variable parameters
whose values could be determined as a function of a reference discharge. The clever
idea of Cunge was to recognize that Eq. (9) of the original Muskingum approach was
formally the same, and could be interpreted either as a kinematic wave model (a first
order approximation of a diffusion wave model) or as a proper diffusive wave model, de-5

pending on the value of the adopted parameters. He also showed how Eq. (9) could be
transformed into a proper diffusion wave model by introducing the appropriate diffusive
effect through a particular estimation of the model parameter values. By expanding the
kinematic model in Taylor series, Cunge (1969) was in fact able to express its numerical
diffusion and to estimate the model parameter values by imposing that the numerical10

diffusion would equal the physical one (for a very clear derivation see Szél and Gáspár,
2000).

Cunge provided expressions for C1, C2 and C3, which can be better expressed, fol-
lowing Ponce and Yevjevich (1978), as:

C1 =
−1 + C + D
1 + C + D

;C2 =
1 + C − D
1 + C + D

;C3 =
1 − C + D
1 + C + D

(12)

in terms of the dimensionless “Courant number” (C) and cell Reynolds number (D),
which is the ratio of the physical and numerical diffusivities, respectively defined as:

C =
c∆t
∆x

;D =
Q

B S0 c ∆x
(13)

where ∆x [L] is the length of the computation interval in wich a river or a channell reach
is divided; ∆t [T ] is the integration time step; B [L] the surface width; S0 [dimensionless]

the bottom slope; Q
[
L3T−1

]
a reference discharge and c = ∂Q

∂A

[
LT−1

]
the celerity.15

Several ways for estimating Q and c have been proposed in the literature (Ponce and
Chaganti, 1994; Tang et al., 1999) giving rise to a wide variety of three or four point
schemes.
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By comparing Eq. (10) and Eq. (12) one can finally derive the expressions for the
two original Muskingum parameters:{

k = ∆t
C (14a)

ε = 1−D
2 (14b)

The model with the two parameters estimated in every computation section of length
∆x and at each time step ∆t according to Eqs. (14a) and (14b) is known as the5

Muskingum-Cunge (MC) method and has been, and still is, widely used all over the
world for routing discharges.

Unfortunately two inconsistencies have been detected in the practical use of MC.
The first one, which relates to a loss of mass was identified by several authors and
widely reported (see for instance Ponce and Yevjevich, 1978; Koussis, 1983; Ponce10

and Chaganti, 1994; Tang et al., 1999, Perumal et al., 2001) and recently interpreted
as inversely proportional to the bed slope (Tang et al., 1999).

The second one, relates to the fact that if one discretises Eq. (1a), to estimate the
storage in the reach, one obtains:

St+∆t = St +
(
It+∆t + It

2
−

Ot+∆t + Ot

2

)
∆t (15)

The same storage can also be estimated by discretising Eq. (1b) and using the values
for k and ε determined from Eq. (14), which gives:

St+∆t = k ε It+∆t + k (1 − ε) Ot+∆t (16)

Astonishingly, no one seems to have checked back the effect of the Cunge variable
parameter estimation on the two Muskingum basic equations. Paradoxically, not only
do the two equations lead to different results, but neither of them is even consistent15

with the steady state conditions.
Without loss of generality, Fig. 1 shows the storage values, computed from Eqs. (15)

and (16), for the base case with rectangular cross-section, which is described in the
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“Numerical experiment” section. From the figure, one can notice that (i) the stored
volume computed using Eq. (15) does not return to the original steady state as a con-
sequence of the above mentioned mass balance inconsistency (in practice the water
is not lost, but rather stored in the channel reach) and (ii) Eq. (16) produces a storage
which is always lower than it should be. In particular, the analysis of the steady state,5

namely when the inflow and outflow discharges are identical and Eq. (16) degenerates
into St+∆t=k It+∆t=k Ot+∆t, reveals that this effect can only be attributed to a wrong
value estimated for parameter k.

In this paper the reasons for the two inconsistencies will be analysed and explained
starting from the above mentioned considerations, and a slightly modified algorithm,10

that does not change the nature and the simplicity of the variable parameter MC
method, will be proposed.

3 Resolving the mass conservation inconsistency

Several authors (Ponce and Yevjevich, 1978; Koussis, 1980; Ponce and Chaganti,
1994; Tang et al., 1999, Perumal et al., 2001) have reported that while the original con-15

stant parameter Muskingum perfectly preserves mass balance, the variable parameter
Muskingum-Cunge suffers from a loss of mass which increases with the flatness of the
bed slope, reaching values of the order of 8 to 10% at slopes of the order of 10−4(Tang
et al., 1999).

Most of the above mentioned authors have tried to find alternative numerical20

schemes to improve the conservation of mass (or continuity), but no real explanation
was ever given for the causes of this loss of mass, since they did not realize that the
actual reason was hidden in the original derivation of the Muskingum equation.

It is interesting to notice that the seed for the modification proposed in this paper
can also be found in a comment by Cunge (2001). As can be seen in his comment,25

Cunge attributes the non-conservation mass to an inaccurate discretization by Tang
et al. (1999), which, on the other hand is fully consistent with the Muskingum model
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formulation given by Eq. (3). Cunge does not seem to realize that the justification for
the different discretization he proposes lies in a different derivation of the Muskingum
model, which allows from the very beginning for the possibility of time variant parame-
ters.

Not enough attention has been paid to the fact that the original derivation of the
Muskingum approach “implies” time constant parameters with the consequence that
Eq. (3) is only valid if k and ε are constant in time, which justifies the use of average
values within a time interval as in Tang et al. (1999) and in most of the cited works.
If one discretises Eq. (3), as was done to derive Eq. (5), it is quite evident that one
is supposed to use constant k and ε in each time-step which creates the situation
illustrated in Fig. 2. As can be seen in the figure, at the boundary between two time
steps (time step 1 between times t−1 and t and time step 2 between times t and t+1)
the inflow and outflow discharges, It and Ot are the same in both time steps. However,
this is not true for the volume stored in the reach, because of the following inequality:

S (2)
t = [kε]2 It + [k (1 − ε)]2 Ot 6= S (1)

t = [kε]1 It + [k (1 − ε)]1 Ot (17)

since [kε]1 and [k (1−ε)]1, the average parameter values in time step 1 are not con-5

strained to be equal to [kε]2 and [k (1−ε)]2, the average parameter values in time
step 2. This will result in a difference that will accumulate over time with the conse-
quent mass conservation inconsistency.

On the contrary, if one assumes that k and ε may vary in time, Eq. (3) is no longer
valid and one has to directly discretise Eq. (2), using the following definitions:10

I '
It+∆t + It

2
; O '

O
t+∆t

+ Ot

2
;
d [k ε I ]

dt
'

∆ [k ε I ]
∆t

=
[kε]t+∆t It+∆t − [kε]t It

∆t
;

d [k (1 − ε) I ]
dt

'
∆ [k (1 − ε) O]

∆t
=

[k (1 − ε)]t+∆t O
t+∆t

− [k (1 − ε)]t Ot

∆t
(18)

Note that the quantities [kε] and [k (1−ε)] appearing in Eqs. (17) and (18) are put in
square brackets to mark that in the sequel these, and not the original k and ε, used in
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the steady-state Muskingum equations, will be considered as the actual time varying
model parameters.

Substitution of the quantities defined in Eqs. (18) into Eq. (2) yields:

[kε]t+∆t It+∆t − [kε]t It
∆t

+
[k (1 − ε)]t+∆t O

t+∆t
− [k (1 − ε)]t Ot

∆t
=

It+∆t + It
2

−
O

t+∆t
+ Ot

2
(19)

as the valid time varying finite difference approximation for the variable parameter
Muskingum approach.

As can be seen from Fig. 3, now not only are the inflow and outflow discharges equal
at the boundary between two time steps, but also the volumes stored in the reach at
that instant are the same when computed in either interval:

S (2)
t = [kε]t It + [k (1 − ε)]t Ot = S (1)

t = [kε]t It + [k (1 − ε)]t Ot (20)

By multiplying both sides of Eq. (19) by 2∆t the following expression is obtained:5

2 [kε]t+∆t I t+∆t−2 [kε]t I t+2 [k (1 − ε)]t+∆t O
t+∆t

−2 [k (1 − ε)]t Ot

= ∆t (It+∆t+I t)−∆t
(
O

t+∆t
+Ot

)
(21)

which can be rewritten as:

{2 [k (1 − ε)]t+∆t + ∆t} Ot+∆t = {−2 [kε]t+∆t + ∆t} It+∆t
+ {2 [kε]t + ∆t} It + {2 [k (1 − ε)]t −∆t} Ot (22)10

to give:

Ot+∆t=
−2 [kε]t+∆t + ∆t

2 [k (1 − ε)]t+∆t + ∆t
It+∆t+

2 [kε]t + ∆t

2 [k (1 − ε)]t+∆t + ∆t
It+

2 [k (1 − ε)]t −∆t

2 [k (1 − ε)]t+∆t + ∆t
Ot

(23)
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Finally, Eq. (8) can be rewritten as:

Ot+∆t = C1It+∆t + C2It + C3Ot (24)

with the following substitutions:

C1 =
−2 [kε]t+∆t + ∆t

2 [k (1 − ε)]t+∆t + ∆t
; C2 =

2 [kε]t + ∆t

2 [k (1 − ε)]t+∆t + ∆t
; C3 =

2 [k (1 − ε)]t −∆t

2 [k (1 − ε)]t+∆t + ∆t
(25)

where C1, C2 and C3 are the three coefficients that still guarantee the property ex-
pressed by Eq. (11). The same parameters can also be obtained in terms of the
Courant number and of the cell Reynolds number:

C1=
−1+Ct+∆t+Dt+∆t

1+Ct+∆t+Dt+∆t
; C2=

1+Ct−Dt

1+Ct+∆t+Dt+∆t

Ct+∆t

Ct
; C3=

1 − Ct+Dt

1+Ct+∆t+Dt+∆t

Ct+∆t

Ct

(26)

after substituting for:{
[kε]t+∆t =

(1−Dt+∆t)∆t
2Ct+∆t

; [kε]t =
(1−Dt)∆t

2Ct

[k (1 − ε)]t+∆t =
(1+Dt+∆t)∆t

2Ct+∆t
; [k (1 − ε)]t =

(1+Dt)∆t
2Ct

(27)

This scheme is now mass conservative, but there is still an inconsistency between
Eqs. (15) and (16).

To elaborate: Eq. (15) now leads to a storage St that is consistent with the steady
state, both at the beginning and at the end of a transient; however, Eq. (16) produces
a result which is always different from the one produced by Eq. (15) and, in addition, is5

also not consistent with the expected steady state storage in the channel.
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4 Resolving the steady state inconsistency

In order to resolve the steady state inconsistency, one needs to look in more detail into
Eq. (16). If one substitutes for [kε] and [k(1−ε)], given by Eq. (14), into Eq. (16) written
for a generic time t (which is omitted for the sake of clarity), one obtains:

S =
∆t
C

1 − D
2

I +
∆t
C

1 + D
2

O (28)

which can be re-arranged as:

S =
∆t
C

O + I
2

+
∆tD
C

O − I
2

(29)

Clearly, ∆t
C

O+I
2 , the first right hand side term in Eq. (29), represents the storage at

steady state, since the second term vanishes due to the fact that the steady state
is characterised by I=O. Consequently, ∆tD

C
O−I

2 , the second right hand side term in
Eq. (29), can be considered as the one governing the unsteady state dynamics.5

In the case of steady flow, when I=O=O+I
2 =Q, under the classical assumptions of the

Muskingum model, together with the definition of discharge Q=Av , with A the wetted
area [L2], and v the velocity [LT−1], the following result can be obtained for the storage:

S = A∆x =
Q
v
∆x = k∗Q (30)

with ∆x the length of the computational interval [L], and k∗=∆x
v [T ] the resulting steady

state parameter, which can be interpreted as the time taken for a parcel of water to
traverse the reach, as distinct from the kinematic celerity or wave speed.

It is not difficult to show that k∗ 6=k. By substituting for C given by Eqs. (13) into
Eq. (14a) one obtains the inequality:

k =
∆x
c

6= ∆x
v

= k∗ (31)
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This is not astonishing since the parabolic model derived by Cunge (1969), describes
the movement, with celerity c, of the small perturbations by means of a partial dif-
ferential equation, while the lumped Muskingum model (after integration in space of
the continuity equation), is based upon an ordinary differential equation describing the
mass movement, with velocity v , of the storage.5

Therefore, if one wants to be consistent with the steady state specialization of the
Muskingum model, one needs to use k∗ instead of k. This can be easily done by defin-
ing a dimensionless correction coefficient β=c/v and by dividing C by β, C∗=C/β= v∆t

∆x
so that k∗=∆t

C∗=∆x
v .

This correction satisfies the steady state, but inevitably modifies the unsteady state
dynamics, since the coefficient of the second right hand side term in Eq. (29) now
becomes ∆tD

C∗ . It is therefore necessary to define D∗=D/β so that:

∆tD∗

C∗ =
∆tD
C

(32)

By incorporating these results, Eq. (27) can finally be rewritten as: [kε]t+∆t =
(1−D∗

t+∆t)∆t
2C∗

t+∆t
; [kε]t =

(1−D∗
t)∆t

2C∗
t

[k (1 − ε)]t+∆t =
(1+D∗

t+∆t)∆t
2C∗

t+∆t
; [k (1 − ε)]t =

(1+D∗
t)∆t

2C∗
t

(33)

These modifications do not alter the overall model dynamics, but allow Eq. (16) to10

satisfy the steady state condition. Figure 4 shows the results of the proposed modi-
fications. The storage derived with Eq. (16) is now identical to the one produced by
Eq. (15) and they both comply with the steady state condition.
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5 The new mass conservative and steady state consistent variable parameter
Muskingum – Cunge method

The formulation of the new algorithm, which will be referred in this paper as the vari-
able parameter Muskingum-Cunge-Todini (MCT) method, is provided here for a generic
cross section, which is assumed constant in space within a single reach.5

A first guess estimate Ôt+∆t for the outflow Ot+∆t at time t+∆t is initially computed
as:

Ôt+∆t = Ot + (It+∆t − It) (34)

Then the reference discharge is computed at times t and t+∆t as:

Qt =
It + Ot

2
(35a)

Qt+∆t =
It+∆t + Ôt+∆t

2
(35b)

where the reference water levels can be derived by means of a Newton-Raphson ap-
proach from the following implicit equations:

yt = y {Qt, n, S0} (36a)

yt+∆t = y {Qt+∆t, n, S0} (36b)

Details of the Newton-Raphson procedure can be found in Appendix B.
Using the reference discharge and water level it is then possible to estimate all the

other quantities at times t and t+∆t.
1563

The celerity c:

ct = c {Qt, yt, n, S0} (37a)

ct+∆t = c {Qt+∆t, yt+∆t, n, S0} (37b)

Note: the actual expressions for the celerity valid for triangular, rectangular and trape-
zoidal cross sections, are given in Appendix C.

The specialization of other necessary parameters follows.

The correcting factor β:

βt =
ct At

Qt
(38a)

βt+∆t =
ct+∆t At+∆t

Qt+∆t
(38b)

The corrected Courant number C∗,:

C∗
t =

ct

βt

∆t
∆x

(39a)

C∗
t+∆t =

ct+∆t

βt+∆t

∆t
∆x

(39b)

and the corrected cell Reynolds number D∗:

D∗
t =

Qt

βtBS0ct∆x
(40a)
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D∗
t+∆t =

Qt+∆t

βt+∆tBS0ct+∆t∆x
(40b)

Finally the MCT parameters are expressed as:

C1=
−1+C∗

t+D
∗
t

1+C∗
t+∆t+D

∗
t+∆t

; C2=
1+C∗

t−D
∗
t

1+C∗
t+∆t+D

∗
t+∆t

C∗
t+∆t

C∗
t

; C3=
1 − C∗

t+D
∗
t

1+C∗
t+∆t+D

∗
t+∆t

C∗
t+∆t

C∗
t

(41)

which yields the estimation of the flow at time t+∆t through the standard formulation:

Ôt+∆t = C1It+∆t + C2It + C3Ot (42)

Note that while it is advisable to repeat twice the computations of Eqs. (35b), (36b),
(37b), (38b), (39b), (40b), (41) and (42), in order to eliminate the influence of the first
guess Ôt+∆t given by Eq. (34), it is only necessary to compute Eqs. (35a), (36a), (37a),
(38a), (39a), (40a) once at time t=0, since for t>0 one can use the value estimated at
the previous time step.5

Once Ôt+∆t is known, one can estimate the storage at time t+∆t as

St+∆t =

(
1 − D∗

t+∆t

)
∆t

2C∗
t+∆t

It+∆t +

(
1 + D∗

t+∆t

)
∆t

2C∗
t+∆t

Ot+∆t (43)

by substituting for [kε] and [k(1−ε)] given by Eqs. (33) into Eq. (16) and by setting
Ot+∆t=Ôt+∆t.

Eventually, the water stage can be estimated, by taking into account that the Musk-
ingum model is a lumped model in space, which means that the water level will rep-
resent the “average” water level in the reach. This differs from the estimation of the10

water stage proposed by Ponce and Lugo (2001) since they incorporate the estima-
tion of the water stage in the four points scheme used to solve the kinematic/parabolic
interpretation of the Muskingum equation, which is not a lumped model.
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Therefore, taking into account the lumped nature of the MCT equation, one can
estimate the average wetted area in the river reach:

Āt+∆t =
St+∆t

∆x
(44)

from which, knowing the shape of the cross section, the water stage can be evaluated:

yt+∆t = y
{
Āt+∆t

}
(45)

Equation (45) represents the average water stage in the reach and, on the basis of the
Muskingum wedge assumption can be interpreted as the water stage more or less in
the centre of the reach. This should not be considered as a problem, given that most
of the classical models (see for instance MIKE11 – DHI Water & Environment, 2000)
in order to produce mass conservative schemes (Patankar, 1980), correctly discretise5

the full de Saint Venant equations using alternated grid points where the water stage
(potential energy) and flow (kinetic energy) are alternatively computed along the river.

6 The role of the “pressure term”

Cappalaere (1997), discussed the advantages of an accurate diffusive wave routing
procedure and the possibility of introducing a “pressure correcting term” to improve its10

accuracy. He also acknowledged the fact that variable parameter Advection Diffusion
Equation (ADE) models (Price, 1973; Bocquillon and Moussa, 1988) do not guaran-
tee mass conservation. He concludes by stating that the introduction of the pressure
term “increasing model compliance with the fundamental de Saint Venant equations
guarantees that the basic principles of momentum and mass conservation are better15

satisfied...”.
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In reality, because the proposed MCT is mass conservative, the introduction of the
pressure term correction has no effect on mass conservation. Nonetheless, the intro-
duction of the pressure correction term, on the basis that the parabolic approximation
uses the water surface slope instead of the bottom slope to approximate the head
slope, certainly improves the dynamical behaviour of the algorithm. This will be shown5

in the sequel through a numerical example.

7 Numerical example

In this study, in addition to the basic channels adopted in the Flood Studies Report
(FSR) (NERC, 1975), namely a rectangular channel with a width B=50 m, a Manning’s
coefficient n=0.035, and a total channel length L=100 km, but with different bed slopes10

S0 ranging from 10−3 to 10−4, a triangular and a trapezoidal channel were also anal-
ysed. Both the triangular and the trapezoidal channels are supposed to be contained
by dykes with a slope ratio (elevation/width) tan (α)=1/5 while the trapezoidal channels
have a bottom width B0=15 m (Fig. 5).

A synthetic inflow hydrograph (NERC, 1975) was defined as

Q (t) = Qbase +
(
Qpeak −Qbase

)[ t
Tp

exp

(
1 − t

Tp

)]β
(46)

where β=16 ; Qpeak=900 m3s
−1

; Qbase=100 m3s
−1

; and Tp=24 h.15

For each cross section (rectangular, triangular and trapezoidal) a reference run was
defined with the following parameters:
S0 =0.00025

n=0.035 m−1/3s
∆x=2000 m20

∆t=1800 s
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In addition, each parameter was perturbed, as in Table 1, in order to analyse its effect
on the preservation of the volume, the peak flow and relevant time of occurrence, the
peak level and relevant time of occurrence.

The results of the experiment are given in Table 2, when the MCT is used without
Cappalaere (1997) proposed correction and in Table 3 when the correction has been5

applied.
As one can see from Tables 2 and 3 in all the examined cases the volume error re-

mains equal to zero, and this is true independent of the use of the correction proposed
by Cappalaere.

Relatively small effects on the peak flow and its time of occurrence, as well as on10

the peak level and the time of its occurrence, are produced by the variation of the
integration time and space steps. The effect induced by the variation of the bed slope
and the friction coefficient is always consistent with that expected.

Figures 6 and 7 show the behaviour of the original variable parameter Muskingum-
Cunge (MC) approach when compared to the MCT and the MCT with the Cappalaere15

correction (MCT+C), for the base case applied to the rectangular channel. It is easy to
note from Fig. 6 that the MC peak discharge is anticipated and much higher than the
ones produced by the MCT and the MCT+C. Moreover Fig. 7 shows how the MC water
level, as opposed to the ones produced by MCT and MCT+C, does not return to the
steady state at the end of the transient.20

Finally to understand the hydraulic improvement obtained by the MCT and the
MCT+C, their results were compared to the ones produced using a full de Saint Venant
approach (MIKE11 – DHI Water & Environment, 2000).

Figures 8 and 9 show the results in terms of discharge and water levels for the
rectangular cross section; Figs. 10 and 11 show the results for the triangular cross25

section; and Figs. 12 and 13 show the results for the trapezoidal cross section. In the
case of the rectangular section the results of the MCT+C perfectly match the results
of MIKE11, while in the case of the triangular and the trapezoidal cross sections, the
results, although not perfectly matching the ones produced by MIKE11, are very good
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approximations.
The differences appearing in these two cases may depend (1) on the difference in the

representation of the wetted perimeter with respect to MIKE11, or (2) on the extension
of the Cappalaere correction to non rectangular channels.

8 Conclusions5

This paper deals with two inconsistencies deriving from the introduction, as proposed
by Cunge (1969), of time variable parameters in the original Muskingum method. The
first inconsistency relates to a mass balance error shown by the variable parameter MC
method that can reach even values of 8 to 10%. This incongruence, has been widely
reported in the literature and has been the objective of several tentative solutions, al-10

though a conclusive and convincing explanation has not been offered. In addition to the
lack of mass balance, an even more important paradox is generated by the variable pa-
rameter MC approach, which apparently has never been reported in the literature. The
paradox is: if one substitutes the parameters derived using Cunge approach back into
the Muskingum equations, two different and inconsistent values for the water volume15

stored in the channel, are obtained.
This paper describes the analysis that was carried out, the explanation for the two

inconsistencies and the corrections that have been found to be appropriate. A new
Muskingum algorithm, allowing for variable parameters, has been derived, which leads
to slightly different equations from the original Muskingum-Cunge ones. The quality of20

the results has been assessed by routing a test wave (the asymmetrical wave proposed
by Tang et al., 1999, already adopted in the Flood Studies Report (FSR, NERC, 1975)),
through three channels with different cross sections (rectangular, triangular and trape-
zoidal), by varying the slope, the roughness, the space and time integration intervals.
All the results obtained show that the new approach, in all cases, fully complies with25

the requirements of preserving mass balance, and at the same time satisfies the basic
Muskingum equations. Finally, the effect of the pressure term inclusion as proposed
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by Cappalaere (1997) was also tested. The results show an additional improvement
of the model dynamics when compared to the solutions using the full de Saint Venant
equations, without any undesired effect on the mass balance and compliance with the
Muskingum equations.

Further research will aim at extending the MCT approach to more complex cross5

sections and at verifying whether the method could even more closely approximate the
full de Saint Venant equations results by modifying the diffusivity through an additional
correction of the friction slope, as proposed by Perumal and Ranga Raju, (1998a, b).

Appendix A
10

Proof that at+∆tbt+∆t−atbt
∆t is a consistent discretization in time of d (ab)

dt

In Eq. (2) the following two derivatives d [k ε I ]
dt and d [k (1−ε) O]

dt must be discretised in
time. It is the scope of this appendix to demonstrate that their discretization leads to
the expression used in Eq. (19).

As can be noticed from Eq. (10), the final Muskingum coefficients C1, C2, C3, do not15

directly depend on k and ε taken singularly, but rather on the two products k ε and
k (1−ε). Therefore, both derivatives can be considered as the derivatives in time of a
product of two terms a and b, being a=k ε and b=I in the first derivative and a=k (1−ε)
and b=O in the second one.

Expanding the derivative d (ab)
dt one obtains:

d (ab)

dt
= a

db
dt

+ b
da
dt

(A1)

which can be discretised in the time interval as follows:

∆ (ab)

∆t
= [θat+∆t + (1 − θ)at]

bt+∆t − bt

∆t
+ [θbt+∆t + (1 − θ)bt]

at+∆t − at
∆t

(A2)
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where θ is a non-negative weight falling in the range between 0 and 1. Since the
Muskingum method is derived on the basis of a centered finite difference approach in
time, this implies that θ=1

2 .
Therefore, Eq. (A2), becomes

∆ (ab)

∆t
=

(at+∆t+at)
2

bt+∆t−bt

∆t
+

(bt+∆t+bt)

2

at+∆t−at
∆t

=5

at+∆tbt+∆t+atbt+∆t−at+∆tbt−atbt

2∆t
+
bt+∆tat+∆t+btat+∆t−bt+∆tat−btat

2∆t

=
2at+∆tbt+∆t−2btat

2∆t
=
at+∆tbt+∆t−atbt

∆t
(A3)

Equation (A3) allows to write:

∆ [k ε I ]
∆t

=
[k ε]t+∆t It+∆t − [k ε]t It

∆t
(A4)

∆ [k (1 − ε) O]

∆t
=

[k (1 − ε)]t+∆t O
t+∆t

− [k (1 − ε)]t Ot

∆t
(A5)

as they appear in Eq. (23) and are then used in the derivation of the MCT algorithm.

Appendix B
10

The Newton-Raphson algorithm to derive y=y {Q,n, S0} for a generic cross
section

In general (apart from the wide rectangular cross section case), when in a channel

reach the water stage y [L] must be derived from a known discharge value Q
[
L3T−1

]
,
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a non-linear implicit problem must be solved. Since a direct closed solution is not
generally available, several numerical approaches to find the zeroes of a non-linear
function can be used, such as the bisection or the Newton-Raphson approaches.

In this case, given that the functions were continuous and differentiable (triangular,
rectangular and trapezoidal cross sections), a simple Newton-Raphson algorithm was
implemented. The problem is to find the zeroes of the following function of y :

f (y) = Q (y) −Q = 0

where Q (y)
[
L3T−1

]
is defined as:

Q (y) =

√
S0

n
A (y)5/3

P (y)2/3

with S0 [dimensionless] the bottom slope, n
[
L1/3T

]
the Manning friction coefficient,

A (y)
[
L2
]

the wetted area and P (y) [L] the wetted perimeter, as defined in Ap-5

pendix C.
The Newton-Raphson algorithm, namely:

yi+1 = yi − f (yi )/f
′ (yi )

allows one to find the solution to the problem with a limited number of iterations starting
from an initial guess y0 and can be implemented in this case by defining:

f (yi ) = Q (yi ) −Q =

√
S0

n
A (yi )

5/3

P (yi )
2/3

−Q

and

f ′ (yi )=
d [Q (y)−Q]

dy

∣∣∣∣
y=yi

=
dQ (y)

dy

∣∣∣∣
y=yi

=
5
3

√
S0

n
A (y)2/3

P (y)2/3

(
B (y)−4

5
A (y)

P (y) sα

)
=B (y) c (y)
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using the results given in Appendix C.

Appendix C

The derivation of A(h), B(h), c(h) and β(h) for triangular, rectangular and
trapezoidal cross sections5

Given the cross-sections in Fig. C1, the following equations can be used to represent
a generic triangular, rectangular or trapezoidal cross section.

A(y) = (B0 + y cα) y the wetted area
[
L2
]

(C1)

B (y) = B0 + 2 y cα the surface width [L] (C2)

P (y) = B0 + 2 y / sα the wetted perimeter [L] (C3)

with B0 the bottom width [L] ( B0=0 for the triangular cross section) and y the water
stage [L]; cα=cot(α) and sα= sin (α) are respectively the cotangent and the sine of the
angle α formed by dykes over a horizontal plane (see Fig. C1) (cα=0 and sα=1 for the
rectangular cross section). Using these equations together with:

Q (y) =

√
S0

n
A (y)5/3

P (y)2/3
the discharge

[
L3T−1

]
(C4)

v (y) =
Q (y)

A (y)
=

√
S0

n
A (y)2/3

P (y)2/3
the velocity

[
L T−1

]
(C5)
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where S0 [dimensionless] is the bottom slope and n
[
L1/3T

]
the Manning friction coef-

ficient, the celerity is calculated as:

c (y)=
dQ (y)

dA (y)
=

1
B (y)

dQ (y)

dy
=

5
3

√
S0

n
A (y)2/3

P (y)2/3

(
1−4

5
A (y)

B (y) P (y) sα

)
the celerity

[
L T−1

]
(C6)

and the correction factor to be used in the MCT algorithm is:

β (y) =
c (y)

v (y)
=

5
3

(
1 − 4

5
A (y)

B (y) P (y) sα

)
the correction factor [ dimensionless] (C7)
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Table 1. Variation of parameters and integration steps around the base case (in bold).
Table 1 – Variation of parameters and integration steps around the base case (in bold).   
 
 
 

So 0.002 0.001 0.0005 0.00025 0.0001
n 0.01 0.02 0.035 0.04 0.06
Δx 1000 2000 4000 6000 8000
Δt 900 1800 3600 5400 7200
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Table 2. Variation of MCT results without Cappalaere (1997) proposed correction. Base case
in bold.

 Table 2 – Variation of MCT results without Cappalaere (1997) proposed correction. Base case in bold. 
 Rectangular Cross Section Triangular Cross Section Trapezoidal Cross Section 

So 
Qmax 

 [m3 s-1] 
iΔt 

 (Qmax) 
Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 0.002 894.68 61 5.26 61 0.00 892.80 64 7.62 64 0.00 892.95 64 6.29 64 0.00 

 0.001 879.10 64 6.51 64 0.00 873.11 68 8.60 68 0.00 873.65 68 7.26 68 0.00 

 0.0005 819.78 68 7.81 69 0.00 802.64 74 9.49 75 0.00 804.27 74 8.14 75 0.00 

 0.00025 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00 

 0.0001 423.11 77 8.32 89 0.00 391.80 93 9.70 103 0.00 393.72 93 8.36 103 0.00 

n 
[m-3 s] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 0.01 873.19 59 4.52 60 0.00 862.15 62 6.94 62 0.00 863.26 62 5.63 62 0.00 

 0.02 801.63 66 6.67 67 0.00 776.52 71 8.65 72 0.00 778.72 71 7.31 72 0.00 

 0.035 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00 

 0.04 630.09 77 8.96 80 0.00 603.12 87 10.18 90 0.00 605.61 87 8.83 90 0.00 

 0.06 505.99 87 10.12 92 0.00 486.19 102 10.92 106 0.00 488.26 102 9.56 106 0.00 

Δx  
[m] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 1000     669.51 75 8.54 77 0.00 641.12 83 9.91 86 0.00 643.69 83 8.56 86 0.00 

 2000 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00 

 4000 669.62 75 8.56 77 0.00 641.38 83 9.92 85 0.00 643.94 83 8.57 85 0.00 

 6000 675.69 74 8.62 76 0.00 648.35 82 9.97 83 0.00 650.83 82 8.61 83 0.00 

 8000 675.92 73 8.63 75 0.00 648.75 82 9.98 83 0.00 651.22 82 8.62 83 0.00 

Δt  
 [s] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 900 669.65 149 8.54 155 0.00 641.36 167 9.91 171 0.00 643.89 167 8.56 171 0.00 

 1800 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00 

 3600 669.15 37 8.54 39 0.00 641.16 42 9.91 43 0.00 643.68 42 8.56 43 0.00 

 5400 669.55 25 8.54 26 0.00 641.25 28 9.91 29 0.00 643.79 28 8.56 29 0.00 

 7200 668.43 19 8.52 19 0.00 641.28 21 9.90 22 0.00 643.86 21 8.54 22 0.00 
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Table 3. Variation of MCT results with Cappalaere (1997) proposed correction. Base case in
bold.

Table 3 – Variation of MCT results with Cappalaere (1997) proposed correction. Base case in bold. 
 Rectangular Cross Section Triangular Cross Section Trapezoidal Cross Section 

So 
Qmax 

 [m3 s-1] 
iΔt 

 (Qmax) 
Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 0.002 894.68 61 5.26 61 0.00 892.80 64 7.62 64 0.00 892.96 64 6.29 64 0.00 

 0.001 879.20 64 6.51 64 0.00 873.31 68 8.60 68 0.00 873.84 68 7.26 68 0.00 

 0.0005 823.13 68 7.83 69 0.00 806.79 74 9.51 78 0.00 808.19 74 8.15 75 0.00 

 0.00025 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00 

 0.0001 450.41 76 8.64 86 0.00 400.71 91 9.78 100 0.00 402.78 92 8.44 100 0.00 

n 
[m-3 s] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 0.01 873.81 59 4.52 60 0.00 862.99 62 6.94 62 0.00 864.03 62 5.64 62 0.00 

 0.02 807.27 65 6.71 67 0.00 783.17 70 8.68 72 0.00 785.09 70 7.34 72 0.00 

 0.035 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00 

 0.04 649.05 75 9.14 78 0.00 617.72 86 10.28 88 0.00 620.06 86 8.92 88 0.00 

 0.06 523.30 84 10.34 89 0.00 496.20 100 11.01 103 0.00 498.36 100 9.65 103 0.00 

Δx  
[m] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 1000     686.96 73 8.69 76 0.00 655.83 82 9.99 84 0.00 658.15 82 8.64 84 0.00 

 2000 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00 

 4000 687.07 73 8.70 75 0.00 655.95 82 10.01 84 0.00 658.27 82 8.65 84 0.00 

 6000 693.34 72 8.77 74 0.00 662.70 80 10.05 82 0.00 664.95 80 8.70 82 0.00 

 8000 693.42 72 8.77 74 0.00 662.94 80 10.06 81 0.00 665.18 80 8.70 81 0.00 

Δt  
 [s] 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

Qmax 
 [m3 s-1] 

iΔt 
 (Qmax) 

Hmax 
 [m] 

iΔt  
(Hmax) 

Vol. err 
% 

 900 696.21 146 8.68 151 0.00 655.14 164 9.99 168 0.00 657.47 164 8.64 168 0.00 

 1800 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00 

 3600 687.82 37 8.71 38 0.00 657.35 41 10.01 42 0.00 659.68 41 8.65 42 0.00 

 5400 688.33 24 8.72 25 0.00 657.33 27 10.02 28 0.00 659.70 27 8.66 28 0.00 

 7200 689.02 18 8.74 19 0.00 657.44 21 10.03 21 0.00 659.75 21 8.67 21 0.00 
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Fig. 1. Steady state volume (solid line) and storage volumes computed using Eq. (15) (dashed
line) and Eq. (16) (dotted line).
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Fig. 2. Storage values computed in two successive time steps. When using variable
Muskingum-Cunge parameters, the storage value St computed at time step 1 (S (1)

t ) will dif-

fer from the one computed at time step 2 (S (2)
t ), according to Eq. (17).
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Fig. 3. Storage values computed in two successive time steps. When using variable
Muskingum-Cunge parameters with the proposed correction, the storage value St computed
at time step 1 (S (1)

t ) will equal the one computed at time step 2 (S (2)
t ), according to Eq. (20).
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Fig. 4. Steady state volume (thin solid line) and storage volumes computed either using Eq. (15)
(dashed line) and Eq. (16) (dotted line) with β=1, or using both equations with β=c/v (thick
solid line).
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Fig. 5. The three cross sections shapes (rectangular, triangular and trapezoidal) and the rele-
vant dimensions used in the numerical experiment.
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Fig. 6. Comparison of the discharge results obtained using the variable parameter Muskingum-
Cunge (dashed line), the new scheme (dotted line) and the new scheme with the Cappalaere
(1997) correction (solid line).
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Fig. 7. Comparison of the water stage results obtained using the variable parameter
Muskingum-Cunge (dashed line), the new scheme (dotted line) and the new scheme with the
Cappalaere (1997) correction (solid line). Note that the Muskingum-Cunge does not return to
the steady state.
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Fig. 8. Comparison, for the rectangular cross section, of the MIKE11 resulting discharges (thin
solid line) with the ones obtained using the new MCT scheme (dotted line) and the new scheme
with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is shown as a
thick solid line.
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Fig. 9. Comparison, for the rectangular cross section, of the MIKE11 resulting water stages
(thin solid line) with the ones obtained using the new MCT scheme (dotted line) and the new
scheme with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is
shown as a thick solid line.

1588



0 12 24 36 48 60 72 84 96
0

100

200

300

400

500

600

700

800

900

1000

Time [hours]

D
is

ch
ar

ge
 [m

3  s
-1

]

Triangular Cross Section

Upstream

Mike11

MCT

MCT+Capp.

Fig. 10. Comparison, for the triangular cross section, of the MIKE11 resulting discharges (thin
solid line) with the ones obtained using the new MCT scheme (dotted line) and the new scheme
with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is shown as a
thick solid line.
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Fig. 11. Comparison, for the triangular cross section, of the MIKE11 resulting water stages
(thin solid line) with the ones obtained using the new MCT scheme (dotted line) and the new
scheme with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is
shown as a thick solid line.
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Fig. 12. Comparison, for the trapezoidal cross section, of the MIKE11 resulting discharges (thin
solid line) with the ones obtained using the new MCT scheme (dotted line) and the new scheme
with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is shown as a
thick solid line.
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Fig. 13. Comparison, for the trapezoidal cross section, of the MIKE11 resulting water stages
(thin solid line) with the ones obtained using the new MCT scheme (dotted line) and the new
scheme with the Cappalaere (1997) correction (dashed line). The upstream inflow wave is
shown as a thick solid line.
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