Hydrol. Earth Syst. Sci. Discuss., 4, 1069—1094, 2007 _"\Hydrology and

www.hydrol-earth-syst-sci-discuss.net/4/1069/2007/ € Earth System HESSD
© Author(s) 2007. This work is licensed G ] Scier]ces A e AT
under a Creative Commons License. _ Discussions ’ . ’

Guidelines for depth
data collection in
rivers

Papers published in Hydrology and Earth System Sciences Discussions are under
open-access review for the journal Hydrology and Earth System Sciences

M. Rivas-Casado et al.

Guidelines for depth data collection in
rivers when applying interpolation
techniques (kriging) for river restoration’

M. Rivas-Casado, S. White, and P. Bellamy
School of Applied Sciences, Cranfield University, Cranfield, MK43 OAL, UK
Received: 12 April 2007 — Accepted: 12 April 2007 — Published: 16 May 2007

Correspondence to: M. Rivas-Casado (monica.rivascasado @gmail.com)

I b i

“Invited by M. Rivas-Casado, one of the EGU Oustanding Young Scientist Award winners
2006
EG

1069

C


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/1069/2007/hessd-4-1069-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/1069/2007/hessd-4-1069-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

Abstract

River restoration appraisal requires the implementation of monitoring programmes that
assess the river site before and after the restoration project. However, little work has
yet been developed to design effective and efficient sampling strategies. Three main
variables need to be considered when designing monitoring programmes: space, time
and scale. The aim of this paper is to describe the methodology applied to analyse
the variation of depth in space, scale and time so more comprehensive monitoring
programmes can be developed. Geostatistical techniques were applied to study the
spatial dimension (sampling strategy and density), spectral analysis was used to study
the scale at which depth shows cyclic patterns, whilst descriptive statistics were used
to assess the temporal variation. A brief set of guidelines have been summarised in
the conclusion.

1 Introduction

River restoration appraisal requires the implementation of monitoring programmes to
asses the status of the river before and after the development of the project. Biological,
chemical, and hydromorphological (i.e. depth, substrate and velocity) variables should
be monitored for this purpose.

Monitoring is time and cost consuming, this being a limitation for the implementation
of all monitoring programmes. Recent studies (e.g. Rivas, 2006) and workshops (e.g.
Monitoring workshop organised by the River Restoration Centre) suggest that many
issues regarding the implementation of monitoring programmes need to be addressed.
For example: which variables need to be sampled; definition of the frequency and
sampling strategy (location and density of sampled points) of monitoring programmes
and selection of the protocol to be followed for each variable (e.g. River Habitat Survey
or River Continuum Survey). Even though monitoring is key to assessing the success
of river restoration programmes, little work has been carried out to address the above

1070

HESSD
4, 1069-1094, 2007

Guidelines for depth
data collection in
rivers

M. Rivas-Casado et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/1069/2007/hessd-4-1069-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/1069/2007/hessd-4-1069-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

issues. This paper is part of a series dealing with design of effective and efficient
sampling strategies for hydromorphological variables and focuses on the study of the
spatial and temporal variability of river depth. Geostatistical and spectral analysis are
used to investigate the spatial variability of depth whilst descriptive statistics are used
for the study of changes in depth over time.

Geostatistical analysis is an interpolation technique that can be used to estimate
values of a sampled variable at locations or times where no measurements are avail-
able. This helps to reduce the number of points to be collected. There are several
other methods for interpolating variables, which include techniques such as inverse
distance weighting and splines. Geostatistical analysis has the advantage of consider-
ing the variability of the variable under study whilst providing an estimation of the error
associated with the predictions obtained. The variability is characterised through the
calculation of the variogram, a plot that relates the distance between pairs of measured
points to their variance.

The variogram is always associated to a specific scale of study and it is specific to
each variable. It is necessary, therefore, to define at which scale or scales the vari-
ogram should be calculated in order to capture the spatial variability for river restora-
tion assessment. This can be achieved through the assessment of pattern repetition
in space. Spectral analysis is a tool that helps to identify the repetition of patterns
and therefore it can contribute to determining which river lengths or time intervals the
variogram should be calculated for. Once the variogram is calculated it is possible to
interpolate.

The objectives of this paper are (i) to present the methodology used to analyse the
spatial and temporal variability of depth at different river sites and (ii) to provide a set
of guidelines for the design of depth sampling strategies when applying geostatistical
interpolation techniques. The methodology will be divided into four sections:

— Spatial pattern analysis: the sampling strategy.

— Spatial pattern analysis: the sampling density.
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— Spatial pattern analysis: recognition of pattern repetition.

— Temporal pattern analysis.

2 Data
2.1 Spatial pattern analysis: the sampling strategy

Data sets of depth collected at an artificial Austrian channel were analysed for com-
parison of sampling strategies. Data were collected by the University of Agricultural
Sciences Vienna (BOKU), Hydrology and Hydraulic Engineering, Department of Wa-
ter Management. The channel was created to reproduce a natural straight stream
and woody debris were included along the stream. The simulated channel is 17m
long, 2.5m to 4 m width, has a 5% of slope and includes two different mesohabitats
classified as riffle and pool. The topography was measured in a regular grid of dimen-
sion 5cmx5cm. A total of 17 cross sections were identified along the reach to obtain
detailed topography values. The discharge was maintained constant (0.21m3s™") in
steady hydraulic conditions and was regulated by a weir located at the channel end. A
total of 13809 depth data points were measured.

2.2 Spatial pattern analysis: the sampling density

Fifteen river sites in the UK were analysed to investigate the effect of sampling density
on the accuracy of predictions: Bere, Blackwater, Cruick. Highland Water, Lambourn,
Leigh Brook (at two different discharges Qg, and Qgy), Pang Fenced, Pang Unfenced
(at two different discharges Qgy and Qg), Senni, Tame Less Modified, Tame Highly
Modified, Tarf and Windrush (Fig. 1 and Table 1). These rivers were selected accord-
ing to the physical characteristics of the sites including characteristics at catchment
and reach scale level (e.g. catchment area, stream order, substrate, discharge and
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mesohabitat types). In order to identify differences in spatial pattern between sites, a
wide range of values for each specific physical descriptor were considered.

Data for each of the river sites were provided by the Centre for Ecology and Hy-
drology at Wallingford. Different data collection procedures and protocols were used
for each data set according to the type of equipment available, the purpose for which
the data were collected and the field sampling conditions (e.g. accessibility and dis-
charge). Therefore, it was necessary to standardise all the data sets in order to obtain
comparable results. How this was done will be described in the methodology section.

2.3 Spatial pattern analysis: recognition of pattern repetition

The data used to investigate the scales of depth repetition that could be identified with
spectral analysis was from two lowland river sites in Texas: the Brazos and the Sulphur
(Table 1). Data for both river sites were collected using a single beam depth sounder.

2.4 Temporal pattern analysis

The data used to assess the changes in depth that occur due to changes in discharge
was from the Leigh Brook river site (Table 1). Data were collected at two different dis-
charges 0.52 m>s™" and 0.34m®s™" following a total of 200 cross-sections located 1 m
apart in the downstream direction. Points in each cross-section were spaced by inter-
vals of 0.5m. At each point depth and mesohabitat type were measured. Mesohabitat
type was characterised for each cross-section according to the classification developed
by Maddock and Bird (1996). The categorisation of the habitat types was obtained by
association of the dominant type of each cross section to the points measured. A total
of 2583 georeferenced data points were measured at each flow. Points were located
at the same positions at both discharges.
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3 Methodology
3.1 Spatial pattern analysis: the sampling strategy

Five different sampling strategies derived from the original 0.5mx0.5m regular grid
were compared: (i) random grid points were created by random selection of points
without replacement, (ii) stratified grids by selection of points at specific depth intervals,
(iii) regular grids by dividing the sampled area into regular cells, (iv) regular transects
by selection of equally spaced cross-sections and (v) irregular transects by identifying
the mesohabitats at the river sites and locating the transects at “representative” sites
of these mesohabitats. An equal number of points were selected for each sampling
strategy in order to obtain comparable variograms; a total of 521 points (19.5% of
the original data) were selected to create each sampling strategy. This equated to
17 transects for the transect sampling strategies. The number of points selected was
determined by assessing at which sampling density a difference in the variogram shape
could be observed between the five sampling strategies compared.
The variograms were calculated using the following Eq. (1):

y  No )
Vi) = oy Z [2(u; + ) = 2(u))] (1)
where u is the vector of spatial coordinates (with components x and y), z(u) is depth
as a function of spatial location (depth at location u), A is the lag vector representing
separation between two spatial locations, z(u + h) is the lagged version of depth (depth
at location u+h) and N(h) represents the number of pairs separated by a distance
equal to lag h (Webster and Oliver, 2001).

The same value of minimum lag distance, azimuth and azimuth tolerance were se-
lected for all the calculations. The variograms were calculated for each of the sampling
strategies considered and compared between strategies and to the variogram obtained
for the original data set. The three variogram parameters (range, sill and nugget) were
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also compared.
3.2 Spatial pattern analysis: the sampling density

Twenty different sampling densities were compared for each site. Points selected
for each sampling density were obtained from a fine regular grid of 0.5mx0.5m (4
points/mz) created through ordinary kriging from the original data sets. The sampling
densities compared were from 0.2 to 3.8 points/m2 at intervals of 0.2. Points for each
sampling density were obtained by random selection; consecutive sampling densities
included the points from the previous sampling density plus those random points re-
quired to obtain the next sampling density.

The variograms were calculated for each sampling density and used to predict depth
at the points of the fine 0.5mx0.5m regular grid. The 0.5mx0.5m grid was consid-
ered to represent the real depth at each river site. The variograms obtained for each
sampling strategy were used to predict depth value at all the points of the 0.5mx0.5m
grid. The accuracy of the predictions was calculated using the following quantitative
and qualitative indicators: variogram model assessment, Mean Squared Error (MSE),
Mean Error (ME), descriptive statistics, frequency distribution and regression analy-
sis. Results were compared between sampling strategies and conclusions on which
sampling strategy was better for interpolation with geostatistics were established.

The indicators were calculated as follows:

— Variogram model assessment: the variogram parameters (range, sill and nugget)
obtained for the predictions of each sampling strategy were compared to those
obtained for the original data set.

— Mean Squared Error: The MSE was calculated as expressed in Eq. (2) where y;
= depth observed, y;= depth predicted and N = total number of points.
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— Mean Error: The mean error (ME) was calculated to provide a measure of the
mean absolute difference between predicted and observed values.

N ~
2 lvi-vil

ME="=" 3
= )

where: y = depth observed; = depth predicted and N = total number of points.

— Descriptive Statistics: maximum, minimum, mean, median, skewness, kurtosis
and standard deviation were calculated for the difference between observed and
predicted depth. Box plots and histograms were plotted to complete the descrip-
tive statistics analysis.

— Frequency distribution: frequency distribution of depth can be used to charac-
terise the diversity of features present at a river site. A two sample non-parametric
test (Kolmogorov Smirnov Test) was applied in order to compare the distribution
of predicted and observed depth values.

— Regression analysis: a linear model was fitted for the predicted and observed
depth. The coefficient of determination or r-squared quantified the proportion of
variation explained by the model created (Montgomery et al., 2001) indicating how
similar predicted and observed values were. The slope and the intersection value
of the regression line were also examined.

3.3 Spatial pattern analysis: recognition of pattern repetition

Spectral analysis can be used to recognise a cyclical pattern in series of data by ap-
plying a modification of Fourier analysis (Chatfield, 1996), which is based on approx-
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imating a function by a sum of sine and cosine terms, called the Fourier series rep-
resentation. The periodogram, which is the result of the spectral analysis, provides
information on the pattern of variation of the data set in the spectral domain (Web-
ster and Oliver, 2001). The spectrum and the variogram are complementary ways of
viewing the spatial/temporal periodicity and estimating the period.

The calculation of the periodogram requires input values equally spaced and dis-
tributed along a longitudinal line. Since data collected did not meet these requirements,
the variogram was used to predict depth values at the appropriate locations. The spher-
ical model was used for this purpose, with a minimum lag distance equal to 1.5m and
azimuth tolerance of 60°. Depth values were predicted at three longitudinal profiles at
each river site separated by 5m intervals for the Sulphur and 10 m for the Brazos site.
Points were predicted every 20m along each longitudinal profile. Periodic cycles at
distances smaller than 20 m were not considered within the scope of this study.

The Brazos river site was divided into reaches of 2000 m in length so that similar
lengths were analysed for the Sulphur and Brazos river sites. A total of three different
reaches, with three different longitudinal profiles each were analysed for the Brazos
site.

The periodogram, which is a measure of smoothness of the periodogram function,
was computed for several bandwidths (i.e. 1, 10, 20, and 50). The higher the band-
width, the less detail was provided by the periodogram. Bandwidth 1 represents the
raw periodogram, without smoothing. The bandwidth needs to be narrower than the
features that one wishes to reveal (Webster and Oliver, 2001). Choosing a bandwidth
of 10 showed the principal features of the periodogram most clearly (the information
provided by the raw periodogram was too detailed). The estimated periodogram was
judged rather too smooth when using bandwidths above 20.

3.4 Temporal pattern analysis

The number of points identified for each mesohabitat type within the Leigh Brook site
was obtained for each discharge. Those points that changed mesohabitat type be-
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tween discharges were identified. Conclusions were established on the types of meso-
habitat that were more sensitive to changes in discharge and what sequence the types
of mesohabitats followed when decreasing the discharge. Depth change was calcu-
lated as the difference between depth at Q = 0.52 m®s™' minus depth measured at Q
=0.34m3s7"; positive and negative depth changes indicate increase and decrease in
depth, respectively. The Least Squares (LS) means plot of depth change vs. mesohab-
itat type was calculated for the standardized values of depth change. Results showed
which mesohabitat types presented higher changes in depth when decreasing the dis-
charge.

4 Results
4.1 Spatial pattern analysis: the sampling strategy

Results showed that variograms obtained for grid sampling strategies were more sim-
ilar to the original data set than those variograms obtained with transect sampling
strategies. Figure 2 shows an example of the variograms obtained for the original
grid, a random grid sampling strategy and regular transect sampling strategies. The
variogram parameters for the example have been summarised in Table 2. Points in the
experimental variogram for transect sampling strategies were not distributed homoge-
neously for all the lag distances observed (e.g. Fig. 2) but were distributed according to
the distances between transects. Although this did not have an effect on the variogram
parameters in Table 2, difficulties were encountered when trying to predict depth at non
sampled locations with transect sampling strategies. The problem was that the location
of the transects left areas without neighbours to obtain predictions, thus decreasing the
accuracy of the predictions.

The choice between grid and transect sampling strategies needs to be understood
as a trade off between the number of points that are included in the experimental vari-
ogram and the number of pairs of points separated by a specific lag distance. Transect
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sampling strategies provided less number of points in the variogram but more accurate
values of semivariance for each of these points since a larger number of pairs of points
are included in the calculation of the semivariance of each lag distance. On the other
hand, grid sampling strategies provided a larger number of variogram points but a less
accurate value of semivariance for each of these points. This is why in Fig. 2 the scale
of the semivariance identified for grid sampling strategies is larger than that identified
for transect sampling strategies (Table 2).

4.2 Spatial pattern analysis: the sampling density

The general pattern showed that the discrepancy in representing each river site in-
creased with decreasing sampling density and that the sampling density at which the
discrepancy started to increase differed according to the indicator considered (Fig. 3).
Thus, it could be observed that different sampling densities should be applied for dif-
ferent sampling objectives (indicators).

Results also showed that the accuracy of the predictions depended on the river site
analysed but it was not possible to define a clear and constant relationship for the river
sites. Thus, for example for the MSE between predicted and observed values (Fig. 3),
the rivers with highest errors were the Bere, the Pang Fenced and the Blackwater, in
decreasing order. In contrast, different results were obtained when considering the p-
value (Fig. 3); the rivers with higher accuracy using this indicator were the Blackwater,
the Leigh Brook, the Pang Fenced and the Tame Highly Modified in descending order.

4.3 Spatial pattern analysis: recognition of pattern repetition

Peaks in the periodogram were identified from sampled lengths of 20 m up to the total
sampled length. Figure 4 and Table 3 summarises the frequencies at which the peaks
where identified, the corresponding wavelength (number of sampling intervals), and
the extension of the cycle in terms of sampled river length, for one of the longitudinal
profiles analysed for the Sulphur site. The sampling interval of the periodogram cor-
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responds to 20m. Frequency was transformed into sampled length through Eq. (4),
where L is the length of the cycle (m) and F is the frequency.

y
L =20x (F) (4)
Results indicated that it was possible to recognise specific spatial occurrences for the
longitudinal profiles analysed but that these occurrences were not common to both
river sites. For the Brazos site, depth seemed to follow a pattern of repetition every
750m, 500m, 170 m and 110 m. Cycles of repetition could also be observed at smaller
scales but they were not consistent between the analysed longitudinal profiles. For the
Sulphur river site it was possible to identify common patterns of repetition of depth at
350m, 87 m and 60 m.

4.4 Temporal pattern analysis

Four mesohabitat types were identified at the Leigh Brook site: riffle, shallow glide,
deep glide and pool. The four of them appeared in both discharges. At Q = 0.34 m3s™
shallow glides (1284 points) and riffles (844 points) were the dominant types, whilst
pool and deep glides represented 11% (313 points) and 4.4% (124 points) respectively.
Similar results were obtained at Q = 0.52m®s™ 'since only 9% of the data points (254
points) changed their mesohabitat type. Table 4 shows the percentage of points that
changed from one mesohabitat type to another when decreasing the discharge. The
majority of habitats that changed were transformed into shallow glides, those changes
being more frequent from deep glides. Table 5 summarises the descriptive statistics
obtained for depth change variable.

Figure 5 shows the LS means plot (plot of the least squares means which are the
best linear-unbiased estimates of the marginal means for the design) obtained for the
standardised parameters included in this analysis. The LS mean plot of depth change
vs. mesohabitat showed that depth changes were significantly different between deep
glides and shallow glides (deep glides having the greater depth changes), whilst pools
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and riffles were not significantly different. Deep glides could not be considered signif-
icantly different to riffles and pools, whilst shallow glides represented differences from
both, riffles and pools. The mean depth changes were located between 0.037 m (rif-
fles) and 0.048 m (shallow glide). Table 6 summarises the depth change encountered
for each mesohabitat type.

5 Conclusions

It is recommended that grid sampling strategies are used when characterising the spa-
tial pattern of depth rather than any type of transect sampling strategy since for transect
sampling (i) difficulties are encountered when predicting the variable at non measured
locations due to the lack of neighbouring points and (ii) the variogram structure is con-
ditioned by the location of the transects. Furthermore, for transect sampling strategies
(i) there is not a clear criteria for the placement of the transects, (ii) it is difficult to sam-
ple data along an exact perpendicular to the channel discharge and so, it is necessary
to visually mark the transect and (iii) there is a higher cost associated than for grid
sampling strategies since it is necessary to visually mark the transects.

The use of random grids is preferred to the use of stratified and regular grids since
(i) results obtained for random grids do not significantly differ from those obtained with
regular grids and (ii) random sampling strategies (i.e. random walk) are less time con-
suming sampling strategies. Similarly to transect sampling strategies, regular grids
require visual marks to determine the corners of each cell in the grid, this increasing
the time expended in the data collection procedure. Instead, random sampling strate-
gies (i.e. random walk), can be applied whilst randomly walking along the river channel,
without requiring the visually marking of areas where data need to be collected. Fur-
thermore, data can be collected at those locations that provide detail information on
the spatial pattern of the channel (e.g. deepest areas and boulders). It needs to be
noted that it is more difficult to replicate measurements at the same locations over time
when random sampling strategies are applied.
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Sampling density needs to be selected according to the objective for which the data
are being collected. A set of tables relating the accuracy obtained in the predictions
when applying a specific sampling density has been developed. These tables were
calculated considering a regular grid of 0.5mx0.5m as a real and accurate repre-
sentation of the reach. Predictions were obtained at each point of the 0.5mx0.5m
regular grid. The accuracy of the predictions was measured through different indica-
tors (e.g. mean squared error and frequency distribution). Further research needs to
determine which indicator is most suitable to define the sampling strategy for a specific
objective (e.g. river restoration or habitat assessment). In general, when defining the
sampling strategy for a reach it is necessary to consider that the higher the hydromor-
phological uniformity and continuity of the river site, the lower the sampling density that
needs to be applied.

The variogram is a tool that can be used to understand the spatial pattern of a vari-
able under study. However its calculation needs to be accompanied by a sensitivity
analysis that considers the variogram model selected, the number of pairs of points,
the minimum lag distance selected, the maximum distance used, the azimuth tolerance
and the azimuth direction. Otherwise, variogram results could be misleading.

Results suggest that the repetition of the depth spatial pattern might not correspond
to a fixed sampling distance across all rivers but needs to be defined according to the
characteristics of each river site. Repetition in the characteristics of river depth have
been encountered at distances equal to 500 m, 350 m and 150 m for the two river sites
analysed.

Discharge decrements mainly transformed deep areas (deep glides and pools) into
shallower and less smooth habitats (shallow glides). Largest depth changes for the
Leigh Brook river site were mainly located in deep glides, a habitat that links pools and
riffles.
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Table 1. River sites analysed (HM and LM refer to Highly Modified and Low Modified, respec-
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tively).

River site Location Reach Length (m) Sampled points Mean width (m) Sampled discharge Low Flows 2000
mS S—1

Artificial Austrian channel Vienna, Austria, 17 13809 3 0.21 -
Brazos Texas, USA 7500 37288 100 - -
Bere Dorset, UK. 80 924 5.8 0.36 79
Blackwater Surrey, UK 155 4529 5.8 0.46 33
Cruick North East Scotland 246 2382 5.6 0.61 51
Highland Water Hampshire, UK 50 219 4 0.09 43
Lambourn Berkshire, UK 46 2200 7.5 0.67 92
Leigh Brook Gloucestershire, UK 200 2983 8.1 0.34 and 0.52 93 and 82
Pang Fenced Berkshire, UK 110 700 5.5 0.27 91
Pang Unfenced Berkshire, UK 107 784 6.7 0.27 and 0.32 90 and 80
Pang Old Fenced Berkshire, UK 30 299 5 0.27 and 0.32 90 and 80
Senni Brecon, Wales 40 894 8.8 0.44 78
Sulphur Texas, USA 1500 8490 35 - -
Tame HM Birmingham, UK 93 1278 12 2.52 20
Tame LM Birmingham, UK 142 957 9.5 1.46 43
Tarf North East Scotland 212 5045 5.5 0.34 50
Windrush Gloucestershire 126 810 9.7 - -
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Table 2. Example of variogram parameters obtained for the original data set and two sampling
strategies compared at the artificial Austrian channel.

Data set Number of points Range (mm)  Sill Nugget Objective
Original 10130 2492.7 32894.7 0 3772196483.2
Random grid 521 2480.1 390105 O 17776958526.7
Regular transect 521 2199.8 355476 O 15123745877.6
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()
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Table 3. Cycle, wavelength and distance at which the peaks in the periodogram were identified.

Point number refers to the points of each peak identified in Fig. 4.

Point number Cycle Wavelength Distance (m)
1 0.05714 17.50 350.0

2 0.1285 7.78 155.5

3 0.2285 4.37 87.5

4 0.3285  3.04 60.8
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Table 4. Percentage of points that changed mesohabitat type from Q = 0.52m°s™" to Q =
0.34m°s™" atthe Leigh Brook river site.

Original Situation Q=0.52m>s™"

Deep Glide Pool Riffle Shallow Glide
Final Situation  Deep Glide 58 - - -

Q=0.34m®s™"  Pool - 90 - -
Riffle 3 - 97 6
Shallow glide 39 10 3 94
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Table 5. Descriptive statistics for depth measured at the Leigh Brook river site. Positive
changes indicated an increase of the value of the parameter and negative changes a decrease.
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Parameter Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis
Depth Change (m) —0.039 -0.04 -0.50 0.58 0.06 0.5 7.9
Depth 1st Flow (m)  0.245 0.21 0.00 0.94 0.15 0.8 0.7
Depth 2nd Flow (m) 0.206 0.18 0.00 0.85 0.15 0.8 04
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Table 6. Descriptive statistics for depth change grouped by mesohabitat type encountered at
discharge = 0.52 m®s™" at the Leigh Brook river site. Non-standardised parameters.

Descriptive Statistic Shallow glide Riffle Pool  Deep glide
Absolute Mean (m) 0.048 0.037 0.039 0.026
Absolute Maximum (m) 0.33 0.37 058 0.19

Std. Dev. 0.05 0.0563 0.07 0.048
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Fig. 1. The location of each of the river sites in the UK analysed for this study.
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Fig. 2. Experimental (grey dots) and empirical (fitted line) variograms obtained for two different
sampling strategies: (a) original data set, (b) random grid and (¢) regular transects.
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15 sites.
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Fig. 4. Periodogram obtained for one of the longitudinal profiles analysed in the Sulphur river
site. Values on Table 3 show the cycle, wavelength and distance at which each peak has been
identified.
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Fig. 5. Mean plots with 0.95 confidence interval obtained for the standardised parameters.
Vertical lines denote the 95% confidence interval. The types represented correspond to those
encountered at discharge 0.34 mis".
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