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Abstract

Ensemble prediction systems are used operationally to make probabilistic streamflow
forecasts for seasonal time scales. However, hydrological models used for ensem-
ble streamflow prediction often have simulation biases that degrade forecast quality
and limit the operational usefulness of the forecasts. This study evaluates three bias-5

correction methods for ensemble streamflow volume forecasts. All three adjust the
ensemble traces using a transformation derived with simulated and observed flows
from a historical simulation. The quality of probabilistic forecasts issued when using
the three bias-correction methods is evaluated using a distributions-oriented verifica-
tion approach. Comparisons are made of retrospective forecasts of monthly flow vol-10

umes for the Des Moines River, issued sequentially for each month over a 48-year
record. The results show that all three bias-correction methods significantly improve
forecast quality by eliminating unconditional biases and enhancing the potential skill.
Still, subtle differences in the attributes of the bias-corrected forecasts have important
implications for their use in operational decision-making. Diagnostic verification distin-15

guishes these attributes in a context meaningful for decision-making, providing criteria
to choose among bias-correction methods with comparable skill.

1 Introduction

In recent years, ensemble prediction systems (EPSs) have gained popularity in hydro-
logical and meteorological forecasting. EPSs produce forecasts based on multiple re-20

alizations from a forecast model; the set of realizations is referred to as an ensemble.
For example, the U.S. National Weather Service (NWS) is implementing an EPS for
seasonal streamflow forecasting as part of its Advanced Hydrologic Prediction System
(AHPS) (Connelly et al., 1999; McEnery et al., 2005). Historical weather data are used
to simulate an ensemble of streamflow time series (traces) conditioned on the current25

hydroclimatic state. Frequency analysis is then applied to the ensemble traces, produc-
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ing probability distribution forecasts for streamflow variables. Other recent examples
using ensemble prediction techniques in streamflow forecasting and water resources
decision-making include Georgakakos et al. (1998), Hamlet and Lettenmaier (1999),
Carpenter and Georgakakos (2001), Faber and Stedinger (2001), Kim et al. (2001),
Yao and Georgakakos (2001), Hamlet et al. (2002), Wood et al. (2002), Franz et al.5

(2003), Souza Filho and Lall (2003), Clark and Hay (2004), and Grantz et al. (2005),
Roulin and Vannitsem (2005), among others.

One factor that can seriously affect the quality of EPS forecasts is model bias. For
example, a hydrological model may systematically overestimate flows during base-
flow conditions, or systematically underestimate peak flows for summer thunderstorms.10

Model biases can result from the input data, the estimated model parameters, or simpli-
fying assumptions used in the model. Regardless, biases from the forecast model will
propagate to each trace in the ensemble, degrading the overall quality of the resulting
forecasts. Biases in streamflow ensemble traces also limit their use in water resources
decision-making; biases need to be removed before the traces are used as input to a15

decision support model.
There are several ways of dealing with model biases in streamflow forecasting. One

is to shift (or transform) the probability distribution forecast derived from the ensem-
ble traces. This approach accounts for biases in forecast variables, but the ensemble
traces themselves are uncorrected. Another approach is to use a bias-correction trans-20

formation to adjust all model-simulated ensemble traces. The bias-corrected traces are
then used to make the probability distribution forecast. This second approach is gener-
ally preferred for streamflow forecasting, since bias-corrected ensemble traces can be
utilized in water resources applications.

In this study, we evaluate three bias-correction methods for ensemble traces. Our25

approach is to assess the quality of the probabilistic forecasts produced with the
bias-corrected ensemble. The evaluation is based on ensemble forecasts of monthly
streamflow volume for the Des Moines River. The distributions-oriented verification ap-
proach, originally proposed by Murphy and Winkler (1987), is utilized as a diagnostic
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framework for assessing forecast quality.

2 Experimental design

The evaluation of bias-correction methods for monthly streamflow forecasting is car-
ried out using an experimental system for the Des Moines River basin (Hashino et al.,
2002). A hydrologic forecast model is used to make retrospective ensemble forecasts5

of monthly flow volume over the historical record (from 1949 through 1996). Three
bias-correction methods are then applied to ensemble volumes, and ensemble fore-
casts are recomputed with the bias-corrected traces. Finally, the forecast quality of the
retrospective forecasts, with and without bias correction, are evaluated.

2.1 Study area10

The forecast location for this study is the Des Moines River at Stratford, Iowa (U.S. Ge-
ological Survey stream-gage 05481300). This location drains a 14 121 km2 area, and
is directly upstream of Saylorville Reservoir. Figure 1 shows the historical variations of
the observed monthly flow volume at this site. The annual cycle is typical of midwest-
ern US streams. Average flows are relatively high from March to July. Snowmelt and15

low evapotranspiration produce significant runoff in the spring, and wet soils and heav-
ier warm season rains continue to produce significant runoff into the early summer. In
contrast, monthly flows are relatively low from August to February, averaging less than
2000 cms-days. Evapotransipiration tends to dry out soils into the summer and fall,
and lower cold season precipitation keeps runoff low through the winter. Note that the20

variability of monthly streamflow is very high; the standard deviation varies along with,
and is of the same magnitude, as the mean monthly volume.
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2.2 Forecasting system

The experimental system for monthly streamflow forecasting on the Des Moines River
is based on the Hydrological Simulation Program-Fortran (HSPF) (Donigian et al.,
1984; Bicknell et al., 1997). Using a calibration period of 1974 to 1995, HSPF model
parameters were estimated using a multi-objective criteria based on weekly time step5

flows. Parameter estimation was carried out using the Shuffled Complex Evolution
algorithm (SCE-UA) (Duan et al., 1992).

A summary of the performance of the calibrated model in simulation mode is shown
in Table 1. The table compares observed and simulated monthly flows from 1949 to
1996 using the mean error (ME), the root mean square error (RMSE), and the correla-10

tion coefficient (ρ). The ME and RMSE were standardized using each month’s mean
flow volume. The ME is a measure of the unconditional bias of the simulation. Note that
in months with high flows, the forecast model tends to underestimate the monthly vol-
umes, and vice versa. Hence, the forecast model has obvious biases in monthly flows.
The high RMSE for winter months indicates that the hydrological model has difficulties15

in simulating winter snowfall periods. The RMSE is also relatively high during the late
summer and early fall. In late summer, the high RMSE is due mostly to the large ME
(bias); in fall, the ME is low, but ρ shows that the linear association is relatively low.

Like the AHPS forecasts from NWS, the experimental streamflow forecasts are made
using an ensemble forecasting technique (Day, 1985; Smith et al., 1992). Retrospec-20

tive streamflow forecasts were made each month over the historical period from 1949
to 1996. At the start of each month, streamflow traces were generated using the initial
conditions valid on the forecast date, and the weather data for each year in the historical
record (except the forecast year, which corresponds to the actual weather sequence).
For each forecast date, there are 48 year-long traces available. Monthly streamflow25

volumes, corresponding to lead times of 1 to 12 months, were also computed for each
trace. Finally, frequency analysis was applied to the ensemble of monthly volumes
(Smith et al., 1992) to produce probability distribution forecasts (see Fig. 2).
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3 Bias correction methods

Consider an ensemble forecast made using the initial hydrological conditions at the
forecast date. Individual ensemble traces are simulated using alternate meteorological
sequences as input. Let Ŷ i

j be the ensemble volume for month j , produced using the

meteorological time-series for year i . Depending on the forecast date, Ŷ i
j has a lead5

time of one to several months. A bias-corrected ensemble volume Z i
j is obtained using

a transformation function:

Z i
j = fj (Ŷ

i
j ). (1)

where the function fj () varies from one month to the next. In applications, the trans-
formation is applied to all the ensemble traces; frequency analysis is then applied to10

the bias-corrected volumes Z i
j to produce a new probability distribution forecast (see

Fig. 2).
The function fj () must be estimated using simulated and observed flows for a his-

torical period. Let Y i
j be the observed volume for month j in year i . Let Ỹ i

j be the
model-simulated volume for month j in year i . Three methods are investigated for the15

function fj ().

3.1 Event bias correction method

The event bias correction method, proposed by Smith et al. (1992), assumes that for
a given historical weather sequence, the same multiplicative bias exists each time the
sequence is used to simulate an ensemble trace, regardless of the initial conditions.20

Thus, the bias correction applied to ensemble volume Ŷ i
j is:

Z i
j = Bi

j · Ŷ
i
j (2)

where Bi
j is the multiplicative bias associated with the weather sequence for month

j and year i . Smith et al. (1992) estimate the multiplicative bias with observed and
566
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simulated flows from the historical record as:

Bi
j = Y i

j /Ỹ
i
j . (3)

The unique feature of this method is that the multiplicative bias depends only on the
weather sequence, and does not depend on the magnitude of the model-simulated
ensemble volume. Note too that for the same simulated volume, the bias-corrected5

volume would be different for different input weather sequences. Hence, the bias-
corrected volume is not a monotonic function of the simulated volume.

3.2 Regression method

The regression method removes bias by replacing the simulated volume with the
expected value of the observed flow, given the simulated volume. Thus, the bias-10

correction transformation applied to ensemble volume Ŷ i
j is:

Z i
j = E [Y i

j |Ŷ
i
j ]. (4)

A regression model, which is an estimate of this conditional expected value, is a natural
choice for the transformation. The regression model is estimated using the observed
and simulated flows from the historical record.15

The regression technique known as LOWESS (LOcally WEighted Scatterplot
Smoothing) was investigated for bias correction. Cleveland (1979) describes the
LOWESS regression technique in detail; we followed this approach, using the rec-
ommended PRESS (PRediction Error Sum of Squares) approach for estimating the
smoothing parameter that determines the width of the moving window. In cases where20

this technique produced a local negative slope, the smoothing parameter was in-
creased incrementally until a positive slope is obtained at all data points. This step
ensures that the LOWESS regression produces a monotonic (one-to-one) relationship.
Figure 3 shows an example of a LOWESS regression fitted to observed and simulated
September monthly volumes from the historical simulation.25
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3.3 Quantile mapping method

The quantile mapping method uses the empirical probability distributions for observed
and simulated flows to remove biases. Let Foj

be the cumulative distribution function
of the observed monthly volumes for month j . Let Fhj be the cumulative distribution
function of the corresponding historical simulation. The corrected ensemble volume is:5

Z i
j = F −1

oj
(Fhj (Ŷ

i
j )). (5)

Figure 4 illustrates the concept of the transformation through a cumulative distribution
function. In essence, this approach replaces the simulated ensemble volume with
the observed flow that has the same nonexceedance probability. Instead of fitting a
mathematical model to the cumulative distribution functions, we use a simple one-10

to-one mapping of order statistics of the observed and simulated monthly volumes
from the historical record. A corrected ensemble volume is obtained from interpolation
between the order statistic pairs. Note that similar approaches have been used by
Leung et al. (1999), Wood et al. (2002), and others to correct biases in temperature
and precipitation forecasts from atmospheric models for hydrologic forecasting.15

4 Verification approach

We will use a forecast verification approach to assess the quality of the forecasts made
using the bias-correction methods. Verification compares forecasts with observed out-
comes. Using the ensemble streamflow verification approach of Bradley et al. (2004),
the ensemble is used to construct a set of probabilistic forecasts for flow occurrence20

events. Specifically, a flow threshold is chosen to define a discrete flow occurrence
event. The event is said to occur if the observed monthly flow volume is below the
threshold. The probabilistic forecast is then the probability of the event occurrence,
which is derived from the forecast cumulative distribution function of ensemble vol-
umes (Fig. 2). Let f denote the probabilistic forecast, and let x denote the observed25
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outcome. The binary outcome x is 0 if the flow volume is greater than the threshold, or
1 if the flow volume is less than or equal to the threshold; 0 indicates the event did not
occur, and 1 means the event occurred.

Figure 5 shows the probabilistic forecasts for September flow volume (1-month lead
time) for a threshold defined by the 0.33 flow quantile (i.e., the flow corresponding to a5

nonexceedance probability p=0.33). Forecasts are shown for the system with no bias
correction, as well as the forecasts using the three bias correction methods. Event
occurrences (x=1) are indicated by the dashed vertical lines. Note that in most years
when the event does not occur, the probabilistic forecasts for the event are near zero;
when the event does occur, the probabilistic forecasts tend to be greater than zero.10

For the evaluation of bias-correction methods, nine flow thresholds are defined, cor-
responding to the 0.05, 0.10, 0.25, 0.33, 0.50, 0.66, 0.75, 0.90, and 0.95 quantiles of
the climatology of monthly volumes. The forecast-observation pairs for all the retro-
spective forecast dates create a verification data set. Summary measures of attributes
of quality are then computed using the verification data set constructed for individ-15

ual thresholds. We use distributions-oriented forecast verification techniques (Murphy,
1997) to assess the quality of the ensemble streamflow predictions. Measures derived
from the joint distribution describe the various attributes. The measures presented in
this study are described below.

4.1 Skill20

The skill of the forecast is the accuracy relative to a reference forecast methodology.
The mean square error (MSE) skill score using climatology as a reference (i.e., a fore-
cast that is the climatological mean of the observation variable µx) is:

SSMSE = 1 − [MSE/σ2
x ], (6)

where σx is the standard deviation of the observed streamflow variable. For probabilis-25

tic forecasts, SSMSE is also known as the Brier skill score (Brier, 1950).
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4.2 Decomposition of skill

The MSE skill score can be decomposed as (Murphy and Winkler, 1992):

SSMSE = ρ2
f x − [ρf x − (σf/σx)]2 − [(µf − µx)/σx]2 (7)

where ρf x is the correlation of the forecasts and observations, σf is the standard devia-
tion of the forecasts, and µf and µx are the mean of the forecasts and the observations.5

The first term of the decomposition (right-hand side) is the potential skill of the forecasts
(i.e., the skill if there were no biases). The second term is known as the slope reliability,
and is a measure of the conditional bias. The third term is a standardized mean error,
a measure of the unconditional bias.

Expanding and rearranging the first two terms of the decomposition yields:10

SSMSE = 2ρf x(σf/σx) − (σf/σx)2 − [(µf − µx)/σx]2 (8)

In this formulation of the skill score, the second term of the decomposition (right-hand
side) is a measure of the sharpness of the forecasts. Sharp forecasts are ones where
the forecast probabilities are close to 0 and 1. The first term is the product of the
square roots of the potential skill and the sharpness, and is related to the discrimination15

of the forecasts. Forecasts have discrimination when the forecasts issued for different
outcomes (event occurrences or nonoccurrences) are different. Hence, for forecasts
to have good discrimination, they must both be sharp and have high potential skill.
Although other attributes of forecast quality (Murphy, 1997) were also assessed, the
key aspects of the bias-correction methods will be illustrated using only the measures20

described above.

5 Results

This section shows results of the diagnostic verification for monthly streamflow vol-
ume forecasts. First we examine the skill of the simulation model and the ensemble
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predictions made at different times of the year, as well as the overall effect of the bias-
correction methods. Next we explore the forecast quality characteristics of the proba-
bilistic forecasts issued by the system for a critical period.

5.1 Historical simulation performance

Using the information in Table 1, the peformance of the calibrated model in simulation5

mode can be reinterpreted in terms of the verification measures presented in Sect. 4.
Figure 6 shows the MSE skill score and its decomposition for the historical simulation of
monthly volumes. The potential skill (PS) indicates that, without biases, the achievable
skill of the hydrological model is high from April through September, and slightly lower
from October through March. Indeed, the actual skill in simulation mode closely follows10

this pattern. The skill is reduced in the warm season due to unconditional biases
(SME); the impact of unconditional bias is greatest in September. Conditional biases
(SREL) also reduce the skill in the winter months; the impact on conditional bias is
greatest in January. Overall, March and November are affected the least by conditional
or unconditional biases.15

5.2 Probabilistic forecast skill

It seems logical to expect that in months where the simulation model performs well,
its ensemble streamflow forecasts would be good, and vice versa. However, this infer-
ence is incorrect for the experimental ensemble streamflow forecasts. Figure 7a shows
the average MSE skill score of the probability forecasts for the nine quantile thresh-20

olds. There is no strong correspondence with the skill in the historical simulation; the
skill and potential skill are much more variable from month-to-month for the forecasts.
Oddly, the high and low skill months are the opposite of those in the simulation mode;
for the forecast, the potential skill is higher in the cold season months, and is lower
in the summer and fall months. Conditional and unconditional biases are present in25

all months, reducing the actual skill of the probabilistic forecasts. For example, fore-
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casts in August have almost no skill because of the biases. Several other months are
noteworthy. September has the highest unconditional bias (SME) in simulation mode
(see Fig. 6); September also has relatively high unconditional and conditional bias for
the probabilistic forecasts (see Fig. 7a). However, January has the highest conditional
bias (SREL) in simulation mode, but among the lowest conditional and unconditional5

biases for the probabilistic forecasts. And March has the lowest unconditional and con-
ditional bias in simulation mode, but the highest conditional biases for the probabilistic
forecasts.

Clearly, the speculation that months with high relative accuracy or low biases in the
historical simulation will have similar characteristics in their probabilistic forecasts is10

not true. Indeed, due to biases, some months have very little probabilistic forecast skill,
despite having good skill in simulation mode.

5.3 Effect of bias correction

Figure 7b shows how bias correction changes the MSE skill and its decompositions
for the probabilistic forecasts. The results shown are using the quantile mapping ap-15

proach, but conclusions are similar for all approaches. For the probabilistic forecasts,
the unconditional biases (SME) are nearly eliminated; however, no significant reduc-
tions in the conditional biases (SREL) occur with bias correction.

The effects of all three bias-correction methods are seen in Fig. 8. Although all the
bias-correction methods applied to the ensemble volumes improve the skill in most20

months, no one method is clearly superior. The improvements by the bias-correction
methods also vary by month, corresponding to the magnitude of the unconditional bias.
Overall, the experimental forecast system produces skillful probabilistic forecasts for all
months when bias correction is applied to ensemble traces. However, without bias
correction, the August and September monthly volume forecasts have almost no skill.25

572

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/561/hessd-3-561_p.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/561/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 561–594, 2006

Evaluation of
bias-correction

methods for
streamflow forecasts

T. Hashino et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

5.4 Probabilistic forecast skill and lead time

For months with significant unconditional biases, implementation of bias correction
methods is critical for long-lead probabilistic forecasts. As an example, September
monthly volume forecasts have lower skill than climatology forecasts at 2-month lead
times or longer without bias correction (Fig. 9). Bias correction using any of the three5

methods removes the unconditional biases, producing skillful probabilistic forecasts for
longer lead times. For all months, the probabilistic forecasts lose virtually all their skill
by 6-month lead times; however, the rate of decrease depends on the month. Iron-
ically, in the warm season, where the historical simulation performance is best, the
skills drops off quickly; in the cold season, where the simulation performance is poorer,10

the rate of decrease is slower.
We also examined the variations in probabilistic forecast bias with lead time (not

shown). For a given approach (with or without bias correction), the probabilistic forecast
bias is virtually the same at all lead times. This result is not surprising, given that the
retrospective forecasts are initialized using the model-simulated moisture states on the15

forecast date from the continuous simulation. However, variations with lead time might
be significant if moisture states are adjusted in real-time by a forecaster or with a data
assimilation system.

5.5 Skill decomposition for September

Since the bias-correction methods produce dramatic improvements for the September20

forecasts, we examine the quality of the probabilistic forecasts for each of the nine
quantile thresholds in detail in Fig. 10. Note that the skill is not the same for all quan-
tile thresholds. Without bias correction (NBC), the skill is at or below climatology for
probabilistic forecasts of low to moderate flow events (Fig. 10a). In contrast, all the
bias-correction methods significantly improved the skill for low to moderate events, and25

as a result, the skill for low to moderate flow events is generally greater than that for
high flow events. An exception is the 0.05 and 0.10 quantile threshold for the LOWESS
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regression method (LR), where the skill is much lower than for the other two bias-
correction methods. At higher levels, quantile mapping (QM) and LOWESS regression
methods have similar patterns. Both are monotonic transformations of simulated flows;
the transformations are fairly similar expect for low flows, which do not appear to be
well represented by the LOWESS regression. In contrast, the event bias correction5

(EBC) is not a monotonic transformation, so its pattern differs from the other methods.
Examining the skill score decomposition in Eq. (8), the improvement in probabilistic

forecast skill from bias correction comes from two sources. Not surprisingly, one comes
from the elimination of unconditional biases (SME), especially for moderate thresholds.
However, it is surprising that all the bias correction methods also improve the potential10

skill (PS) for low to moderate thresholds. The third component, the conditional biases
(SREL) are relatively low for September without bias correction; for some thresholds,
bias-correction actually increases the conditional biases somewhat.

Although the various bias-correction methods are similar in terms of probabilistic
forecast skill for most thresholds, there are subtle differences in the nature of the fore-15

casts. In particular, the sharpness of the probabilistic forecasts differ for the bias-
correction methods (Fig. 11). Except for the lowest quantile thresholds, the quantile
mapping (QM) and LOWESS regression (LR) methods produce sharper forecast than
those for the event bias correction (EBC) method. Sharper forecasts have event fore-
cast probabilities closer to 0 or 1. The sharper forecasts also have higher discrimina-20

tion, since the potential skill is similar for each method. The higher discrimination for
the quantile mapping and LOWESS regression methods means that event occurrences
(nonoccurrences) or more common when the forecast probability is high (low).

5.6 Prototype decision problem

The impact of these differences in the nature of the forecasts can be understood using a25

simple prototype decision problem. Suppose that a decision-maker uses a September
forecast of the probability of a low-flow event, assumed here to be defined by the
0.33 quantile threshold, to initiate some action. If the forecast probability exceeds a
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specified threshold probability, action is initiated; if the forecast probability is less than
the threshold probability, no action is taken. Here we will compare the use of forecasts
for the 0.33 quantile low-flow event made using event bias correction (EBC), which
have slightly higher skill (see Fig. 10a), with those made using the quantile mapping
(QM) mapping approach, which are sharper (Fig. 11).5

In selecting a threshold probability to initiate action, the decision-maker wants the
probability of detection (POD) for the event occurrence to be high. That is, when an
event actually occurs, the forecast probability is high enough that the decision-maker
initiates action. On the other hand, the false-alarm ratio (FAR) for the event should
be low. That is, when the decision-maker initiates action, the event usually occurs10

(e.g., low flows). The probability of detection and the false-alarm ratio over the range
of possible threshold probabilities for initiating action are shown in Fig. 12. Note that
if the threshold probability is relatively low, the forecasts for both methods have high
probability of detection, but the false-alarm ratio is also high. Yet at higher thresholds,
the forecast made using the quantile mapping (QM) bias-correction method have a15

much higher probability of detection, but also a higher false-alarm ratio.
The trade-off between the probability of detection and the false-alarm ratio over

the range of threshold probabilities is known as the relative operating characteristics
(Wilks, 1995), and is shown in Fig. 13. Since the ideal situation would be to choose a
threshold probability threshold with high probability of detection (POD) and low false-20

alarm ratio (FAR), combinations close to the upper left portion are superior. Note that
the relative operating characteristics for the quantile mapping (QM) forecasts are as
good, or superior to those, for the event bias correction (EBC) forecasts. Hence, given
the costs and losses associated with false alarms and non-detection, a decision-maker
might have a strong preference for using the quantile mapping forecasts (with an ap-25

propriately selected threshold probability for action), despite the fact that the event bias
correction forecasts are slightly more skillful for this threshold.
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6 Summary and conclusions

Three different bias-correction methods were used to adjust ensemble streamflow vol-
ume traces for the Des Moines River at Stratford. The event bias correction applies a
multiplicative bias to the simulated volume trace based on the input weather sequence;
the bias is assumed to be the same as observed with the weather sequence in a5

historical simulation of flows. The regression method replaces the simulated volume
trace with its conditional expected volume, developed using a LOWESS regression
technique. The regression is obtained using simulated and observed volumes from
a historical simulation. The quantile mapping method adjusts an ensemble volume
based on the historical cumulative distribution of simulated and observed flows, so that10

the simulated and corrected trace volume have the same nonexceedance probability.
A distribution-oriented approach was used to assess the quality of ensemble stream-

flow forecasts made with and without bias correction. Interestingly, situations where
the hydrologic model performed better in calibration and validation simulations did not
translate into better skill in forecasting. In fact, months where probabilistic streamflow15

forecasts had the greatest skill were months where the model demonstrated the least
skill in simulation. This result shows that the forecast quality of a hydrologic model
should not be inferred from its performance in a simulation mode.

In terms of forecast skill, all three bias-correction methods performed well for monthly
volume forecasts. Since both the regression and the quantile mapping methods employ20

a monotonic transformation of a simulated trace volume, both produce similar results.
The exception was for low flows, where the regression method performed poorly due
to its model fit. Although alternate regression formulations could be used with the
regression method, the simplicity of the quantile mapping may favor its selection for
applications. The forecast skill for the event bias correction method is similar to the25

others, but the sharpness and discrimination of the probabilistic forecasts are less. As
demonstrated using a simple prototype decision problem, this difference can be signif-
icant for use of the bias-corrected forecasts in decision-making. This example shows
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that distributions-oriented forecast verification usefully quantifies and distinguishes the
aspects of forecast quality that are meaningful in decision-making, providing criteria to
choose among bias correction techniques with comparable skill.

The decomposition of the skill scores reveal that all the bias correction methods
achieve better skill by reducing the unconditional bias and increasing the potential skill5

of probabilistic forecasts. However, bias correction does not reduce the conditional
biases. Another way of implementing bias correction is to directly adjust the proba-
bility distribution forecast based on the original ensemble traces, rather than adjusting
each model-simulated trace independently. Such a post-hoc correction developed us-
ing a verification data set is often referred to as calibration. Several calibration meth-10

ods include the use of the conditional mean given the forecast (Atger, 2003), the use
of a linear regression between probability forecasts and observations (Stewart and
Reagan-Cirincione, 1991; Wilks, 2000), or more sophisticated approaches using the
rank histogram (Hamill and Colucci, 1997). An advantage of post-hoc calibration is
that it can minimize both unconditional and conditional biases. Given that the uncon-15

ditional biases remained with the trace-adjustment bias-correction methods, additional
improvements may be possible using a calibration technique. Investigation is needed
to compare the different approaches; if post-hoc calibration is superior, techniques for
using the results to adjust individual traces may still be needed in applications where
the traces are utilized in water resources applications.20

In this study, we focused only on the bias correction for monthly flow volumes. Yet in
many applications, ensemble traces at daily or weekly time scales are needed. Clearly,
bias correction for weekly or daily flows will be more complex. Correcting each time
period separately, using techniques similar to those present here, ignores the autocor-
relation of simulation errors for daily and weekly flows. Clearly, there is a need for addi-25

tional study to develop and evaluate more sophisticated approaches for bias-correction
of ensemble streamflow predictions for applications at finer time scales.
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Table 1. Mean error (ME), root mean square error (RMSE), and correlation coefficient (ρ) for a
48-year continuous simulation of monthly flow volumes for the Des Moines River at Stratford.

Month ME(%) RMSE(%) ρ

Jan 20.0 83.9 0.831
Feb 43.1 82.6 0.921

March −7.1 43.4 0.870
April −12.9 28.9 0.967
May −13.5 31.4 0.946

June −19.9 36.0 0.952
July −6.0 32.5 0.970
Aug 30.9 52.4 0.957
Sep 43.1 61.8 0.950
Oct 16.9 59.3 0.893
Nov 2.2 41.4 0.935
Dec −7.2 63.7 0.866
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Fig. 1. Historical variations in monthly streamflow for the Des Moines River at Stratford, Iowa
(USGS 05481300). The plot shows the mean and standard deviation of monthly flow volume
(cms-days) based on the stream-gage record from 1949 through 1996.
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Fig. 2. Probability distribution forecasts from Des Moines River ensemble streamflow prediction
system for September 1965, with and without bias-correction applied to the ensemble traces.
The effect of bias-correction is to shift the probability distribution forecasts.
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Fig. 3. Illustration of the LOWESS regression method. The crosses show observed and sim-
ulated monthly flow volumes from the historical simulation. The solid line shows the LOWESS
regression. The arrow illustrates the transformation of an ensemble trace to the bias-corrected
ensemble trace. 584
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simulation. The arrows illustrate the transformation of an ensemble trace to the bias-corrected
ensemble trace.
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Fig. 5. Time series of probabilistic forecasts for event occurrences from the ensemble stream-
flow predictions. The forecast event is for flow volume below the 0.33 quantile for September.
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threshold. Probabilistic forecasts are shown for ensembles with no bias correction (NBC), and
those bias corrected using event bias correction (EBC), LOWESS regression (LR), and quantile
mapping (QM) methods.
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Fig. 6. Monthly variations in MSE skill score, and its decomposition, for the historical simulation
of monthly flow volumes for the Des Moines River at Stratford. The plot shows the skill score
(SS), the potential skill (PS), the slope reliability (SREL), and the standardized mean error
(SME).
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Fig. 7. Monthly variations in MSE Skill Score, and its decomposition, for 1-month lead-time
probabilistic forecasts of monthly flow volumes for the Des Moines River at Stratford with (a) no
bias correction, and (b) quantile mapping bias correction. The plot shows the skill score (SS),
the potential skill (PS), the slope reliability (SREL), and the standardized mean error (SME). The
measures shown are the averages over all nine thresholds for which the probabilistic forecasts
were issued.
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Fig. 8. The effect of bias-correction on the monthly variations in MSE skill score for 1-month
lead-time probabilistic forecasts of monthly flow volumes for the Des Moines River at Stratford.
Results are shown for probabilistic forecasts with no bias correction (NBC), and those bias
corrected using event bias correction (EBC), LOWESS regression (LR), and quantile mapping
(QM) methods. The measure shown is the average skill score over all nine thresholds for which
the probabilistic forecasts were issued.
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Fig. 9. Variations by lead time in MSE skill score for the probabilistic forecasts of September
monthly flow volumes. Results are shown for probabilistic forecasts with no bias correction
(NBC), and those bias corrected using event bias correction (EBC), LOWESS regression (LR),
and quantile mapping (QM) methods. The measure shown is the average skill score over all
nine thresholds for which the probabilistic forecasts were issued.
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Fig. 10. Variations over the thresholds in MSE skill score, and its decomposition, for 1-month
lead-time probabilistic forecasts of September monthly volumes. The panel shows (a) the MSE
skill score, (b) the potential skill, (c) the slope reliability, and (d) the standardized mean error.
Results are shown for probabilistic forecasts with no bias correction (NBC), and those bias
corrected using event bias correction (EBC), LOWESS regression (LR), and quantile mapping
(QM) methods.
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Fig. 11. Variations in the relative sharpness for 1-month lead-time probabilistic forecasts of
September monthly volumes. Results are shown for forecasts with no bias correction (NBC),
and those corrected using the event bias correction (EBC), LOWESS regression (LR), and
quantile mapping (QM) methods.
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Fig. 12. Probability of detection (POD) and false-alarm ratio (FAR) for forecasts of a low-flow
event occurrence using event bias correction (EBC) and quantile mapping (QM) bias correction.
The low-flow event is defined by the 0.33 quantile of September monthly flow volume. The
threshold probability is the forecast probability for the event used for decision-making.
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Fig. 13. The relative operating characteristics for forecasts of a low-flow event occurrence using
event bias correction (EBC) and quantile mapping (QM) bias correction. The low-flow event is
defined by the 0.33 quantile of September monthly flow volume. The results show the trade-off
between the probability of detection (POD) and the false-alarm ratio (FAR) over the entire range
of threshold probabilities for decision-making (see Fig. 12).
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