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Abstract

This paper analyses simple models for “production-utilisation” systems, reduced to two
state variables for producers and utilisers, respectively. Two modes are distinguished:
in “harvester” systems the resource utilisation involves active seeking on the part of
the utilisers, while in “processor” systems, utilisers function as passive material pro-5

cessors. An idealised model of biosphere-human interactions provides an example
of a harvester system, and a model of plant and soil carbon dynamics exemplifies a
processor system. The biosphere-human interaction model exhibits a number of fea-
tures in accord with experience, including a tendency towards oscillatory behaviour
which in some circumstances results in limit cycles. The plant-soil carbon model is10

used to study the effect of random forcing of production (for example by weather and
climate fluctuations), showing that with appropriate parameter choices the model can
flip between active-biosphere and dormant-biosphere equilibria under the influence of
random forcing. This externally-driven transition between locally stable states is fun-
damentally different from Lorenzian chaos. A basic behavioural difference between15

processor and harvester forms of producer-utiliser system is that harvester systems
tend toward oscillatory behaviour (though they do not always do so), while processor
systems do not have this tendency.

1 Introduction

We are by now accustomed to the idea of Planet Earth as a single entity including in-20

teracting geophysical, biotic and human constituent systems. Among the attributes of
the earth system and its components is a propensity for autonomous dynamism. Parts
of the earth system follow temporal trajectories which can exhibit a wide range of be-
haviours – growth, decay, quasi-periodic cycling, relatively sudden flips between alter-
native states, and apparently random fluctuations – often superimposed upon one an-25

other. These dynamic behaviours are sometimes easily attributable to external drivers,
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but often they are not. Examples include climate phenomena from interannual variabil-
ity to ice ages; the dynamics of ecosystems, including population cycles, explosions
and crashes; and the dynamics of social-ecological systems involving humans, such
as boom-bust cycles and societal collapses associated with resource exploitation and
depletion.5

This paper focuses on the dynamical properties of parts of the earth system which
are governed by the linked production and utilisation of resources. The broad aim
is to identify basic system attributes which underlie commonly observed dynamical
behaviours such as cycles and threshold transitions. For this purpose, production-
utilisation systems will be idealised to just two components or state variables, respec-10

tively describing the producers and the utilisers. Within this framework, two (not always
disjoint) modes for the production-utilisation interaction will be contrasted. In the first
mode, resource utilisation occurs by active, often goal-seeking behaviour on the part
of the utilisers; such systems can be characterised as “harvester” systems. Examples
include prey-predator systems and (at a high level of abstraction) the biosphere-human15

system. In the second mode, the utilisers process resources which they receive largely
passively, to achieve closed material cycles (through loops including the world outside
the system under study) or to prevent accumulation of waste in the production side
of the system. Examples include water, carbon and nutrient cycling in terrestrial sys-
tems, and the production and disposal of goods in human societies. Such systems can20

be characterised as “processor” systems. It will be shown by example how these two
modes for production and utilisation lead to different characteristic dynamical proper-
ties.

For this comparative exercise, two systems are studied with highly simplified models
consisting of just two equations – one for producers, one for utilisers. An idealised25

model of biosphere-human interactions is used as an example of a harvester system,
and a similarly idealised model of plant and soil carbon dynamics provides a model
of a processor system. The formal approach is based on the theory of dynamical
systems, drawing from a well-established body of applied mathematics (e.g. Drazin
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1992; Glendinning 1994) and particularly from applications in mathematical ecology
(e.g. Gurney and Nisbet 1998; Kot 2001).

The plan of the paper is as follows. In Sect. 2, some necessary aspects of dynamical
systems theory are summarised briefly. Sections 3 and 4 apply this general frame-
work to a two-equation model of biosphere-human interactions, showing how even this5

minimal model can reproduce features of biosphere-human systems which are recog-
nisable from qualitative experience. In Sect. 5, a comparable analysis is made of a
two-equation model for interactions between plant and soil carbon. Section 6 draws
conclusions.

2 Dynamical systems theory10

Consider a producer-utiliser system with two state variables (x1,x2), governed by

dx1/dt = f1(x) = g1(x) − g2(x) − k1x1
dx2/dt = f2(x) = rg2(x) − k2x2

(1)

where x1(t) is the density of resource producers, x2(t) the density of utilisers, g1(x) is
the primary production flux into the x1 pool, g2(x) is the resource utilisation flux from
the x1 pool into the x2 pool, r is the efficiency for conversion of x1 into x2, ki (i=1.2)15

is a first-order decay rate, and fi (x)=dx i /dt is the net input flux to the xi pool. The
equations are coupled by the dependence of the fluxes g1(x) and g2(x) on both state
variables (x1, x2). The equation system can be written in matrix form as

dx
dt = f (x) = R · g (x) − K · x
where

x (t) =
(
x1 (t)
x2 (t)

)
, f (x) =

(
f1 (x)
f2 (x)

)
,g (x) =

(
g1 (x)
g2 (x)

)
,R =

(
1 −1
0 r

)
,K =

(
k1 0
0 k2

) (2)
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Models are needed for the production and utilisation fluxes, g1(x) and g2(x). For the
production flux, some common possibilities are:

production model P0: g1(x) = p1

production model P1: g1(x) = p1x1

production model P2: g1(x) = p1

(
x1

x1+q11

)
production model P3: g1(x) = p1

(
x1

x1+q11

)(
x2

x2+q12

) (3)

In model P0 the production flux g1 is constant, while in model P1 it is proportional
to the producer biomass x1. In model P2, g1 has a saturating dependence on x1 of5

Michaelis-Menten or Holling Type II form (Gurney and Nisbet 1998) with scale q11,
so that production depends linearly on x1 when x1<<q11 and is independent of x1
when x1>>q11. In model P3, g1 has a saturating dependence on x1 as for model P2,
together with a similar dependence on the utiliser as a symbiont, x2, with scale q12.

For the utilisation flux g2(x), some common possibilities are10

utilisation model U0: g2(x) = p2x1

utilisation model U1: g2(x) = p2x2x1

utilisation model U2: g2(x) = p2x2

(
x1

x1+q21

) (4)

In model U0, g2 is independent of utiliser level (x2) and depends only on resource
availability (x1). This is a defining property of processor systems as characterised
above. In models U1 and U2 the utilisation depends on utiliser (x2) as well as resource
(x1) levels, a defining property of harvester systems. The harvester models U1 and U215

both assume a linear dependence of g2 on x2, and a dependence on x1 which is linear
in U1 and of saturating (Michaelis-Menten) form in U2. The notation in Eqs. (3) and (4)
is that pi is a scale for the overall magnitude of the flux gi , and qi j is a scale for the
modification of gi by state variable xj (so qi j appears in the equation for gi and has
the dimension of xj ).20
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A particular model is specified by the parameterisations for the production and
utilisation fluxes from the above possibilities (or others), for instance as class
P0U1. For instance, the well-known Lotka-Volterra equations (dx1/dt=p1x1–p2x2x1,
dx2/dt=p2x2x1–k2x2) used in ecological dynamics to describe predator-prey relation-
ships (Lotka 1920; Volterra 1926; Gurney and Nisbet 1998), are of the class P1U1.5

Several cases including P0U1 and P2U1 (among others) are analysed by Gurney and
Nisbet (1998) and Kot (2001).

The solution of the system is a trajectory x(t) in state (x) space, from a given initial
state x(0) at time t=0, with given models for g1 and g2 and with given parameters (r ,
ki , pi , qi j ,. . . ). Much of the behaviour of this solution is determined by the equilibrium10

points (xQ, denoted by a superscript Q) at which dx/dt=f(x)=0, and by the local be-
haviour or stability of the trajectories around these points (Drazin 1992; Glendinning
1994; Casti 1996, 2000).

The existence of equilibrium points is governed by the nonlinear equation

f(xQ) = R · g(xQ) − K · xQ = 0 (5)15

which is satisfied when xQ is an equilibrium point. The stability of an equilibrium point
determines whether it is stable (so that trajectories near xQ converge to xQ as t→∞)
or unstable (so that any infinitesimal disturbance from xQ causes trajectories to diverge
from xQ as t→∞). The stability of xQ is determined by the linearised system

dx′/dt = J · x′ (6)20

where J=Ji j is the Jacobian matrix (∂fi /∂xj ) of the vector function f(x), and x′=x–xQ is

a perturbation about xQ. The behaviour of x′(t) is determined by the eigenvalues (λi )
of J, evaluated at xQ. If all λi have negative real parts, then perturbations die away and
the point is stable. If at least one λi has a positive real part, then perturbations grow
(along directions given by the eigenvectors corresponding to those eigenvalues) and25

the point is unstable. The imaginary parts of λi determine whether the solutions have
oscillatory components.
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For the two-dimensional system governed by Eq. (1), the Jacobian is

J =

(
∂1g1 − ∂1g2 − k1 ∂2g1 − ∂2g2

r∂1g2 r∂2g2 − k2

)
(7)

where ∂jgi is a short notation for ∂gi /∂xj . The eigenvalues are solutions of the char-
acteristic equation Det(J–λI)=0, which in two dimensions is (Drazin, 1992, 170–176)

λ2 − (TrJ) λ + (DetJ) = 0 (8)5

where the trace and determinant of J are evaluated at an equilibrium point xQ. The
main options are as follows: if both roots (λ) of Eq. (8) are real and negative (positive),
then xQ is a stable (unstable) node: nearby trajectories converge to (diverge from)
xQ along non-spiralling curves. If both roots are complex with negative (positive) real
parts, then xQ is a stable (unstable) focus or spiral point: nearby trajectories spiral10

inward to (outward from) xQ. If both roots are real and of opposite sign, then xQ is a
saddle point: nearby trajectories are hyperbolic. A saddle point is unstable in general,
except for approach toward xQ from two particular opposite directions determined by
the stable axis of the family of hyperbolic trajectories. It is easily shown (Drazin 1992)
that these conditions are equivalent to the following:15

xQ is stable (node or focus) if Det (J) > 0 and Tr (J) < 0
xQ is unstable (node or focus) if Det (J) > 0 and Tr (J) > 0
xQ is a saddle point if Det (J) < 0

(9)

If xQ is stable, the nature of the local trajectories around xQ is given by the condition

xQ is a stable node (non-spiral trajectories) if (Tr J)2 − 4 (Det J) > 0
xQ is a stable focus (spiral trajectories) if (Tr J)2 − 4 (Det J) < 0

(10)

Hence, for two-dimensional systems, the stability properties of an equilibrium point xQ

are determined completely by the trace and determinant of the Jacobian J, evaluated20
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at xQ. Equations (9) and (10) are the equivalent for two-dimensional systems of the
general requirement that an equilibrium point is stable if all eigenvalues of J at xQ

have negative real parts, and a node if all eigenvalues are real. Equations (9) and
(10) remove the need to find the eigenvalues explicitly in order to determine stability in
two-dimensional systems.5

3 Biosphere-human interactions: basic model

As an example of a producer-utiliser system of the harvester type, we consider a min-
imal model of biosphere-human interactions in which the biosphere acts as producer
and humans as utilisers. The interaction between humans and the natural biosphere
that sustains them clearly involves a vast range of biophysical, economic, social and10

cultural processes, which together have shaped diverse human populations in quite
different ways determined by ecological and biogeographical circumstances (Flannery
1994; Diamond 1991, 1997, 2005) as well as by contingent history. It goes without
further emphasis that a two-equation model cannot capture even a fraction of this rich-
ness. Nevertheless, even such a simple model is capable of discerning some broad15

patterns.
The state variables are the biomass b(t) and human population h(t) in a specified

region. We first consider a very simple formulation in which b(t) and h(t) are governed
by

db
/
dt = p − cbh − kb (11)20

dh
/
dt = r (cbh −mh) (12)

where p is a constant primary biomass production flux, c the rate of extraction of
biomass per human; k the rate of decay of biomass by respiration, m the maintenance
biomass requirement per unit time per human, and r the fractional growth rate of human
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population per unit biomass surplus. The model assumes that the growth rate of h de-
pends on the difference (cbh–mh) between the extraction of biomass by harvest (cbh)
and the biomass per unit time required to maintain the human population (mh). This
difference is a surplus production measured in biomass units, leading to population in-
crease (decrease) at rate r when the surplus (cbh–mh) is positive (negative). It is also5

assumed that all biomass is produced and consumed within the region over which b
and h are defined, so no export or import of biomass is considered. The mechanisms
by which surplus production leads to population increase are not considered; these
may include changes in the net reproduction rate or net immigration rate. This model is
a special case of Eqs. (1) to (4) with production and harvest models of the class P0U110

and variable substitutions (x1,x2)→(b,h), (g1,g2)→(p,cbh), and (k1, k2)→(k,rm).
The model has three dimensions: biomass [B], humans [H] and time [T]. The di-

mensions of the five parameters are p [BT−1], c [H−1T−1], k [T−1], m [BH−1T−1] and
r [HB−1]. With five independent dimensional parameters and three dimensions, the
system has two (=5–3) independent dimensionless groups, which can be defined as15

U =
km
cp

, V =
rm
k

(13)

Equations (11) and (12) have two equilibrium points (denoted A and B), with equilibrium
(b,h) values given by:

Point A: bQA = p
/
k, hQA = 0

Point B: bQB = m/c, hQB =
(
p
/
m
)
−
(
k
/
c
) (14)

These points have the following properties.20

1. Point A, the biosphere-only equilibrium, is reached in the absence of humans
(h=0), when the biosphere equilibrates to a biomass bQA=p/k at which production
(p) balances respiration (kb). Point A is a saddle point with its stable axis oriented
along the line h=0, as shown in Appendix A.
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2. As soon as h exceeds zero for any reason, the system leaves point A and ap-
proaches point B, the equilibrium for coexistence of a human population with the
biosphere. Point B is always a stable equilibrium point (see Appendix A). It is a
stable focus (spiral trajectories) when V >(4U(1–U))−1, and a stable node (non-
spiral trajectories) otherwise.5

3. Production (p) determines the equilibrium biomass at point A (bQA), but at point
B, p instead determines the equilibrium human population (hQB). The biomass at
point B (bQB) is independent of p and is determined by m and c, attributes of the
human population.

4. Points A and B are both independent of the growth rate r and therefore of the10

group V . The role of r (and V ) is to determine the nature of the approach to point
B, as illustrated below.

5. For hQB to be positive (that is, for a viable equilibrium human population to exist),
the parameters must satisfy the condition 0<U<1.

A “resource condition index” W can be defined as the ratio of the equilibrium biomass15

values with and without human utilisation:

W = bQB
/
bQA (15)

In the presence of a human population at equilibrium, a fraction W of the potential
(unutilised) biomass remains in place, and a fraction (1–W ) is removed by utilisation.
Equations (13) and (14) show that for the basic system governed by Eqs. (11) and20

(12), we have W=U . (In an extended version of this model considered below, W is
a function of U). The fractional human appropriation of net primary production, or
HANPP (Boyden 2004), is g2/g1=cbh/p, which for the basic model at equilibrium point
B is 1–U=1–W .

Figure 1 illustrates the system dynamics by plotting trajectories (b(t), h(t)) on the25

bh plane under four scenarios, respectively corresponding to variation of p, m, c and
2288
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r about a centre case with p=1, k=1, m=2, c=4, r=1. The total range for the varied
parameter is about a factor of 5 in each case. The initial condition is that the biomass
takes the potential value bQA (=1 with the centre-case parameter choices) with a small
human population.

– Scenario 1 (variation of p): This scenario varies the natural resource available5

to the system. As p (the primary production of biomass) increases, the system
responds through an increase in the equilibrium human population (hQB=
p/m–k/c), not the equilibrium biomass (bQB=m/c), as noted above. For low val-
ues of p, the dimensionless group U exceeds 1 and the coexistence equilibrium
(point B) is no longer viable as it is both unphysical (hQB<0) and also unstable,10

so the system reverts to the biosphere-only equilibrium (point A). This occurs at
different points along the b axis under variation of p, since bQA=p/k.

– Scenario 2 (variation of m): In this scenario, the maintenance requirement
(biomass per human per unit time) varies. One might expect that decreasing m
would cause the human population to “walk more lightly upon the land”, increas-15

ing the equilibrium resource condition index W . However, the reverse is the case:
decreasing m decreases W , increases the equilibrium human population rapidly,
and decreases the equilibrium biomass. With decreasing m there is a decreasing
tendency of trajectories to spiral, and low m values are associated with nodes
(non-spiral trajectories near equilibrium point B).20

– Scenario 3 (variation of c): This scenario corresponds to variation of the rate of
extraction of biomass by humans, or the intensity of human exploitation of the
biosphere. Increasing c causes the equilibrium biomass to decrease (as might
be intuitively expected) but the human population increases only slowly. Also,
as c increases, there is an increase in the amplitude of oscillations associated25

with spiral orbits. The qualitative insight provided by this scenario is that more
aggressive resource extraction has the counter-intuitive effect of decreasing the
equilibrium biomass while not increasing the equilibrium human population by
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anything like as much. Equation (14) shows that as c→∞, hQB approaches the
upper-limit value of p/m while bQB approaches zero. In this limit the biomass
is over-exploited without a return in the form of a high human population as in
Scenario 2.

– Scenario 4 (variation of r): Under variation of the growth rate of the human popu-5

lation per unit biomass surplus, equilibrium point B does not change (see property
4, above) but there is an increase in the amplitude of the decaying oscillations with
which the system approaches this point. Hence, increase of r increases the ten-
dency of the system to exhibit “boom-bust” oscillations. A similar trend is evident
with increasing c, although in that case there is also a shift in the equilibrium point10

as noted in the previous paragraph.

The oscillatory behaviour of this simple model (especially at high c and r values)
echoes the hypothesis of Flannery (1994) that when humans move into a previously un-
occupied ecosystem, the biosphere-human system undergoes an initial rapid exploita-
tion phase, a resource crash accompanied by rapid decrease in the human population,15

and finally an equilibration.

4 Biosphere-human interactions: extended model

4.1 Model formulation

The above basic two-equation model of biosphere-human interactions is open to sev-
eral criticisms (other than those associated with the extreme idealisation to just two20

state variables). Two of the main ones are: (1) the primary production p is assumed
to be constant at all levels of the biomass b, whereas production is actually limited
(approximately linearly) by b at low b, and saturates to a constant value at high b; and
(2) the harvest flux cbh is assumed in the basic model to be resource (b) limited at all
resource levels, so there is no resource level (no matter how large) at which the harvest25
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flux saturates with respect to b. To investigate the effect of these possible limitation and
saturation attributes of the production and harvest fluxes, we extend the basic model
from class P0U1 to class P2U2. The extended model is

db
dt

= p
(

b
b + bP

)
− kb − cbh

(
bH

b + bH

)
(16)

dh
dt

= rcbh
(

bH

b + bH

)
− rmh (17)

5

where bP and bH are respectively the biomass scales for resource saturation of pro-
duction and harvest. The factors in brackets, accounting for resource saturation, are
written in a form which keeps the dimensions of p, c, k, m and r the same as in the
basic model. As bP→0 and bH→∞, these factors approach 1 and Eqs. (16) and (17)
revert to (11) and (12).10

The model now has seven dimensional parameters (p, c, k, m, r , bP , bH ), three di-
mensions ([B], [H], [T]) as before, and hence four independent dimensionless groups.
With this many parameters, analysis is greatly helped by normalising the model for-
mally to a dimensionless form. (This was not done in the foregoing analysis of the
basic model; the dimensionless approach provides a more concise description at the15

expense of the need for careful interpretation when parameters appear in both dimen-
sionless groups and scales, as illustrated below). Dimensionless versions of the model
variables b, h and t are defined as x1=b/bscale, x2=h/hscale and s=t/tscale, where bscale,
hscale and tscale are scales to be constructed from the externally specifed parameters.
They are chosen as follows: bscale is the equilibrium biomass in the absence of a20

human population, bscale=b
QA=(p/k)–bP , so that x1=1 for the equilibrium biosphere

without utilisation; hscale is set as hscale=rbscale, because r is the obvious parameter
with dimension [HB−1] for relating the scales for h and b; and tscale is chosen as 1/k,
the intrinsic biospheric time scale. With these choices, the dimensionless biomass,
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human population and time are

x1 =
b

bQA
=

b(
p
/
k
)
− bP

, x2 =
h

rbQA
=

b

r
((
p
/
k
)
− bP

) , s = kt (18)

The four independent dimensionless groups are chosen as

U =
m

cbQA
=

m

c
((
p
/
k
)
− bP

) , V =
rm
k

, a1 =
bP

bQA
, a2 =

bQA

bH
(19)

The definition of U reverts to that for the basic model (Eq. 13) as bP→0, and the5

definition of V is identical to that for the basic model. Substituting these dimensionless
variables into Eqs. (16) and (17), the dimensionless form of the extended model is
found to be:

dx1

ds
= f1 (x1, x2) =

(1 + a1)x1

x1 + a1
− x1 −

V x1x2

U (1 + a2x1)
(20)

dx2

ds
= f2 (x1, x2) =

V x1x2

U (1 + a2x1)
− V x2 (21)

10

The basic model (without resource saturation of production and harvest) is recovered
as bP→0 and bH→∞, or as a1→0 and a2→0. The reason for defining a2 as propor-
tional to 1/bH rather than bH is that it is more convenient to take the zero than the
infinite limit in computations.

The production term in Eq. (20), g1(x1)=(1+a1)x1/(x1+a1), is plotted against x1 in15

Fig. 2 for a range of a1 values. The choice a1=0 gives constant production (g1=1),
while all other choices give a resource-limited production with g1=0 at x1=0 and g1=1
at x1=1.
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4.2 Equilibrium points

Equations (20) and (21) have three equilibrium points at which dx1/ds=0 and dx2/ds=0:

Point Z:
(
xQZ

1 , xQZ
2

)
= (0, 0)

Point A:
(
xQA

1 , xQA
2

)
= (1, 0)

Point B:
(
xQB

1 , xQB
2

)
=
(

U
1−a2U

, U(1−a2U−U)
V (1−a2U)(a1(1−a2U)+U)

) (22)

Points A and B are respectively a biosphere-only equilibrium and a biosphere-human
coexistence equilibrium, similar to those for the basic model (Eq. 14). Point Z is an5

additional equilibrium point at the origin, with biomass and human population both
zero. Evaluation of the resource condition index W , defined by Eq. (15), gives

W =
bQB

bQA
=

xQB
1

xQA
1

=
U

1 − a2U
, U =

W
1 + a2W

(23)

Hence, for the extended model, W is a function of the dimensionless group U , in con-
trast with the basic model for which W=U . Substituting W for U in Eq. (22), equilibrium10

point B can be written in the alternative, simpler form(
xQB

1 , xQB
2

)
=
(
W,

W (1 −W )

V (a1 +W )

)
(24)

Biophysically realistic equilibrium solutions can only exist in a subset of parameter
space. First, all parameters must be non-negative. Second, for the biosphere-only
equilibrium biomass (bQA) to be positive, it is necessary that bscale>0, which requires15

that (p/k)>bP . This is a condition on the dimensional parameters which becomes im-
plicit when the model is made dimensionless, being incorporated into a requirement on
bscale. Third, the equilibrium biomass in a harvested system cannot exceed the equi-
librium biomass without harvest, so biophysically realistic solutions at equilibrium point
B exist only when W is between 0 and 1. From Eq. (23), this means that 0<U<Umax,20
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where Umax=1/(1+a2). This is the counterpart for the extended model of the require-
ment 0<U<1 for the basic model.

Figure 3 shows the behaviour of equilibrium point B on the x1x2 plane in response to
variation of the parameters a1 (which varies 0 to 1 across curves) and U (which varies
parametrically along each curve from 0 to Umax). This variation of U means that W5

varies from 0 to 1 along each curve. The curves do not change as a2 is varied, but
the parametrically varying U values along each curve change with a2 because of the
dependence of Umax on a2, shown in the small lower panel of Fig. 3. The main panel of
Fig. 3 assumes V =1, the effect of increasing (decreasing) V being to shrink (stretch) the
vertical axis. The most important aspect of this figure is the change in the behaviour of10

equilibrium point B in the transition from the basic model (with constant production and
a1=0) to the extended model (with biomass-limited production and a1>0). As resource
condition declines (W→0 or U→0), the human population in the basic model increases
(xQB

2 →1/V , hQB→(k/m)bQB), but in the model with biomass-limited production, xQB
2 and

hQB both decline (more realistically) to zero.15

4.3 Trajectories

A first glimpse into the dynamical behaviour of the extended model is provided in Fig. 4,
in which the flow vector (f1(x1,x2),f1(x1,x2))=(dx1/ds, dx2/ds) is plotted on the x1x2
plane for three different W values, 0.2, 0.5 and 1 (other parameters are V =1, a1=0.5,
a2=0.5). For W=0.2 and 0.5, the oscillatory nature of the flow around equilibrium point20

B is clear. For W=1, point B coincides with point A, the biosphere-only equilibrium.
Figure 5 shows the response of trajectories to variation (in turn) of W , V , a1 and a2

around the centre case W=0.5, V =1, a1=0.5 and a2=0.5. This is a high-level summary
of the response of the system to changes in external conditions, but it needs care in
interpretation because dimensional parameters (p, c, k, m, r , bP , bH ) affect both25

the dimensionless groups (W or U , V , a1 and a2) and also the normalising scales
(bscale, hscale and tscale). To infer the response of dimensional state variables (b and h)
to changes in dimensional external parameters with Fig. 5 and similar dimensionless
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plots, it is necessary to consider the influences of the dimensional parameters both
on the dimensionless groups and also on the scales with which the axes in Fig. 5 are
normalised. Keeping this in mind, the implications of Fig. 5 are as follows.

– Variation of W : Since W is a function of U through Eq. (23), variation of W from
0 to 1 occurs as U varies from 0 to Umax. As this occurs, the equilibrium point5

follows a trajectory consistent with Fig. 3. The rate of convergence to equilibrium
(the rate at which the amplitude of successive spirals diminishes) increases with
W and U , so that the system is more prone to strong oscillatory behaviour at
low than at high W . Since U is defined in terms of dimensional parameters by
U=m/(cbQA)=m/(c(p/k–bP )), variation of U (and W ) can occur through variation10

of any of p, m, c, k or bP . Hence this variation is the counterpart for the extended
model of all of scenarios 1, 2 and 3 for the basic model. Variation of p, k and
bP also affects the equilibrium biomass scale bQA=p/k–bP , but this affects the
scaling on both the x1 and x2 axes in a similar way.

– Variation of V : This variation reflects essentially a variation in the growth rate15

r . As V increases the oscillatory tendency of the model increases, as for the
basic model (Fig. 1). With increasing V there is also a decrease in xQB

2 , the
equilibrium dimensionless hQB, whereas the equilibrium point (bQB,hQB) for the
basic model is independent of r and V (see Scenario 4 for the basic model). The
apparent difference arises because r appears in the normalisation of hQB to xQB

220

(see Eq. 18).

– Variation of a1 : Increasing a1 occurs with increase of bP and thus the limitation
of production at low biomass and saturation at high biomass (Fig. 2). This has
a strong tendency to increase the oscillatory behaviour of the model, and also
causes a reduction in xQB

2 , the equilibrium dimensionless hQB, while xQB
1 stays25

constant (a trend also evident in Fig. 3).

– Variation of a2 : Increasing a2 occurs with progressively more saturation of the
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harvest flux at high biomass, and with decreasing bH . For the parameter range
shown in Fig. 5, increase in a2 causes a mild decrease in the oscillatory tendency
of the trajectories while leaving the equilibrium point (xQB

1 ,xQB
1 ) unchanged.

4.4 Stability

The stability of the equilibrium points for the extended model is more subtle than for the5

basic model, for which the coexistence equilibrium (point B) is stable for all parameter
choices. Stability analysis for the extended model leads to the following conclusions
(see details in Appendix B).

– Equilibrium point Z (the origin) is a saddle point with its stable axis oriented along
the x2 axis, so point Z is unstable with respect to an infinitesimal variation in x110

and stable with respect to a variation in x2. Hence a small positive perturbation
in biomass from point Z causes the biosphere to move away from point Z and
approach point A, whereas a small human population dies out as it has nothing
to live on.

– Point A (the biosphere-only equilibrium) is a saddle point with its stable axis ori-15

ented along the x1 (biomass) axis, as in the basic model. In the absence of
humans, the biosphere approaches point A along the x1 axis from either direc-
tion. A small positive perturbation in h or x2 causes the system to leave point A
and approach point B.

– Point B (the coexistence equilibrium) can be either stable or unstable, depending20

on the values of W , a1 and a2.

The condition for stability of point B is (see Appendix B):

1 + a1 − a1a2 + 2a1a2W + a2W
2
{

> 0 (stable)
< 0 (unstable)

(25)
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Hence, for given W and a1, instability occurs when a2 exceeds a threshold value:

a2 > a2Thresh =
1 + a1

a1 − 2a1W −W 2
(26)

This threshold value is plotted on the (W , a2) plane in Fig. 6, for several values of a1.
Instability occurs when W is low and a2 and a1 are high. Figure 7 shows how the
system behaviour changes as W and a2 cross this threshold. When the parameters5

are on the stable side of this threshold, trajectories are attracted to point B, but for
parameters are on the unstable side of the threshold, trajectories are repelled from
point B and enter a limit cycle in which oscillatory behaviour of the system does not die
away but continues for all time.

To conclude the analysis of the simple model of biosphere-human interactions, we10

summarise four significant differences between its basic (constant-production) and ex-
tended (resource-limited production and utilisation) forms. First, the basic model has
biosphere-only and coexistence equilibrium points, but the extended model has an ad-
ditional equilibrium point at the origin. Second, with declining resource condition (W ),
h increases in the basic model but (more realistically) declines toward zero in the ex-15

tended model. Third, the extended model is more prone to strong oscillatory behaviour
than the basic model, especially at low W . Fourth, in the basic model the coexistence
equilibrium is always stable, but in the extended model it becomes unstable at low W
and with strong resource limitation of production and/or utilisation (large a1 or a2). In
these conditions, trajectories enter a limit cycle of orbits about the coexistence equilib-20

rium point, rather than eventually reaching it.

5 Plant and soil carbon dynamics

Carbon dynamics in the plant-soil system provides an example of a producer-utiliser
system which operates in processor mode, as defined in the introduction. The pro-
ducers are plants, through the assimilation of atmospheric CO2 into biomass, and the25
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utilisers are soil heterotrophic organisms which feed off plant litter and respire the car-
bon back to the atmosphere as CO2.

5.1 Model formulation

The system is modelled using an idealised, two-equation representation with state
variables for the stores of biomass carbon (x1) and litter and soil carbon (x2). The5

governing equations are:

dx1

dt
= F (t)

(
x1

x1 + q1

)(
x2

x2 + q2

)
+ s1 − k1x1 (27)

dx2

dt
= k1x1 − k2x2 (28)

where F (t) is a forcing term describing the net primary production (NPP); q1 and q2
are scales for the limitation of production by lack of x1 and x2, respectively; k1 and k210

are rate constants for the decay of x1 and x2, respectively; and s1 is a component of
the primary production which is independent of both x1 and x2. We consider both the
case where F (t) is independent of time, F (t)=F0, and also the case where F (t) is a
random function of time. The model parameters are q1, q2, k1, k2, and s1, together
with F0 or parameters characterising F (t) as a random function.15

These equations are a simplification of many terrestrial biosphere models with car-
bon and nutrient dynamics, such as Century (Parton et al., 1987, 1988, 1993); the In-
troductory Carbon Balance Model (ICBM) (Kätterer and Andrén 2001); BIOMASS and
G’DAY (McMurtrie et al., 1992; McMurtrie and Wang, 1993), 3PG (Landsberg and War-
ing, 1997), CenW (Kirschbaum, 1999) and others. Characteristics of such models are20

reviewed by Raupach et al. (2005). Relative to these sophisticated models, Eqs. (27)
and (28) are an extreme idealisation: all biomass carbon (leaf, wood, root) is lumped
into a single store x1 governed by an equation of the form dx1/dt=(NPP)–(litterfall),
and all litter and soil carbon into a single store x2 governed by dx2/dt=(litterfall)–
(heterotrophic respiration). Litterfall and heterotrophic respiration are parameterised25
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as first-order decay fluxes, k1x1 and k2x2. NPP is assumed to depend on three fac-
tors: (1) a forcing term F (t) representing the fluctuating availability of light and water
resources through weather and climate variability, (2) a factor x1/(x1+q1) of Michaelis-
Menten form describing the limitation of NPP by lack of biomass in resource-gathering
organs (leaves, roots), and (3) a factor x2/(x2+q2), also of Michaelis-Menten form,5

describing the integrated symbiotic effects of soil carbon on plant productivity. It is as-
sumed that soil carbon has a beneficial effect on plant growth, through processes such
as nutrient cycling and improvement in soil water holding capacity. The parameter s1
represents a (small) production term that is not dependent on x1 and x2, for example
generation of biomass from a long-term reservoir of seed propagules. For the present10

purpose, s1 is assumed to be a constant flux independent of external conditions as
well as x1 and x2.

Equations (27) and (28) are identical to the test model used in the OptIC
(Optimisation Intercomparison) project (Trudinger et al., 2006; also http://www.
globalcarbonproject.org). The aim of OptIC is to comparatively evaluate several model-15

data synthesis (parameter estimation and data assimilation) approaches for determin-
ing parameters in biogeochemical models from multiple sources of noisy data. Equa-
tions (27) and (28) are used as a simple test model which embodies features of a real
biogeochemical model, together with generated data from model forward runs with
added noise, for which “true” parameters are known.20

5.2 Equilibrium points and stability

We consider first the situation with steady forcing, F (t)=F0. Seeking the equilibrium
points points xQ at which dx1/dt=dx2/dt=0, Eq. (28) shows that

xQ
2 =

k1x
Q
1

k2
(29)
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and Eq. (27) then implies that xQ
1 satisfies the cubic equation

j (x1) = c0 + c1x1 + c2x
2
1 + c3x

3
1 = 0

with


c0
c1
c2
c3

 =


q1q2k2s1

/
k2

1

((q1k1 + q2k2) s1 − q1q2k1k2)
/
k2

1

(F0 − q1k1 − q2k2 + s1)
/
k1

−1


(30)

Thus the equilibrium points are of the form xQ=xQ
1 (1,k1/k2), where xQ

1 is a solution of
the cubic equation j (xQ

1 )=0. This equation has either one or three real roots, yielding
either one or three equilibrium points. At least one root must be positive (xQ

1 >0) for a5

nontrivial, biophysically meaningful solution to exist. The cubic j (x1) is plotted in Fig. 8
with reference-case parameters F0=1, q1=1, q2=1, k1=0.2, k2=0.1 (the red curve;
other curves are described below).

When the equilibrium points are determined by the roots of a single equation, it is
not necessary to appeal to the Jacobian and its characteristic equation to determine10

stability. A sufficient criterion is that an equilibrium point xQ
1 is stable if dj /dx1 < 0 at

x1=x
Q
1 , and unstable otherwise. Since j (x1)=–x3

1+. . . , it is clear from the geometry
(see Fig. 8) that if there is just one equilibrium point then it is stable, whereas if there
are three equilibrium points, say A, B, C with equilibrium x1 values xQA

1 , xQB
1 and xQC

1

in increasing order, then xQA
1 and xQC

1 are stable and xQB
1 is unstable. For all biophysi-15

cally admissible parameter choices, j (x1) has at least one stable root with x1>0. This
will be designated as xQC

1 , the largest possible stable equilibrium value of x1, and can
be identified as a “healthy” or “active” equilibrium state of the system. It is important to
understand whether and when there is another biophysically attainable and stable equi-
librium state, equilibrium point A, with xQA

1 ≥0. This depends on the parameter choices,20

particularly for s1. There are three main possible kinds of behaviour, as follows.
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1. If s1 > 0 and the cubic j (x1) crosses the x1 axis only once, then there is only one
equilibrium point xQC

1 , the “active-biosphere” point. This point is always stable, so
the system must approach it (with steady forcing). This is the outcome with the
reference-case parameters, as shown by the red curve in Fig. 8.

2. If s1>0 and j (x1) crosses the x1 axis three times, all greater than zero, then5

there are two stable, positive equilibrium points (xQA
1 and xQC

1 ) on either side of
one unstable point (xQB

1 ). The two dashed curves in Fig. 8 show this outcome
occurring as k1 is increased from 0.2 to (respectively) 0.4 and 0.5, with other
parameters held at reference values. In this case, xQC

1 is the “active-biosphere”
point as before, and xQA

1 is a “dormant-biosphere” equilibrium.10

3. If s1=0, then there is a stable equilibrium point (A) of Eqs. (27) and (28) at the
origin, in addition to the “active-biosphere” equilibrium point xQC

1 >0. (Existence of
this root is assured because s1=0 implies c0=0, so xQ

1 =0 is a root of j (x1); stabil-
ity follows because dj /dx1=c1 at x1=0, and when s1=0, we have c1=–q1q2k2/k1,
which is negative for positive values of q1, q2, k2). The equilibrium point at the15

origin corresponds to “extinction” of the biosphere in this simple model system,
since once the system reaches the origin with s1=0, it remains there for all sub-
sequent time, no matter what the forcing F (t). The blue curve in Fig. 8 shows this
case.

In addition to these three main options, there are other possibilities. For some parame-20

ter combinations the cubic j (x1) has no positive or zero solutions (that is, all crossings
of the x1 axis occur when x1<0), so these parameter combinations are not biophysi-
cally realisable. Also, if s1=0 and either q1=0 or q2=0, the model relaxes to a simpler
form as j (x1) is of lower degree than a cubic. In these cases there can be only one
stable equilibrium point.25

Figure 9 shows how the three main kinds of behaviour can all arise as parameters
are varied around a reference case. Each panel of this figure superimposes plots of xQ

1
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(red), xQ
2 (orange), Det J (green), –Tr J (blue) and the discriminant ((Tr J)2–4 Det J), at a

particular equilibrium point (A, B, C, in different columns), and examines the response
of these quantities to variation of a parameter (s1, k1, k2, q1, q2, in different rows).
No lines are plotted where real equilibrium solutions do not exist. The trace and the
determinant of J show the stability of the point, since Det J and –Tr J must both be5

positive for stability, from Eq. (9). The discriminant shows whether local trajectories
around the point are non-spiral or spiral, using from Eq. (10). The picture is rich: the
“active-biosphere” equilibrium point C exists as a stable node (non-spiral trajectories)
for nearly all parameter choices. Points A and B form a pair, in that neither exists or
both exist. When both exist, point A is always stable and point B always unstable. The10

discriminant is always positive where points exist, indicating that spiral behaviour is not
observed in this model over the slices of parameter space surveyed in Fig. 9.

The non-spiral nature of the trajectories in this model is further illustrated in Figure
10, where trajectories are plotted by numerically integrating Eqs. (27) and (28) for a
number of parameter choices. In all cases the trajectories decay towards equilibrium,15

rather than spiralling towards it as for the biosphere-human model (Fig. 5). This is con-
sistent with the behaviour of the discriminant ((Tr J)2–4 Det J), as shown in Fig. 9. An
equivalent statement is that at all stable equilibrium points of the model, all eigenvalues
of J are real and negative. This is in accord with the finding of Bolker et al. (1998) that
the eigenvalues of the Century plant-soil carbon model are real and negative, so that20

the model shows no oscillatory behaviour.

5.3 Random forcing

To this point there has been no time-dependent forcing applied to any model consid-
ered. This section investigates the effect of random forcing F (t), or “noise”, on the
system described by Eqs. (27) and (28). Random forcing here represents the effects25

of fluctuating resource (water and light) availability on the net primary productivity of
the system. When F (t) is an externally prescribed random process, then the solutions
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x1(t) and x2(t) are also random processes.
The forcing F (t) is prescribed here by taking its normalised logarithm (ln (F (t)/F0),

where F0 is a measure of the magnitude of F (t)) to be a Markovian, Gaussian ran-
dom process m(t) with zero mean, standard deviation σm and time scale Tm. This
process, known as the Ornstein-Uhlenbeck process (van Kampen 1981), is fundamen-5

tal in the theory of random processes; it has an exponential autocorrelation function
(exp(-|τ|/Tm), where τ is the time lag) and a power spectrum with high-frequency roll-off
proportional to (frequency)−2. In finite-difference form, at times ti with increments ∆t
(<<Tm), the processes m(ti ) and F (ti ) obey

mi = αmi−1 + βσmζiF (ti ) = F0 exp (mi ) (31)10

where α=exp(–∆t/Tm), β=(1-α2)1/2, and ζi is a Gaussian random number with zero
mean and unit variance. This formulation ensures that F (ti ) is always positive, with a
mean determined by F0 (in fact the mean of F (ti ) is a little larger than F0 because of
nonlinearity). The parameters determining F (t) are F0, σm and Tm (but not ∆t, which is
merely a discretisation interval).15

Figure 11 shows time series of x1(t) (red) and x2(t) (blue), calculated using a ran-
dom forcing F (t) with F0=1, σm=0.5, Tm=1, and a computational time step ∆t=0.1 time
unit. The forcing function F (t) is shown in the bottom panel. In the top panel, the
parameters are set at reference-case values (q1=1, q2=1, k2=0.2, k2=0.1, s1=0.01).
The behaviour of the system is (not surprisingly) that x1(t) and x2(t) fluctuate around20

the “active-biosphere” equilibrium point for the system with steady forcing, (xQC
1 , xQC

2 ).
This is an example of the first kind of behaviour described above. For these param-
eter values there is only one stable equilibrium point (C), so the system undergoes
excursions around point C under random forcing.

The next two panels in Fig. 11 show the effects of increasing k1 from its reference-25

case value of 0.2 to 0.4 and 0.5, respectively. These parameter values illustrate the
second kind of behaviour. There are now two stable equilibrium points, A and C, with
C being the “active-biosphere” point and A being a “dormant-biosphere” point close
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to, but not at, the origin. (The cubic curves j (x1) which determine equilibrium points
A and C for these parameter values are shown as the dashed lines in Fig. 8). Under
the influence of random forcing the system flips randomly between these two states,
fluctuating around one of these points and then the other. The flips are triggered by the
interaction between the forcing F (t), the state (x1(t), x2(t)) and the basin of attraction5

for each equilibrium point. If the system is in the active state (fluctuating near point C)
and a “drought” occurs, represented by a period when F (t) is anomalously low, then
the system can flip into the dormant state and fluctuate around point A. Conversely,
a period of anomalously high F (t) can flip the system from point A to point C. It is
not visually apparent what aspects of F (t) cause the flip. This aspect of the model10

behaviour is reminiscent of the blooming of desert ecosystems in response to rain,
interspersed with long periods of dormancy.

The third kind of behaviour is illustrated by the fourth panel in Fig. 11. In this case
s1=0 and k1=0.4 (with other parameters at reference values), so the fourth panel is
the same as the second except for the change of s1 from 0.01 to 0. The effect of this15

change is that equilibrium point A is now at the origin, so the first flip of the system from
point C to point A leads to “extinction”. Recovery from point A is impossible under any
forcing with s1=0.

The random, noiuse-driven flips between locally stable states evident in Fig. 11
are not the same as dynamical deterministic chaos, for which a paradigm is the 3-20

dimensional Lorenz system (Drazin 1992, Glendinning 1994). Deterministic chaos
is exhibited by nonlinear deterministic systems with solutions which are aperiodic,
bounded and sensitively dependent on initial conditions, meaning that nearby trajecto-
ries separate rapidly in time (Glendinning 1994, p.291). These properties are inherent
in the system equations themselves, rather than being imposed by external random25

forcing or noise. There is an ongoing debate about whether external noise can in-
duce chaos in ecological systems with otherwise stable equilibrium points. Dennis et
al. (2003) argued that this is not possible, while Ellner and Turchin (2005) argued that
the boundary between deterministic and noise-induced chaos is more subtle, exhibit-
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ing regions of “noisy stability”, “noisy chaos”, “quasi-chaos” and “noise-domination”
depending on the noise level and the dominant Lyapunov exponent (the real part of
the fastest-growing eigenvalue of the Jacobian J). The debate appears to depend on
the precise definition of “chaos”. It is certainly important to distinguish between en-
dogenous, deterministic chaos as in the Lorenz system and noise-induced chaos as5

in Fig. 11, because noise-induced chaos disappears as the noise level goes to zero
whereas deterministic chaos does not.

6 Summary and conclusions

This paper has analysed simple models for “production-utilisation” systems, reduced
to two state variables (x1(t), x2(t)) for producers and utilisers, respectively. Two modes10

have been distinguished: in “harvester” systems, resource utilisation involves active
seeking on the part of the utilisers (as in prey-predator systems, for example), while in
“processor” systems, utilisers act as processors which passively receive material from
the production part of the system. The formal expression of this distinction is that the
utilisation flux (g2) depends directly on the utiliser component x2 in harvester systems,15

for example as g2=p2x2x1, whereas g2 is not dependent on x2 in processor systems.
An idealised model of biosphere-human interactions, consisting of two coupled equa-

tions for the time evolutions of biomass b(t) and human population h(t), provides an
example of a harvester system. This model has been analysed in two forms, a basic
form in which production is constant and harvest is simply proportional to bh, and an20

extended form in which the production and harvest fluxes (g1, g2) are both limited by
biospheric resources (b) at low b and saturate at high b. The properties of these two
variants of the model are somewhat different, but the following aspects are common to
both: the model produces a “biosphere-only” equilibrium which is stable in the absence
of humans, and a “coexistence” equilibrium to which the system is attracted whenever25

the initial human population is greater than zero. Trajectories in the (b,h) plane tend
to the coexistence equilibrium point from any initial state with h>0, either without or
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with oscillatory behaviour manifested as decaying spiral orbits. The properties of the
coexistence equilibrium can be quantified in terms of a “resource condition index” (W ),
the ratio of the biomasses at the coexistence and biosphere-only equilibria. However,
there are also some significant differences between the basic and extended forms of
the model: four important ones are (1) an additional equilibrium point at the origin in5

the extended model; (2) different responses to declining resource condition (W ), the
extended model being more realistic; (3) a greater tendency to strong oscillatory be-
haviour in the extended model than in the basic model; and (4) the possibility in the
extended model that the coexistence equilibrium is unstable, leading to limit cycles at
low W with strong resource limitation.10

An idealised model of plant and soil carbon dynamics is used as an example of a
processor system. The model formulation includes a production term with a resource-
limitation dependence on producer (plant carbon, x1) level and a symbiotic dependence
on utiliser (soil carbon x2) level, together with a small constant production term (s1)
which is independent of both x1 and x2. The model has three equilibrium points: a15

stable ”active-biosphere” equilibrium, a stable “dormant-biosphere” equilibrium, and
an unstable equilibrium point between them. The dormant-biosphere equilibrium is
biophysically realisable only in a subset of parameter space. If the production term s1
is zero, then the stable, dormant-biosphere equilibrium (if parameter values allow it to
exist) is at the origin and corresponds to an extinction point for the system. All stable20

equilibria for this plant-soil carbon model are nodes, that is, they have negative, real
eigenvalues of the Jacobian J, so that trajectories approach them without oscillatory
behaviour.

The plant-soil carbon model has been used to study the effect of random forcing of
production (for example by weather and climate fluctuations). With parameter choices25

that allow the existence of both the active-biosphere and dormant-biosphere equilib-
ria, the model can flip between them under the influence of random forcing, producing
a bimodal behaviour in which the model fluctuates alternately around these two very
different equilibrium states. It is important to distinguish this kind of externally-driven
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transition between states from Lorenzian chaos (Glendinning, 1994). In the Loren-
zian system, random flips between states (represented by the two lobes of the Lorenz
attractor) are endogenous properties of the system. In the present example, flips be-
tween states occur as the system crosses a threshold under the influence of external
forcing, although the interactions between state, trajectory and forcing make it hard to5

form a simple rule for when the flip will occur.
Finally, we have highlighted a basic behavioural difference between processor and

harvester forms of producer-utiliser system, as introduced at the start of this paper:
harvester systems tend toward oscillatory behaviour (though they do not always do
so); processor systems do not have this tendency.10

Appendix A

Stability properties of the basic biosphere-human model

The basic biosphere-human model, Eqs. (11) and (12), has two equilibrium points (A
and B) given by Eq. (14). From Eqs. (9) and (10), the stability properties of an equilib-15

rium point (bQ,hQ) are characterised by the determinant and trace of the Jacobian J,
evaluated at that point. For this model, the Jacobian is

J =
(
−k − h −cb
rch r (cb −m)

)
(A1)

In terms of the dimensionless groups U and V , the determinant and trace of J are:

Point A: Det J = k2V (U−1)
U ,Tr J = k

(
V (1−U)

U − 1
)

Point B: Det J = k2V (1−U)
U ,Tr J = − k

U

(A2)
20

Hence, for all biophysically admissible parameter choices (0≤U≤1 and 0≤V ), Det J<0
at point A and Det J>0, Tr J<0 at point B. Evaluating stability with Eq. (9), point A is a
saddle point and point B is stable.
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The two eigenvalues at each equilibrium point are

Point A: λ1 = −k, λ2 = kV
(
U−1 − 1

)
Point B: λ1,2 =

(
k
/

2U
) (

1 ±
√

1 − 4UV (1 − U)
) (A3)

The eigenvalues at point A are both real and of opposite sign. Inspection of Eqs. (11)
and (12) (or evaluation of the eigenvectors) shows that the stable axis of this saddle
point is oriented along the axis h=0, so that point A is stable if h=0 and unstable5

otherwise. The eigenvalues at point B both have negative real parts, consistent with
stability. Point B is a stable focus (spiral trajectories) when V >(4U(1–U))−1, and a
stable node otherwise.

Appendix B
10

Stability properties of the dimensionless extended biosphere-human model

The dimensionless extended biosphere-human model, Eqs. (20) and (21), has three
equilibrium points (Z, A, B) given by Eq. (22). In terms of the resource condition index
W defined by Eq. (23), the Jacobian of the model is:

J =

 a1(1+a1)

(x1+a1)2 − 1 − V (1+a2W )x2

W (1+a2x1)2 − V (1+a2W )x1
W (1+a2x1)

V (1+a2W )x2

W (1+a2x1)2 − V (x1−W )
W (1+a2x1)

 (B1)
15

and the determinant and trace of J at each equilibrium point are:

Point Z: Det J = − V
a1
, Tr J = 1

a1
− V

Point A: Det J = V (W−1)
W (1+a1)(1+a2) , Tr J = − V (W−1)(1+a1)+W (1+a2)

W (1+a1)(1+a2)

Point B: Det J = V (1−W )
(W+a1)(1+a2W ) ,Tr J = −

W
(

1+a1−a1a2+2a1a2W+a2W
2
)

(W+a1)2(1+a2W )

(B2)
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Using Eqs. (9) and (10) and the existence conditions 0 ≤W≤1, 0≤V , 0≤a1 and 0≤a2
for biophysically admissible parameters, the following stability properties are obtained
for the three equilibrium points. At point Z (the origin), Det J is always negative and
Tr J is of either sign. Therefore, point Z is a saddle point. Inspection of Eqs. (20) and
(21) (or evaluation of the eigenvectors) shows that point Z is unstable with respect to5

an infinitesimal variation in x1 and stable with respect to a variation in x2, so the stable
axis of the saddle point at (0,0) is oriented along the x2 axis. At point A (the biosphere-
only equilibrium), Det J is always negative and Tr J is always negative. Hence this point
is a saddle point. Its stable axis is oriented along the x1 (biomass) axis, as in the basic
model. At point B (the coexistence equilibrium), Det J is always positive and Tr J is of10

either sign. Hence this point is either stable (if Tr J<0, evaluated at point B) or unstable
(if Tr J > 0). This leads to the criteria given in Eqs. (25) and (26).

Acknowledgements. Discussions with P. Canadell, C. Trudinger, B. Walker and J. Finnigan
have been important in forming the ideas presented here. I am grateful to the organisers of the
Oliphant Conference on Thresholds and Pattern Dynamics for the opportunity to participate,15

and also for support from the CSIRO Complex System Science Initiative.

References

Bolker, B. M., Pacala, S. W., and Parton, W. J.: Linear analysis of soil decomposition: Insights
from the century model, Ecol. Appl., 8, 425–439, 1998.

Boyden, S.: The Biology of Civilisation, p.189, University of New South Wales Press Ltd.,20

Sydney, 2004.
Casti, J. L.: Five Golden Rules, p.235, John Wiley and Sons, Inc., New York, 1996.
Casti, J. L.: Five More Golden Rules, p.267, John Wiley and Sons, Inc., New York, 2000.
Dennis, B., Desharnais, R. A., Cushing, J. M., Henson, S. M., and Costantino, R. F.: Can noise

induce chaos?, Oikos, 102, 329–339, 2003.25

Diamond, J.: The Rise and Fall of the Third Chimpanzee, p. 360, Vintage, London, 1991.
Diamond, J.: Guns, Germs and Steel, p.480, Vintage, London, 1997.
Diamond, J.: Collapse, p.575, Allen Lane, Penguin Group, New York, 2005.

2309

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2279–2322, 2006

Resource production
and utilisation

M. R. Raupach

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Drazin, P. G.: Nonlinear Systems, p.317, Cambridge University Press, Cambridge, 1992.
Ellner, S. P. and Turchin, P.: When can noise induce chaos and why does it matter: a critique,

Oikos, 111, 62–631, 2005.
Flannery, T. F.: The Future Eaters, p.423, Reed Books, Melbourne, 1994.
Glendinning, P.: Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear5

Differential Equations, 1–388, Cambridge University Press, Cambridge, 1994.
Gurney, W. S. C. and Nisbet, R. M.: Ecological Dynamics, p. 35, Oxford University Press,

Oxford, 1998.
Katterer, T. and Andren, O.: The ICBM family of analytically solved models of soil carbon, nitro-

gen and microbial biomass dynamics descriptions and application examples, Ecol. Modell.,10

136, 191–207, 2001.
Kirschbaum, M. U. F.: CenW, a forest growth model with linked carbon, energy, nutrient and

water cycles, Ecol. Modelling, 118, 17–59, 1999.
Kot, M.: Elements of Mathematical Ecology, 1–453, Cambridge University Press, Cambridge,

2001.15

Landsberg, J. J. and Waring, R. H.: A generalised model of forest productivity using simplified
concepts of radiation-use efficiency, carbon balance and partitioning, Forest Ecol. Manage.,
95, 209–228, 1997.

Lotka, A. J.: Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc.,
42, 1595–1599, 1920.20

McMurtrie, R. E., Leuning, R., Thompson, W. A., and Wheeler, A. M.: A model of canopy
photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange,
Forest Ecol. Manage., 52, 261–278, 1992.

McMurtrie, R. E. and Wang, Y. P.: Mathematical-models of the photosynthetic response of tree
stands to rising CO2 concentrations and temperatures, Plant. Cell. Environ., 16, 1–13, 1993.25

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors controlling soil
organic matter levels in Great Plains grasslands, Soil Sci. Soc. Am. J., 51, 1173–1179, 1987.

Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S.,
Kirchner, T., Menaut, J. C., Seastedt, T., Moya, E. G., Kamnalrut, A., and Kinyamario, J. I.:
Observations and modeling of biomass and soil organic matter dynamics for the grassland30

biome worldwide, Global Biogeochem. Cycles, 7, 785–809, 1993.
Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N, P and S in grassland soils:

a model, Biogeochemistry, 5, 109–131, 1988.

2310

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2279–2322, 2006

Resource production
and utilisation

M. R. Raupach

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Raupach, M. R., Barrett, D. J., Briggs, P. R., and Kirby, J. M.: Simplicity, complexity and scale
in terrestrial biosphere modelling, in: Prediction in Ungauged Basins: International Perspec-
tives on the State-of-the-Art and Pathways Forward (IAHS Publication No. 301), edited by:
Franks, S. W. and Sivapalan, M., IAHS Press, Wallingford, 2005.

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu, Q., Pak, B. C., Reichstein, M.,5

Renzullo, L., Richardson, A. E., Styles, J. M., Wang, Y. P., Briggs, P. R., Barrett, D. J., and
Nikolova, S.: The OptIC project: an intercomparison of optimisation techniques for parameter
estimation in terrestrial biogeochemical models, Global Change Biol., in preparation, 2006.

van Kampen, N. G.: Stochastic Processes in Physics and Chemistry, p.419, North-Holland,
Amsterdam, 1981.10

Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem.
Accad. Naz. Lincei, 2, 31–113, 1926.

2311

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2279/2006/hessd-3-2279-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2279–2322, 2006

Resource production
and utilisation

M. R. Raupach

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Figures 

0.2 0.4 0.6 0.8 1 1.2
b

0.1

0.2

0.3

0.4

0.5

0.6

h vary c

0.2 0.4 0.6 0.8 1 1.2
b

0.1

0.2

0.3

0.4

0.5

0.6

h vary r

0.2 0.4 0.6 0.8 1 1.2
b

0.2

0.4

0.6

0.8

1

h vary p

0.2 0.4 0.6 0.8 1 1.2
b

0.2

0.4

0.6

0.8

1

h vary m

 

Figure 1:  Trajectories (b(t), h(t)) of the basic biosphere-human model on the bh plane, with 

different curves showing variation of (top left) primary production p; (top right) human 

maintenance requirement m; (bottom left) extraction rate c; (bottom right) growth rate r;.  The 

centre case (black curve, identical in all plots) has parameters p = 1, k = 1, m = 2, c = 4, r = 1.  In 

each plot, the varied parameter takes logarithmically spaced values from 0.4 to 2.5 of its centre-

case value (rainbow curves, red to violet).  All trajectories have initial condition (b(0), h(0)) = 

(1, 0.1). Note that ordinate scale differs between panels. 
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Fig. 1. Trajectories (b(t),h(t)) of the basic biosphere-human model on the bh plane, with differ-
ent curves showing variation of (top left) primary production p; (top right) human maintenance
requirement m; (bottom left) extraction rate c; (bottom right) growth rate r ;. The centre case
(black curve, identical in all plots) has parameters p=1, k=1, m=2, c=4, r=1. In each plot, the
varied parameter takes logarithmically spaced values from 0.4 to 2.5 of its centre-case value
(rainbow curves, red to violet). All trajectories have initial condition (b(0), h(0))=(1,0.1). Note
that ordinate scale differs between panels.
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Figure 2:  Production term in the dimensionless extended biosphere-human model, 

g1(x1) = (1+a1)x1/(x1+a1), plotted against x1 for a1 ranging from 0 to 1. 
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Fig. 2. Production term in the dimensionless extended biosphere-human model,
g1(x1)=(1+a1)x1/(x1 + a1), plotted against x1 for a1 ranging from 0 to 1.
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Figure 3:  (top) Coexistence equilibrium for the dimensionless extended biosphere-human model, 

(x1
QB, x2

QB), plotted on x1x2 plane with V = 1 and with W varying parametrically from 0 to 1 along 

each curve (from left to right), and with a1 varying from 0 to 1 across curves (red: a1 = 0; violet; 

a1 = 1).  (bottom) Umax = 1/(1+a2) as a function of a2. 
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Fig. 3. (top) Coexistence equilibrium for the dimensionless extended biosphere-human model,
(xQB

1 , xQB
2 ), plotted on x1x2 plane with V =1 and with W varying parametrically from 0 to 1 along

each curve (from left to right), and with a1 varying from 0 to 1 across curves (red: a1=0; violet;
a1=1). (bottom) Umax=1/(1+a2) as a function of a2.
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Figure 4: Flow fields on x1x2 plane for the dimensionless extended biosphere-human model, with 

V = 1, a1 = a2 = 0.5, and W = 0.2 (top), 0.5 (middle) and 1.0 (bottom).  The x1 (horizontal) axis 

extends from 0 to 1.2, and the x2 (vertical) axis from 0 to 0.5. 
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Fig. 4. Flow fields on x1x2 plane for the dimensionless extended biosphere-human model, with
V =1, a1=a2=0.5, and W=0.2 (top), 0.5 (middle) and 1.0 (bottom). The x1 (horizontal) axis
extends from 0 to 1.2, and the x2 (vertical) axis from 0 to 0.5.
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Figure 5:  Trajectories on x1x2 plane for the dimensionless extended biosphere-human model, 

with centre-case parameters W = 0.5, V = 1, a1 = 0.5, a2 = 0.5.  The initial condition is always 

x1 = 1.0, x2 = 0.2.  Panels show (with colours proceeding through the rainbow from red to violet) 

the effect of (a) variation of W from 0.1 to 1; (b) variation of V from 0.5 to 2; (c) variation of a1 

from 0 to 2; (d) variation of a2 from 0 to 2. 
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Fig. 5. Trajectories on x1x2 plane for the dimensionless extended biosphere-human model, with
centre-case parameters W=0.5, V =1, a1=0.5, a2=0.5. The initial condition is always x1=1.0,
x2=0.2. Panels show (with colours proceeding through the rainbow from red to violet) the effect
of (top left) variation of W from 0.1 to 1; (top right) variation of V from 0.5 to 2; (bottom left)
variation of a1 from 0 to 2; (bottom right) variation of a2 from 0 to 2.
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Figure 6: Instability threshold for the coexistence equilibrium point of the dimensionless 

extended biosphere-human model as a function of a1, a2 and W.  Curves show the instability 

threshold on the (W, a2) plane, with a1 = 1, 2, 4, 8, 16 (red to blue).  Points above the curves are 

unstable. 
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Fig. 6. Instability threshold for the coexistence equilibrium point of the dimensionless extended
biosphere-human model as a function of a1, a2 and W . Curves show the instability threshold
on the (W , a2) plane, with a1=1, 2, 4, 8, 16 (red to blue). Points above the curves are unstable.
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Figure 7:  Trajectories on x1x2 plane for the dimensionless extended biosphere-human model 

illustrating the effect of crossing the instability threshold for the coexistence equilibrium (point 

B).  Centre-case parameters are W = 0.2, V = 0.1, a1 = 2, a2 = 2.  Left panel: two trajectories with 

W = 0.3 and 0.1 and other parameters at centre-case values.  Right panel: two trajectories with 

a2 = 1 and 4, and other parameters at centre-case values.  In each case the first (red) trajectory is 

stable, and the second (blue) trajectory is unstable, entering a limit cycle. 
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Fig. 7. Trajectories on x1x2 plane for the dimensionless extended biosphere-human model
illustrating the effect of crossing the instability threshold for the coexistence equilibrium (point
B). Centre-case parameters are W=0.2, V =0.1, a1=2, a2=2. Left panel: two trajectories with
W = 0.3 and 0.1 and other parameters at centre-case values. Right panel: two trajectories with
a2=1 and 4, and other parameters at centre-case values. In each case the first (red) trajectory
is stable, and the second (blue) trajectory is unstable, entering a limit cycle.
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Figure 8:  The cubic j(x1) defined by Equation (30), with reference-case parameter values F0 = 1, 

q1 = 1, q2 = 1, k1 = 0.2, k2 = 0.1, s1 = 0.01.  Solid red line and blue lines show the effect of 

varying s1 (red: s1 = 0.01; blue: s1 = 0, with other parameters at reference values).  Dashed orange 

and yellow lines show effect of varying k1 (orange: k1 = 0.4; yellow: k1 = 0.5, with other 

parameters at reference values).  Left panel shows all zeros of j(x1).  Right panel is an expanded 

view showing j(x1) near the origin. 
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Fig. 8. The cubic j (x1) defined by Eq. (30), with reference-case parameter values F0=1, q1=1,
q2=1, k1=0.2, k2=0.1, s1=0.01. Solid red line and blue lines show the effect of varying s1
(red: s1=0.01; blue: s1=0, with other parameters at reference values). Dashed orange and
yellow lines show effect of varying k1 (orange: k1=0.4; yellow: k1=0.5, with other parameters
at reference values). Left panel shows all zeros of j (x1). Right panel is an expanded view
showing j (x1) near the origin.
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Figure 9:  Variation of x1
Q/10 (red), x2

Q/10 (orange), 10 Det J (green), −Tr J (blue) and the 
discriminant ((Tr J)2 −4 Det J) (violet) at equilibrium points A, B, C (columns) for the two-
equation model of plant (x1) and soil (x2) carbon dynamics, Equations (27) and (28), with steady 
forcing (F(t) = F0) and centre-case parameter values F0 = 1, q1 = 1, q2 = 1, k1 = 0.2, k2 = 0.1, 
s1 = 0.01.  Rows 1 to 5 show effect of varying s1, k1, k2, q1, q2 about centre-case values. 
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Fig. 9. Variation of xQ
1 /10 (red), xQ

2 /10 (orange), 10 Det J (green), -Tr J (blue) and the discrimi-
nant ((Tr J)2–4Det J) (violet) at equilibrium points A, B, C (columns) for the two-equation model
of plant (x1) and soil (x2) carbon dynamics, Eqs. (27) and (28), with steady forcing (F (t)=F0)
and centre-case parameter values F0=1, q1=1, q2=1, k1=0.2, k2=0.1, s1=0.01. Rows 1 to 5
show effect of varying s1, k1, k2, q1, q2 about centre-case values.
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Figure 10:  Trajectories on x1x2 plane for the two-equation model of plant (x1) and soil (x2) carbon 

dynamics, Equations (27) and (28), with steady forcing (F(t) = F0) and centre-case parameter 

values F0 = 1, q1 = 1, q2 = 1, k1 = 0.2, k2 = 0.1, s1 = 0.01.  The initial condition is always x1 = 1.0, 

x2 = 1.0.  Panels show the effect of (a) variation of s1 from 0 to 0.1; (b) variation of k2 from 0.05 

to 0.2; (c) variation of q1 from 0 to 1; (d) variation of q2 from 0 to 1.  All these trajectories 

converge to the "active" equilibrium point, (x1
QC, x2

QC). 
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Fig. 10. Trajectories on x1x2 plane for the two-equation model of plant (x1) and soil (x2) carbon
dynamics, Eqs. (27) and (28), with steady forcing (F (t)=F0) and centre-case parameter values
F0=1, q1=1, q2=1, k1=0.2, k2=0.1, s1=0.01. The initial condition is always x1=1.0, x2=1.0.
Panels show the effect of (top left) variation of s1 from 0 to 0.1; (top right) variation of k2 from
0.05 to 0.2; (bottom left) variation of q1 from 0 to 1; (bottom right) variation of q2 from 0 to 1.
All these trajectories converge to the “active” equilibrium point, (xQC

1 , xQC
2 ).
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Figure 11:  Time series of x1(t) (red) and x2(t) (blue) for the two-equation model of plant (x1) and 

soil (x2) carbon dynamics, Equations (27) and (28), with parameters q1 = 1, q2 = 1, k2 = 0.1, and 

(k1, s1) = (0.2, 0.01), (0.4, 0.01), (0.5, 0.01), and (0.4, 0) (top to second bottom panels).  

Parameters for the top panel correspond to the reference case.  The bottom panel shows the 

forcing term F(t), from Equation (31) with F0 = 1, σm = 0.5, Tm = 1. 

 38

Fig. 11. Time series of x1(t) (red) and x2(t) (blue) for the two-equation model of plant (x1) and
soil (x2) carbon dynamics, Eqs. (27) and (28), with parameters q1=1, q2=1, k2=0.1, and (k1,
s1)=(0.2, 0.01), (0.4, 0.01), (0.5, 0.01), and (0.4, 0) (top to second bottom panels). Parameters
for the top panel correspond to the reference case. The bottom panel shows the forcing term
F (t), from Eq. (31) with F0=1, σm=0.5, Tm=1.
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